Total Complexity | 55 |
Total Lines | 502 |
Duplicated Lines | 91.24 % |
Coverage | 78.68% |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.regress.models_cel often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | # vim:fileencoding=utf-8 |
||
3 | # |
||
4 | # Copyright (c) 2017-2018 Stefan Bender |
||
5 | # |
||
6 | # This module is part of sciapy. |
||
7 | # sciapy is free software: you can redistribute it or modify |
||
8 | # it under the terms of the GNU General Public License as published |
||
9 | # by the Free Software Foundation, version 2. |
||
10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
11 | 1 | """SCIAMACHY regression models (celerite version) |
|
12 | |||
13 | Model classes for SCIAMACHY data regression fits using the |
||
14 | :mod:`celerite` [#]_ modeling protocol. |
||
15 | |||
16 | .. [#] https://celerite.readthedocs.io |
||
17 | """ |
||
18 | 1 | from __future__ import absolute_import, division, print_function |
|
19 | |||
20 | 1 | import numpy as np |
|
21 | 1 | from scipy.interpolate import interp1d |
|
22 | |||
23 | 1 | from celerite.modeling import Model, ModelSet, ConstantModel |
|
24 | |||
25 | 1 | __all__ = ["ConstantModel", |
|
26 | "HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
||
27 | "ProxyModel", "TraceGasModelSet", |
||
28 | "setup_proxy_model_with_bounds", "trace_gas_model"] |
||
29 | |||
30 | |||
31 | 1 | View Code Duplication | class HarmonicModelCosineSine(Model): |
|
|||
32 | """Model for harmonic terms |
||
33 | |||
34 | Models harmonic terms using a cosine and sine part. |
||
35 | The total amplitude and phase can be inferred from that. |
||
36 | |||
37 | Parameters |
||
38 | ---------- |
||
39 | freq : float |
||
40 | The frequency in years^-1 |
||
41 | cos : float |
||
42 | The amplitude of the cosine part |
||
43 | sin : float |
||
44 | The amplitude of the sine part |
||
45 | """ |
||
46 | 1 | parameter_names = ("freq", "cos", "sin") |
|
47 | |||
48 | 1 | def get_value(self, t): |
|
49 | 1 | t = np.atleast_1d(t) |
|
50 | 1 | return (self.cos * np.cos(self.freq * 2 * np.pi * t) + |
|
51 | self.sin * np.sin(self.freq * 2 * np.pi * t)) |
||
52 | |||
53 | 1 | def get_amplitude(self): |
|
54 | return np.sqrt(self.cos**2 + self.sin**2) |
||
55 | |||
56 | 1 | def get_phase(self): |
|
57 | return np.arctan2(self.sin, self.cos) |
||
58 | |||
59 | 1 | def compute_gradient(self, t): |
|
60 | 1 | t = np.atleast_1d(t) |
|
61 | 1 | dcos = np.cos(self.freq * 2 * np.pi * t) |
|
62 | 1 | dsin = np.sin(self.freq * 2 * np.pi * t) |
|
63 | 1 | df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
|
64 | 1 | return np.array([df, dcos, dsin]) |
|
65 | |||
66 | |||
67 | 1 | View Code Duplication | class HarmonicModelAmpPhase(Model): |
68 | """Model for harmonic terms |
||
69 | |||
70 | Models harmonic terms using a cosine and sine part. |
||
71 | The total amplitude and phase can be inferred from that. |
||
72 | |||
73 | Parameters |
||
74 | ---------- |
||
75 | freq : float |
||
76 | The frequency in years^-1 |
||
77 | amp : float |
||
78 | The amplitude of the harmonic term |
||
79 | phase : float |
||
80 | The phase of the harmonic part |
||
81 | """ |
||
82 | 1 | parameter_names = ("freq", "amp", "phase") |
|
83 | |||
84 | 1 | def get_value(self, t): |
|
85 | t = np.atleast_1d(t) |
||
86 | return self.amp * np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
87 | |||
88 | 1 | def get_amplitude(self): |
|
89 | return self.amp |
||
90 | |||
91 | 1 | def get_phase(self): |
|
92 | return self.phase |
||
93 | |||
94 | 1 | def compute_gradient(self, t): |
|
95 | t = np.atleast_1d(t) |
||
96 | damp = np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
97 | dphi = -self.amp * np.sin(self.freq * 2 * np.pi * t + self.phase) |
||
98 | df = 2 * np.pi * t * dphi |
||
99 | return np.array([df, damp, dphi]) |
||
100 | |||
101 | |||
102 | 1 | View Code Duplication | class ProxyModel(Model): |
103 | """Model for proxy terms |
||
104 | |||
105 | Models proxy terms with a finite and (semi-)annually varying life time. |
||
106 | |||
107 | Parameters |
||
108 | ---------- |
||
109 | proxy_times : (N,) array_like |
||
110 | The data times of the proxy values |
||
111 | proxy_vals : (N,) array_like |
||
112 | The proxy values at `proxy_times` |
||
113 | amp : float |
||
114 | The amplitude of the proxy term |
||
115 | lag : float |
||
116 | The lag of the proxy value in years. |
||
117 | tau0 : float |
||
118 | The base life time of the proxy |
||
119 | taucos1 : float |
||
120 | The amplitude of the cosine part of the annual life time variation. |
||
121 | tausin1 : float |
||
122 | The amplitude of the sine part of the annual life time variation. |
||
123 | taucos2 : float |
||
124 | The amplitude of the cosine part of the semi-annual life time variation. |
||
125 | tausin2 : float |
||
126 | The amplitude of the sine part of the semi-annual life time variation. |
||
127 | ltscan : float |
||
128 | The number of days to sum the previous proxy values. If it is |
||
129 | negative, the value will be set to three times the maximal lifetime. |
||
130 | No lifetime adjustemets are calculated when set to zero. |
||
131 | center : bool, optional |
||
132 | Centers the proxy values by subtracting the overall mean. The mean is |
||
133 | calculated from the whole `proxy_vals` array and is stored in the |
||
134 | `mean` attribute. |
||
135 | Default: False |
||
136 | sza_intp : scipy.interpolate.interp1d() instance, optional |
||
137 | When not `None`, cos(sza) and sin(sza) are used instead |
||
138 | of the time to model the annual variation of the lifetime. |
||
139 | Semi-annual variations are not used in that case. |
||
140 | Default: None |
||
141 | fit_phase : bool, optional |
||
142 | Fit the phase shift directly instead of using sine and cosine |
||
143 | terms for the (semi-)annual lifetime variations. If True, the fitted |
||
144 | cosine parameter is the amplitude and the sine parameter the phase. |
||
145 | Default: False (= fit sine and cosine terms) |
||
146 | lifetime_prior : str, optional |
||
147 | The prior probability density for each coefficient of the lifetime. |
||
148 | Possible types are "flat" or `None` for a flat prior, "exp" for an |
||
149 | exponential density ~ :math:`\\text{exp}(-|\\tau| / \\text{metric})`, |
||
150 | and "normal" for a normal distribution |
||
151 | ~ :math:`\\text{exp}(-\\tau^2 / (2 * \\text{metric}^2))`. |
||
152 | Default: None (= flat prior). |
||
153 | lifetime_metric : float, optional |
||
154 | The metric (scale) of the lifetime priors in days, see `prior`. |
||
155 | Default 1. |
||
156 | days_per_time_unit : float, optional |
||
157 | The number of days per time unit, used to normalize the lifetime |
||
158 | units. Use 365.25 if the times are in fractional years, or 1 if |
||
159 | they are in days. |
||
160 | Default: 365.25 |
||
161 | """ |
||
162 | 1 | parameter_names = ("amp", "lag", "tau0", |
|
163 | "taucos1", "tausin1", "taucos2", "tausin2", |
||
164 | "ltscan") |
||
165 | |||
166 | 1 | def __init__(self, proxy_times, proxy_vals, |
|
167 | center=False, |
||
168 | sza_intp=None, fit_phase=False, |
||
169 | lifetime_prior=None, lifetime_metric=1., |
||
170 | days_per_time_unit=365.25, |
||
171 | *args, **kwargs): |
||
172 | 1 | self.mean = 0. |
|
173 | 1 | if center: |
|
174 | self.mean = np.nanmean(proxy_vals) |
||
175 | 1 | self.times = proxy_times |
|
176 | 1 | self.dt = 1. |
|
177 | 1 | self.values = proxy_vals - self.mean |
|
178 | 1 | self.sza_intp = sza_intp |
|
179 | 1 | self.fit_phase = fit_phase |
|
180 | 1 | self.days_per_time_unit = days_per_time_unit |
|
181 | 1 | self.omega = 2 * np.pi * days_per_time_unit / 365.25 |
|
182 | 1 | self.lifetime_prior = lifetime_prior |
|
183 | 1 | self.lifetime_metric = lifetime_metric |
|
184 | 1 | super(ProxyModel, self).__init__(*args, **kwargs) |
|
185 | |||
186 | 1 | def _lt_corr(self, t, tau, tmax=60.): |
|
187 | """Lifetime corrected values |
||
188 | |||
189 | Corrects for a finite lifetime by summing over the last `tmax` |
||
190 | days with an exponential decay given of lifetime(s) `taus`. |
||
191 | """ |
||
192 | 1 | bs = np.arange(self.dt, tmax + self.dt, self.dt) |
|
193 | 1 | yp = np.zeros_like(t) |
|
194 | 1 | tauexp = np.exp(-self.dt / tau) |
|
195 | 1 | taufac = np.ones_like(tau) |
|
196 | 1 | for b in bs: |
|
197 | 1 | taufac *= tauexp |
|
198 | 1 | yp += np.interp(t - self.lag - b / self.days_per_time_unit, |
|
199 | self.times, self.values, left=0., right=0.) * taufac |
||
200 | 1 | return yp * self.dt |
|
201 | |||
202 | 1 | def _lt_corr_grad(self, t, tau, tmax=60.): |
|
203 | """Lifetime corrected gradient |
||
204 | |||
205 | Corrects for a finite lifetime by summing over the last `tmax` |
||
206 | days with an exponential decay given of lifetime(s) `taus`. |
||
207 | """ |
||
208 | 1 | bs = np.arange(self.dt, tmax + self.dt, self.dt) |
|
209 | 1 | ypg = np.zeros_like(t) |
|
210 | 1 | tauexp = np.exp(-self.dt / tau) |
|
211 | 1 | taufac = np.ones_like(tau) |
|
212 | 1 | for b in bs: |
|
213 | 1 | taufac *= tauexp |
|
214 | 1 | ypg += np.interp(t - self.lag - b / self.days_per_time_unit, |
|
215 | self.times, self.values, left=0., right=0.) * taufac * b |
||
216 | 1 | return ypg * self.dt / tau**2 |
|
217 | |||
218 | 1 | def get_value(self, t): |
|
219 | 1 | t = np.atleast_1d(t) |
|
220 | 1 | proxy_val = np.interp(t - self.lag, |
|
221 | self.times, self.values, left=0., right=0.) |
||
222 | 1 | if self.ltscan == 0: |
|
223 | # no lifetime, nothing else to do |
||
224 | 1 | return self.amp * proxy_val |
|
225 | # annual variation of the proxy lifetime |
||
226 | 1 | if self.sza_intp is not None: |
|
227 | # using the solar zenith angle |
||
228 | tau_cs = (self.taucos1 * np.cos(np.radians(self.sza_intp(t))) |
||
229 | + self.tausin1 * np.sin(np.radians(self.sza_intp(t)))) |
||
230 | 1 | elif self.fit_phase: |
|
231 | # using time (cos) and phase (sin) |
||
232 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * t + self.tausin1) |
||
233 | + self.taucos2 * np.cos(2 * self.omega * t + self.tausin2)) |
||
234 | else: |
||
235 | # using time |
||
236 | 1 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * t) |
|
237 | + self.tausin1 * np.sin(1 * self.omega * t) |
||
238 | + self.taucos2 * np.cos(2 * self.omega * t) |
||
239 | + self.tausin2 * np.sin(2 * self.omega * t)) |
||
240 | 1 | tau_cs[tau_cs < 0] = 0. # clip to zero |
|
241 | 1 | tau = self.tau0 + tau_cs |
|
242 | 1 | if self.ltscan > 0: |
|
243 | 1 | _ltscn = int(np.floor(self.ltscan)) |
|
244 | else: |
||
245 | # infer the scan time from the maximal lifetime |
||
246 | _ltscn = 3 * int(np.ceil(self.tau0 + |
||
247 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
248 | 1 | if np.all(tau > 0): |
|
249 | 1 | proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
|
250 | 1 | return self.amp * proxy_val |
|
251 | |||
252 | 1 | def compute_gradient(self, t): |
|
253 | 1 | t = np.atleast_1d(t) |
|
254 | 1 | proxy_val = np.interp(t - self.lag, |
|
255 | self.times, self.values, left=0., right=0.) |
||
256 | 1 | proxy_val_grad0 = proxy_val.copy() |
|
257 | # annual variation of the proxy lifetime |
||
258 | 1 | if self.sza_intp is not None: |
|
259 | # using the solar zenith angle |
||
260 | dtau_cos1 = np.cos(np.radians(self.sza_intp(t))) |
||
261 | dtau_sin1 = np.sin(np.radians(self.sza_intp(t))) |
||
262 | dtau_cos2 = np.zeros_like(t) |
||
263 | dtau_sin2 = np.zeros_like(t) |
||
264 | tau_cs = self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 |
||
265 | 1 | elif self.fit_phase: |
|
266 | # using time (cos) and phase (sin) |
||
267 | dtau_cos1 = np.cos(1 * self.omega * t + self.tausin1) |
||
268 | dtau_sin1 = -self.taucos1 * np.sin(1 * self.omega * t + self.tausin1) |
||
269 | dtau_cos2 = np.cos(2 * self.omega * t + self.tausin2) |
||
270 | dtau_sin2 = -self.taucos2 * np.sin(2 * self.omega * t + self.tausin2) |
||
271 | tau_cs = self.taucos1 * dtau_cos1 + self.taucos2 * dtau_cos2 |
||
272 | else: |
||
273 | # using time |
||
274 | 1 | dtau_cos1 = np.cos(1 * self.omega * t) |
|
275 | 1 | dtau_sin1 = np.sin(1 * self.omega * t) |
|
276 | 1 | dtau_cos2 = np.cos(2 * self.omega * t) |
|
277 | 1 | dtau_sin2 = np.sin(2 * self.omega * t) |
|
278 | 1 | tau_cs = (self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 + |
|
279 | self.taucos2 * dtau_cos2 + self.tausin2 * dtau_sin2) |
||
280 | 1 | tau_cs[tau_cs < 0] = 0. # clip to zero |
|
281 | 1 | tau = self.tau0 + tau_cs |
|
282 | 1 | if self.ltscan > 0: |
|
283 | 1 | _ltscn = int(np.floor(self.ltscan)) |
|
284 | else: |
||
285 | # infer the scan time from the maximal lifetime |
||
286 | 1 | _ltscn = 3 * int(np.ceil(self.tau0 + |
|
287 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
288 | 1 | if np.all(tau > 0): |
|
289 | 1 | proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
|
290 | 1 | proxy_val_grad0 += self._lt_corr_grad(t, tau, tmax=_ltscn) |
|
291 | 1 | return np.array([proxy_val, |
|
292 | # set the gradient wrt lag to zero for now |
||
293 | np.zeros_like(t), |
||
294 | self.amp * proxy_val_grad0, |
||
295 | self.amp * proxy_val_grad0 * dtau_cos1, |
||
296 | self.amp * proxy_val_grad0 * dtau_sin1, |
||
297 | self.amp * proxy_val_grad0 * dtau_cos2, |
||
298 | self.amp * proxy_val_grad0 * dtau_sin2, |
||
299 | # set the gradient wrt lifetime scan to zero for now |
||
300 | np.zeros_like(t)]) |
||
301 | |||
302 | 1 | def _log_prior_normal(self): |
|
303 | l_prior = super(ProxyModel, self).log_prior() |
||
304 | if not np.isfinite(l_prior): |
||
305 | return -np.inf |
||
306 | for n, p in self.get_parameter_dict().items(): |
||
307 | if n.startswith("tau"): |
||
308 | # Gaussian prior for the lifetimes |
||
309 | l_prior -= 0.5 * (p / self.lifetime_metric)**2 |
||
310 | return l_prior |
||
311 | |||
312 | 1 | def _log_prior_exp(self): |
|
313 | 1 | l_prior = super(ProxyModel, self).log_prior() |
|
314 | 1 | if not np.isfinite(l_prior): |
|
315 | 1 | return -np.inf |
|
316 | 1 | for n, p in self.get_parameter_dict().items(): |
|
317 | 1 | if n.startswith("tau"): |
|
318 | # exponential prior for the lifetimes |
||
319 | 1 | l_prior -= np.abs(p / self.lifetime_metric) |
|
320 | 1 | return l_prior |
|
321 | |||
322 | 1 | def log_prior(self): |
|
323 | 1 | _priors = {"exp": self._log_prior_exp, |
|
324 | "normal": self._log_prior_normal} |
||
325 | 1 | if self.lifetime_prior is None or self.lifetime_prior == "flat": |
|
326 | 1 | return super(ProxyModel, self).log_prior() |
|
327 | 1 | return _priors[self.lifetime_prior]() |
|
328 | |||
329 | |||
330 | 1 | View Code Duplication | class TraceGasModelSet(ModelSet): |
331 | """Combined model class for trace gases (and probably other data) |
||
332 | |||
333 | Inherited from :class:`celerite.ModelSet`, provides `get_value()` |
||
334 | and `compute_gradient()` methods. |
||
335 | """ |
||
336 | 1 | def get_value(self, t): |
|
337 | 1 | v = np.zeros_like(t) |
|
338 | 1 | for m in self.models.values(): |
|
339 | 1 | v += m.get_value(t) |
|
340 | 1 | return v |
|
341 | |||
342 | 1 | def compute_gradient(self, t): |
|
343 | 1 | grad = [] |
|
344 | 1 | for m in self.models.values(): |
|
345 | 1 | grad.extend(list(m.compute_gradient(t))) |
|
346 | 1 | return np.array(grad) |
|
347 | |||
348 | |||
349 | 1 | View Code Duplication | def setup_proxy_model_with_bounds(times, values, |
350 | max_amp=1e10, max_days=100, |
||
351 | **kwargs): |
||
352 | # extract setup from `kwargs` |
||
353 | 1 | center = kwargs.get("center", False) |
|
354 | 1 | fit_phase = kwargs.get("fit_phase", False) |
|
355 | 1 | lag = kwargs.get("lag", 0.) |
|
356 | 1 | lt_metric = kwargs.get("lifetime_metric", 1) |
|
357 | 1 | lt_prior = kwargs.get("lifetime_prior", "exp") |
|
358 | 1 | lt_scan = kwargs.get("lifetime_scan", 60) |
|
359 | 1 | positive = kwargs.get("positive", False) |
|
360 | 1 | sza_intp = kwargs.get("sza_intp", None) |
|
361 | 1 | time_format = kwargs.get("time_format", "jyear") |
|
362 | |||
363 | 1 | return ProxyModel(times, values, |
|
364 | center=center, |
||
365 | sza_intp=sza_intp, |
||
366 | fit_phase=fit_phase, |
||
367 | lifetime_prior=lt_prior, |
||
368 | lifetime_metric=lt_metric, |
||
369 | days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
||
370 | amp=0., |
||
371 | lag=lag, |
||
372 | tau0=0, |
||
373 | taucos1=0, tausin1=0, |
||
374 | taucos2=0, tausin2=0, |
||
375 | ltscan=lt_scan, |
||
376 | bounds=dict([ |
||
377 | ("amp", [0, max_amp] if positive else [-max_amp, max_amp]), |
||
378 | ("lag", [0, max_days]), |
||
379 | ("tau0", [0, max_days]), |
||
380 | ("taucos1", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
381 | ("tausin1", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
382 | # semi-annual cycles for the life time |
||
383 | ("taucos2", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
384 | ("tausin2", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
385 | ("ltscan", [0, 200])]) |
||
386 | ) |
||
387 | |||
388 | |||
389 | 1 | View Code Duplication | def _default_proxy_config(tfmt="jyear"): |
390 | from .load_data import load_dailymeanLya, load_dailymeanAE |
||
391 | proxy_config = {} |
||
392 | # Lyman-alpha |
||
393 | plyat, plyadf = load_dailymeanLya(tfmt=tfmt) |
||
394 | proxy_config.update({"Lya": { |
||
395 | "times": plyat, |
||
396 | "values": plyadf["Lya"], |
||
397 | "center": False, |
||
398 | "positive": False, |
||
399 | "lifetime_scan": 0, |
||
400 | }} |
||
401 | ) |
||
402 | # AE index |
||
403 | paet, paedf = load_dailymeanAE(name="GM", tfmt=tfmt) |
||
404 | proxy_config.update({"GM": { |
||
405 | "times": paet, |
||
406 | "values": paedf["GM"], |
||
407 | "center": False, |
||
408 | "positive": True, |
||
409 | "lifetime_scan": 60, |
||
410 | }} |
||
411 | ) |
||
412 | return proxy_config |
||
413 | |||
414 | |||
415 | 1 | View Code Duplication | def trace_gas_model(constant=True, freqs=None, proxy_config=None, **kwargs): |
416 | """Trace gas model setup |
||
417 | |||
418 | Sets up the trace gas model for easy access. All parameters are optional, |
||
419 | defaults to an offset, no harmonics, proxies are uncentered and unscaled |
||
420 | Lyman-alpha and AE. AE with only positive amplitude and a seasonally |
||
421 | varying lifetime. |
||
422 | |||
423 | Parameters |
||
424 | ---------- |
||
425 | constant : bool, optional |
||
426 | Whether or not to include a constant (offset) term, default is True. |
||
427 | freqs : list, optional |
||
428 | Frequencies of the harmonic terms in 1 / a^-1 (inverse years). |
||
429 | proxy_config : dict, optional |
||
430 | Proxy configuration if different from the standard setup. |
||
431 | **kwargs : optional |
||
432 | Additional keyword arguments, all of them are also passed on to |
||
433 | the proxy setup. For now, supported are the following which are |
||
434 | also passed along to the proxy setup with |
||
435 | `setup_proxy_model_with_bounds()`: |
||
436 | |||
437 | * fit_phase : bool |
||
438 | fit amplitude and phase instead of sine and cosine |
||
439 | * scale : float |
||
440 | the factor by which the data is scaled, used to constrain |
||
441 | the maximum and minimum amplitudes to be fitted. |
||
442 | * tfmt : string |
||
443 | The `astropy.time.Time` format string to setup the time axis. |
||
444 | * max_amp : float |
||
445 | Maximum magnitude of the coefficients, used to constrain the |
||
446 | parameter search. |
||
447 | * max_days : float |
||
448 | Maximum magnitude of the lifetimes, used to constrain the |
||
449 | parameter search. |
||
450 | |||
451 | Returns |
||
452 | ------- |
||
453 | model : :class:`TraceGasModelSet` (extended :class:`celerite.ModelSet`) |
||
454 | """ |
||
455 | 1 | fit_phase = kwargs.get("fit_phase", False) |
|
456 | 1 | scale = kwargs.get("scale", 1e-6) |
|
457 | 1 | tfmt = kwargs.get("time_format", "jyear") |
|
458 | |||
459 | 1 | max_amp = kwargs.pop("max_amp", 1e10 * scale) |
|
460 | 1 | max_days = kwargs.pop("max_days", 100) |
|
461 | |||
462 | 1 | offset_model = [] |
|
463 | 1 | if constant: |
|
464 | 1 | offset_model = [("offset", |
|
465 | ConstantModel(value=0., |
||
466 | bounds={"value": [-max_amp, max_amp]}))] |
||
467 | |||
468 | 1 | freqs = freqs or [] |
|
469 | 1 | harmonic_models = [] |
|
470 | 1 | for freq in freqs: |
|
471 | 1 | if not fit_phase: |
|
472 | 1 | harm = HarmonicModelCosineSine(freq=freq, |
|
473 | cos=0, sin=0, |
||
474 | bounds=dict([ |
||
475 | ("cos", [-max_amp, max_amp]), |
||
476 | ("sin", [-max_amp, max_amp])]) |
||
477 | ) |
||
478 | else: |
||
479 | harm = HarmonicModelAmpPhase(freq=freq, |
||
480 | amp=0, phase=0, |
||
481 | bounds=dict([ |
||
482 | ("amp", [0, max_amp]), |
||
483 | ("phase", [-np.pi, np.pi])]) |
||
484 | ) |
||
485 | 1 | harm.freeze_parameter("freq") |
|
486 | 1 | harmonic_models.append(("f{0:.0f}".format(freq), harm)) |
|
487 | |||
488 | 1 | proxy_config = proxy_config or _default_proxy_config(tfmt=tfmt) |
|
489 | 1 | proxy_models = [] |
|
490 | 1 | for pn, conf in proxy_config.items(): |
|
491 | 1 | if "max_amp" not in conf: |
|
492 | conf.update(dict(max_amp=max_amp)) |
||
493 | 1 | if "max_days" not in conf: |
|
494 | conf.update(dict(max_days=max_days)) |
||
495 | 1 | kw = kwargs.copy() # don't mess with the passed arguments |
|
496 | 1 | kw.update(conf) |
|
497 | 1 | proxy_models.append( |
|
498 | (pn, setup_proxy_model_with_bounds(**kw)) |
||
499 | ) |
||
500 | |||
501 | return TraceGasModelSet(offset_model + harmonic_models + proxy_models) |
||
502 |