Conditions | 56 |
Total Lines | 401 |
Code Lines | 312 |
Lines | 401 |
Ratio | 100 % |
Tests | 181 |
CRAP Score | 84.8768 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like sciapy.regress.__main__.main() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
146 | 1 | View Code Duplication | def main(): |
147 | 1 | logging.basicConfig(level=logging.WARNING, |
|
148 | format="[%(levelname)-8s] (%(asctime)s) " |
||
149 | "%(filename)s:%(lineno)d %(message)s", |
||
150 | datefmt="%Y-%m-%d %H:%M:%S %z") |
||
151 | |||
152 | 1 | args = parser.parse_args() |
|
153 | |||
154 | 1 | logging.info("command line arguments: %s", args) |
|
155 | 1 | if args.quiet: |
|
156 | 1 | logging.getLogger().setLevel(logging.ERROR) |
|
157 | elif args.verbose: |
||
158 | logging.getLogger().setLevel(logging.INFO) |
||
159 | else: |
||
160 | logging.getLogger().setLevel(args.loglevel) |
||
161 | |||
162 | 1 | from numpy.distutils.system_info import get_info |
|
163 | 1 | try: |
|
164 | 1 | ob_lib_dirs = get_info("openblas")["library_dirs"] |
|
165 | 1 | except KeyError: |
|
166 | 1 | ob_lib_dirs = [] |
|
167 | 1 | for oblas_path in ob_lib_dirs: |
|
168 | oblas_name = "{0}/libopenblas.so".format(oblas_path) |
||
169 | logging.info("Trying %s", oblas_name) |
||
170 | try: |
||
171 | oblas_lib = ctypes.cdll.LoadLibrary(oblas_name) |
||
172 | oblas_cores = oblas_lib.openblas_get_num_threads() |
||
173 | oblas_lib.openblas_set_num_threads(args.openblas_threads) |
||
174 | logging.info("Using %s/%s Openblas thread(s).", |
||
175 | oblas_lib.openblas_get_num_threads(), oblas_cores) |
||
176 | except: |
||
177 | logging.info("Setting number of openblas threads failed.") |
||
178 | |||
179 | 1 | if args.random_seed is not None: |
|
180 | 1 | np.random.seed(args.random_seed) |
|
181 | |||
182 | 1 | if args.proxies: |
|
183 | 1 | proxies = args.proxies.split(',') |
|
184 | 1 | proxy_dict = dict(_p.split(':') for _p in proxies) |
|
185 | else: |
||
186 | proxy_dict = {} |
||
187 | 1 | lag_dict = {pn: 0 for pn in proxy_dict.keys()} |
|
188 | |||
189 | # Post-processing of arguments... |
||
190 | # List of proxy lag fits from csv |
||
191 | 1 | fit_lags = args.fit_lags.split(',') |
|
192 | # List of proxy lifetime fits from csv |
||
193 | 1 | fit_lifetimes = args.fit_lifetimes.split(',') |
|
194 | 1 | fit_annlifetimes = args.fit_annlifetimes.split(',') |
|
195 | # List of proxy lag times from csv |
||
196 | 1 | lag_dict.update(dict(_ls.split(':') for _ls in args.lag_times.split(','))) |
|
197 | # List of cycles (frequencies in 1/year) from argument list (csv) |
||
198 | 1 | try: |
|
199 | 1 | freqs = list(map(float, args.freqs.split(','))) |
|
200 | 1 | except ValueError: |
|
201 | 1 | freqs = [] |
|
202 | 1 | args.freqs = freqs |
|
203 | # List of initial parameter values |
||
204 | 1 | initial = None |
|
205 | 1 | if args.initial is not None: |
|
206 | try: |
||
207 | initial = list(map(float, args.initial.split(','))) |
||
208 | except ValueError: |
||
209 | pass |
||
210 | # List of GP kernels from argument list (csv) |
||
211 | 1 | kernls = args.kernels.split(',') |
|
212 | |||
213 | 1 | lat = args.latitude |
|
214 | 1 | alt = args.altitude |
|
215 | 1 | logging.info("location: %.0f°N %.0f km", lat, alt) |
|
216 | |||
217 | 1 | no_ys, no_dens, no_errs, no_szas = load_scia_dzm(args.file, alt, lat, |
|
218 | tfmt=args.time_format, |
||
219 | scale=args.scale, |
||
220 | #subsample_factor=args.random_subsample, |
||
221 | #subsample_method="random", |
||
222 | akd_threshold=args.akd_threshold, |
||
223 | cnt_threshold=args.cnt_threshold, |
||
224 | center=args.center_data, |
||
225 | season=args.season, |
||
226 | SPEs=args.exclude_spe) |
||
227 | |||
228 | 1 | (no_ys_train, no_dens_train, no_errs_train, |
|
229 | no_ys_test, no_dens_test, no_errs_test) = _train_test_split( |
||
230 | no_ys, no_dens, no_errs, args.train_fraction, |
||
231 | args.test_fraction, args.random_train_test) |
||
232 | |||
233 | 1 | sza_intp = interp1d(no_ys, no_szas, bounds_error=False) |
|
234 | |||
235 | 1 | max_amp = 1e10 * args.scale |
|
236 | 1 | max_days = 100 |
|
237 | |||
238 | 1 | proxy_config = {} |
|
239 | 1 | for pn, pf in proxy_dict.items(): |
|
240 | 1 | pt, pp = load_solar_gm_table(path.expanduser(pf), |
|
241 | cols=[0, 1], names=["time", pn], tfmt=args.time_format) |
||
242 | 1 | pv = pp[pn] |
|
243 | # use log of proxy values if desired |
||
244 | 1 | if pn in args.log_proxies.split(','): |
|
245 | pv = np.log(pv) |
||
246 | # normalize to sun--earth distance squared |
||
247 | 1 | if pn in args.norm_proxies_distSEsq.split(','): |
|
248 | rad_sun_earth = np.vectorize(_r_sun_earth)(pt, tfmt=args.time_format) |
||
249 | pv /= rad_sun_earth**2 |
||
250 | # normalize by cos(SZA) |
||
251 | 1 | if pn in args.norm_proxies_SZA.split(',') and sza_intp is not None: |
|
252 | pv *= np.cos(np.radians(sza_intp(pt))) |
||
253 | 1 | proxy_config.update({pn: |
|
254 | dict(times=pt, values=pv, |
||
255 | center=pn in args.center_proxies.split(','), |
||
256 | positive=pn in args.positive_proxies.split(','), |
||
257 | lag=float(lag_dict[pn]), |
||
258 | max_amp=max_amp, max_days=max_days, |
||
259 | sza_intp=sza_intp if args.use_sza else None, |
||
260 | )} |
||
261 | ) |
||
262 | |||
263 | 1 | model = trace_gas_model(constant=args.fit_offset, |
|
264 | proxy_config=proxy_config, **vars(args)) |
||
265 | |||
266 | 1 | logging.debug("model dict: %s", model.get_parameter_dict()) |
|
267 | 1 | model.freeze_all_parameters() |
|
268 | # thaw parameters according to requested fits |
||
269 | 1 | for pn in proxy_dict.keys(): |
|
270 | 1 | model.thaw_parameter("{0}:amp".format(pn)) |
|
271 | 1 | if pn in fit_lags: |
|
272 | model.thaw_parameter("{0}:lag".format(pn)) |
||
273 | 1 | if pn in fit_lifetimes: |
|
274 | 1 | model.set_parameter("{0}:tau0".format(pn), 1e-3) |
|
275 | 1 | model.thaw_parameter("{0}:tau0".format(pn)) |
|
276 | 1 | if pn in fit_annlifetimes: |
|
277 | 1 | model.thaw_parameter("{0}:taucos1".format(pn)) |
|
278 | 1 | model.thaw_parameter("{0}:tausin1".format(pn)) |
|
279 | else: |
||
280 | 1 | model.set_parameter("{0}:ltscan".format(pn), 0) |
|
281 | 1 | for freq in freqs: |
|
282 | 1 | if not args.fit_phase: |
|
283 | 1 | model.thaw_parameter("f{0:.0f}:cos".format(freq)) |
|
284 | 1 | model.thaw_parameter("f{0:.0f}:sin".format(freq)) |
|
285 | else: |
||
286 | model.thaw_parameter("f{0:.0f}:amp".format(freq)) |
||
287 | model.thaw_parameter("f{0:.0f}:phase".format(freq)) |
||
288 | 1 | if args.fit_offset: |
|
289 | #model.set_parameter("offset:value", -100.) |
||
290 | #model.set_parameter("offset:value", 0) |
||
291 | 1 | model.thaw_parameter("offset:value") |
|
292 | |||
293 | 1 | if initial is not None: |
|
294 | model.set_parameter_vector(initial) |
||
295 | # model.thaw_parameter("GM:ltscan") |
||
296 | 1 | logging.debug("params: %s", model.get_parameter_dict()) |
|
297 | 1 | logging.debug("param names: %s", model.get_parameter_names()) |
|
298 | 1 | logging.debug("param vector: %s", model.get_parameter_vector()) |
|
299 | 1 | logging.debug("param bounds: %s", model.get_parameter_bounds()) |
|
300 | #logging.debug("model value: %s", model.get_value(no_ys)) |
||
301 | #logging.debug("default log likelihood: %s", model.log_likelihood(model.vector)) |
||
302 | |||
303 | # setup the Gaussian Process kernel |
||
304 | 1 | kernel_base = (1e7 * args.scale)**2 |
|
305 | 1 | ksub = args.name_suffix |
|
306 | |||
307 | 1 | solver = "basic" |
|
308 | 1 | skwargs = {} |
|
309 | 1 | if args.HODLR_Solver: |
|
310 | solver = "HODLR" |
||
311 | #skwargs = {"tol": 1e-3} |
||
312 | |||
313 | 1 | if args.george: |
|
314 | 1 | gpname, kernel = setup_george_kernel(kernls, |
|
315 | kernel_base=kernel_base, fit_bias=args.fit_bias) |
||
316 | 1 | gpmodel = george.GP(kernel, mean=model, |
|
317 | white_noise=1.e-25, fit_white_noise=args.fit_white, |
||
318 | solver=george_solvers[solver], **skwargs) |
||
319 | # the george interface does not allow setting the bounds in |
||
320 | # the kernel initialization so we prepare simple default bounds |
||
321 | 1 | kernel_bounds = [(-0.3 * max_amp, 0.3 * max_amp) |
|
322 | for _ in gpmodel.kernel.get_parameter_names()] |
||
323 | 1 | bounds = gpmodel.mean.get_parameter_bounds() + kernel_bounds |
|
324 | else: |
||
325 | 1 | gpname, cel_terms = setup_celerite_terms(kernls, |
|
326 | fit_bias=args.fit_bias, fit_white=args.fit_white) |
||
327 | 1 | gpmodel = celerite.GP(cel_terms, mean=model, |
|
328 | fit_white_noise=args.fit_white, |
||
329 | fit_mean=True) |
||
330 | 1 | bounds = gpmodel.get_parameter_bounds() |
|
331 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
332 | 1 | logging.debug("gpmodel params: %s", gpmodel.get_parameter_dict()) |
|
333 | 1 | logging.debug("gpmodel bounds: %s", bounds) |
|
334 | 1 | logging.debug("initial log likelihood: %s", gpmodel.log_likelihood(no_dens_train)) |
|
335 | 1 | if isinstance(gpmodel, celerite.GP): |
|
336 | 1 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
|
337 | 1 | model_name = "_".join(gpmodel.mean.get_parameter_names()).replace(':', '') |
|
338 | 1 | gpmodel_name = model_name + gpname |
|
339 | 1 | logging.info("GP model name: %s", gpmodel_name) |
|
340 | |||
341 | 1 | pre_opt = False |
|
342 | 1 | if args.optimize > 0: |
|
343 | 1 | def gpmodel_mean(x, *p): |
|
344 | gpmodel.set_parameter_vector(p) |
||
345 | return gpmodel.mean.get_value(x) |
||
346 | |||
347 | 1 | def gpmodel_res(x, *p): |
|
348 | gpmodel.set_parameter_vector(p) |
||
349 | return (gpmodel.mean.get_value(x) - no_dens_train) / no_errs_train |
||
350 | |||
351 | 1 | def lpost(p, y, gp): |
|
352 | 1 | gp.set_parameter_vector(p) |
|
353 | 1 | return gp.log_likelihood(y, quiet=True) + gp.log_prior() |
|
354 | |||
355 | 1 | def nlpost(p, y, gp): |
|
356 | 1 | lp = lpost(p, y, gp) |
|
357 | 1 | return -lp if np.isfinite(lp) else 1e25 |
|
358 | |||
359 | 1 | def grad_nlpost(p, y, gp): |
|
360 | 1 | gp.set_parameter_vector(p) |
|
361 | 1 | grad_ll = gp.grad_log_likelihood(y) |
|
362 | 1 | if isinstance(grad_ll, tuple): |
|
363 | # celerite |
||
364 | 1 | return -grad_ll[1] |
|
365 | # george |
||
366 | 1 | return -grad_ll |
|
367 | |||
368 | 1 | jacobian = grad_nlpost if gpmodel.kernel.vector_size else None |
|
369 | 1 | if args.optimize == 1: |
|
370 | 1 | resop_gp = op.minimize( |
|
371 | nlpost, |
||
372 | gpmodel.get_parameter_vector(), |
||
373 | args=(no_dens_train, gpmodel), |
||
374 | bounds=bounds, |
||
375 | # method="l-bfgs-b", options=dict(disp=True, maxcor=100, eps=1e-9, ftol=2e-15, gtol=1e-8)) |
||
376 | method="l-bfgs-b", jac=jacobian) |
||
377 | # method="tnc", options=dict(disp=True, maxiter=500, xtol=1e-12)) |
||
378 | # method="nelder-mead", options=dict(disp=True, maxfev=100000, fatol=1.49012e-8, xatol=1.49012e-8)) |
||
379 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08)) |
||
380 | 1 | if args.optimize == 2: |
|
381 | resop_gp = op.differential_evolution( |
||
382 | nlpost, |
||
383 | bounds=bounds, |
||
384 | args=(no_dens_train, gpmodel), |
||
385 | popsize=2 * args.walkers, tol=0.01) |
||
386 | 1 | if args.optimize == 3: |
|
387 | resop_bh = op.basinhopping( |
||
388 | nlpost, |
||
389 | gpmodel.get_parameter_vector(), |
||
390 | niter=200, |
||
391 | minimizer_kwargs=dict( |
||
392 | args=(no_dens_train, gpmodel), |
||
393 | bounds=bounds, |
||
394 | # method="tnc")) |
||
395 | # method="l-bfgs-b", options=dict(maxcor=100))) |
||
396 | method="l-bfgs-b", jac=jacobian)) |
||
397 | # method="Nelder-Mead")) |
||
398 | # method="BFGS")) |
||
399 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08))) |
||
400 | logging.debug("optimization result: %s", resop_bh) |
||
401 | resop_gp = resop_bh.lowest_optimization_result |
||
402 | 1 | if args.optimize == 4: |
|
403 | resop_gp, cov_gp = op.curve_fit( |
||
404 | gpmodel_mean, |
||
405 | no_ys_train, no_dens_train, gpmodel.get_parameter_vector(), |
||
406 | bounds=tuple(np.array(bounds).T), |
||
407 | # method='lm', |
||
408 | # absolute_sigma=True, |
||
409 | sigma=no_errs_train) |
||
410 | print(resop_gp, np.sqrt(np.diag(cov_gp))) |
||
411 | 1 | logging.info("%s", resop_gp.message) |
|
412 | 1 | logging.debug("optimization result: %s", resop_gp) |
|
413 | 1 | logging.info("gpmodel dict: %s", gpmodel.get_parameter_dict()) |
|
414 | 1 | logging.info("log posterior trained: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
|
415 | 1 | gpmodel.compute(no_ys_test, no_errs_test) |
|
416 | 1 | logging.info("log posterior test: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
|
417 | 1 | gpmodel.compute(no_ys, no_errs) |
|
418 | 1 | logging.info("log posterior all: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
|
419 | # cross check to make sure that the gpmodel parameter vector is really |
||
420 | # set to the fitted parameters |
||
421 | 1 | logging.info("opt. model vector: %s", resop_gp.x) |
|
422 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
423 | 1 | logging.debug("opt. log posterior trained 1: %s", lpost(resop_gp.x, no_dens_train, gpmodel)) |
|
424 | 1 | gpmodel.compute(no_ys_test, no_errs_test) |
|
425 | 1 | logging.debug("opt. log posterior test 1: %s", lpost(resop_gp.x, no_dens_test, gpmodel)) |
|
426 | 1 | gpmodel.compute(no_ys, no_errs) |
|
427 | 1 | logging.debug("opt. log posterior all 1: %s", lpost(resop_gp.x, no_dens, gpmodel)) |
|
428 | 1 | logging.debug("opt. model vector: %s", gpmodel.get_parameter_vector()) |
|
429 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
430 | 1 | logging.debug("opt. log posterior trained 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
|
431 | 1 | gpmodel.compute(no_ys_test, no_errs_test) |
|
432 | 1 | logging.debug("opt. log posterior test 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
|
433 | 1 | gpmodel.compute(no_ys, no_errs) |
|
434 | 1 | logging.debug("opt. log posterior all 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
|
435 | 1 | pre_opt = resop_gp.success |
|
436 | 1 | try: |
|
437 | 1 | logging.info("GM lt: %s", gpmodel.get_parameter("mean:GM:tau0")) |
|
438 | except ValueError: |
||
439 | pass |
||
440 | 1 | logging.info("(GP) model: %s", gpmodel.kernel) |
|
441 | 1 | if isinstance(gpmodel, celerite.GP): |
|
442 | 1 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
|
443 | |||
444 | 1 | bestfit = gpmodel.get_parameter_vector() |
|
445 | 1 | filename_base = path.join( |
|
446 | args.output_path, |
||
447 | "NO_regress_fit_{0}_{1:.0f}_{2:.0f}_{{0}}_{3}" |
||
448 | .format(gpmodel_name, lat * 10, alt, ksub), |
||
449 | ) |
||
450 | |||
451 | 1 | if args.mcmc: |
|
452 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
453 | 1 | samples, lnp = mcmc_sample_model(gpmodel, |
|
454 | no_dens_train, |
||
455 | beta=1.0, |
||
456 | nwalkers=args.walkers, nburnin=args.burn_in, |
||
457 | nprod=args.production, nthreads=args.threads, |
||
458 | show_progress=args.progress, |
||
459 | optimized=pre_opt, bounds=bounds, return_logpost=True) |
||
460 | |||
461 | 1 | if args.train_fraction < 1. or args.test_fraction < 1.: |
|
462 | logging.info("Statistics for the test samples") |
||
463 | mcmc_statistics(gpmodel, |
||
464 | no_ys_test, no_dens_test, no_errs_test, |
||
465 | no_ys_train, no_dens_train, no_errs_train, |
||
466 | samples, lnp, |
||
467 | ) |
||
468 | 1 | logging.info("Statistics for all samples") |
|
469 | 1 | mcmc_statistics(gpmodel, |
|
470 | no_ys, no_dens, no_errs, |
||
471 | no_ys_train, no_dens_train, no_errs_train, |
||
472 | samples, lnp, |
||
473 | ) |
||
474 | |||
475 | 1 | sampl_percs = np.percentile(samples, [2.5, 50, 97.5], axis=0) |
|
476 | 1 | if args.plot_corner: |
|
477 | 1 | import corner |
|
478 | # Corner plot of the sampled parameters |
||
479 | 1 | fig = corner.corner(samples, |
|
480 | quantiles=[0.025, 0.5, 0.975], |
||
481 | show_titles=True, |
||
482 | labels=gpmodel.get_parameter_names(), |
||
483 | truths=bestfit, |
||
484 | hist_args=dict(normed=True)) |
||
485 | 1 | fig.savefig(filename_base.format("corner") + ".pdf", transparent=True) |
|
486 | |||
487 | 1 | if args.save_samples: |
|
488 | 1 | if args.samples_format in ["npz"]: |
|
489 | # save the samples compressed to save space. |
||
490 | np.savez_compressed(filename_base.format("sampls") + ".npz", |
||
491 | samples=samples) |
||
492 | 1 | if args.samples_format in ["nc", "netcdf4"]: |
|
493 | 1 | save_samples_netcdf(filename_base.format("sampls") + ".nc", |
|
494 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
495 | 1 | if args.samples_format in ["h5", "hdf5"]: |
|
496 | save_samples_netcdf(filename_base.format("sampls") + ".h5", |
||
497 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
498 | # MCMC finished here |
||
499 | |||
500 | # set the model times and errors to use the full data set for plotting |
||
501 | 1 | gpmodel.compute(no_ys, no_errs) |
|
502 | 1 | if args.save_model: |
|
503 | try: |
||
504 | # python 2 |
||
505 | import cPickle as pickle |
||
506 | except ImportError: |
||
507 | # python 3 |
||
508 | import pickle |
||
509 | # pickle and save the model |
||
510 | with open(filename_base.format("model") + ".pkl", "wb") as f: |
||
511 | pickle.dump((gpmodel), f, -1) |
||
512 | |||
513 | 1 | if args.plot_samples and args.mcmc: |
|
514 | 1 | plot_random_samples(gpmodel, no_ys, no_dens, no_errs, |
|
515 | samples, args.scale, |
||
516 | filename_base.format("sampls") + ".pdf", |
||
517 | size=4, extra_years=[4, 2]) |
||
518 | |||
519 | 1 | if args.plot_median: |
|
520 | 1 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
|
521 | sampl_percs[1], |
||
522 | filename_base.format("median") + ".pdf") |
||
523 | 1 | if args.plot_residuals: |
|
524 | 1 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
|
525 | sampl_percs[1], args.scale, |
||
526 | filename_base.format("medres") + ".pdf") |
||
527 | 1 | if args.plot_maxlnp: |
|
528 | 1 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
|
529 | samples[np.argmax(lnp)], |
||
530 | filename_base.format("maxlnp") + ".pdf") |
||
531 | 1 | if args.plot_maxlnpres: |
|
532 | 1 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
|
533 | samples[np.argmax(lnp)], args.scale, |
||
534 | filename_base.format("mlpres") + ".pdf") |
||
535 | |||
536 | 1 | labels = gpmodel.get_parameter_names() |
|
537 | 1 | logging.info("param percentiles [2.5, 50, 97.5]:") |
|
538 | 1 | for pc, label in zip(sampl_percs.T, labels): |
|
539 | 1 | median = pc[1] |
|
540 | 1 | pc_minus = median - pc[0] |
|
541 | 1 | pc_plus = pc[2] - median |
|
542 | 1 | logging.debug("%s: %s", label, pc) |
|
543 | 1 | logging.info("%s: %.6f (- %.6f) (+ %.6f)", label, |
|
544 | median, pc_minus, pc_plus) |
||
545 | |||
546 | 1 | logging.info("Finished successfully.") |
|
547 | |||
551 |