1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2018 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This file is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify it |
8
|
|
|
# under the terms of the GNU General Public License as published by |
9
|
|
|
# the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
|
|
"""SCIAMACHY level 2 data post processing |
12
|
|
|
|
13
|
|
|
Main script for SCIAMACHY orbital retrieval post processing |
14
|
|
|
and data combining (to netcdf). |
15
|
|
|
""" |
16
|
|
|
|
17
|
|
|
from __future__ import absolute_import, division, print_function |
18
|
|
|
|
19
|
|
|
import glob |
20
|
|
|
import os |
21
|
|
|
import argparse as ap |
22
|
|
|
import datetime as dt |
23
|
|
|
import logging |
24
|
|
|
from pkg_resources import resource_filename |
25
|
|
|
|
26
|
|
|
import numpy as np |
27
|
|
|
import pandas as pd |
28
|
|
|
import xarray as xr |
29
|
|
|
from scipy.interpolate import interp1d |
30
|
|
|
#import aacgmv2 |
31
|
|
|
#import apexpy |
32
|
|
|
|
33
|
|
|
from astropy import units |
34
|
|
|
from astropy.time import Time |
35
|
|
|
import astropy.coordinates as coord |
36
|
|
|
|
37
|
|
|
import sciapy.level1c as sl |
38
|
|
|
from . import scia_akm as sa |
39
|
|
|
from .igrf import gmag_igrf |
40
|
|
|
from .aacgm2005 import gmag_aacgm2005 |
41
|
|
|
try: |
42
|
|
|
from nrlmsise00 import msise_flat as msise |
43
|
|
|
except ImportError: |
44
|
|
|
msise = None |
45
|
|
|
try: |
46
|
|
|
from .noem import noem_cpp |
47
|
|
|
except ImportError: |
48
|
|
|
noem_cpp = None |
49
|
|
|
|
50
|
|
|
F107_FILE = resource_filename("sciapy", "data/indices/f107_noontime_flux_obs.txt") |
51
|
|
|
F107A_FILE = resource_filename("sciapy", "data/indices/f107a_noontime_flux_obs.txt") |
52
|
|
|
AP_FILE = resource_filename("sciapy", "data/indices/spidr_ap_2000-2012.dat") |
53
|
|
|
F107_ADJ_FILE = resource_filename("sciapy", "data/indices/spidr_f107_2000-2012.dat") |
54
|
|
|
KP_FILE = resource_filename("sciapy", "data/indices/spidr_kp_2000-2012.dat") |
55
|
|
|
|
56
|
|
|
PHI_FAC = 11.91 |
57
|
|
|
LST_FAC = -0.62 |
58
|
|
|
|
59
|
|
|
|
60
|
|
View Code Duplication |
def solar_zenith_angle(alt, lat, lon, time): |
|
|
|
|
61
|
|
|
atime = Time(time) |
62
|
|
|
loc = coord.EarthLocation.from_geodetic( |
63
|
|
|
height=alt * units.km, |
64
|
|
|
lat=lat * units.deg, |
65
|
|
|
lon=lon * units.deg, |
66
|
|
|
) |
67
|
|
|
altaz = coord.AltAz(location=loc, obstime=atime) |
68
|
|
|
sun = coord.get_sun(atime) |
69
|
|
|
return sun.transform_to(altaz).zen.value |
70
|
|
|
|
71
|
|
|
|
72
|
|
View Code Duplication |
def read_spectra(year, orbit, spec_base=None, skip_upleg=True): |
|
|
|
|
73
|
|
|
"""Read and examine SCIAMACHY orbit spectra |
74
|
|
|
|
75
|
|
|
Reads the limb spactra and extracts the dates, times, latitudes, |
76
|
|
|
longitudes to be used to re-assess the retrieved geolocations. |
77
|
|
|
|
78
|
|
|
Parameters |
79
|
|
|
---------- |
80
|
|
|
year: int |
81
|
|
|
The measurement year to select the corresponding subdir |
82
|
|
|
below `spec_base` (see below). |
83
|
|
|
orbit: int |
84
|
|
|
SCIAMACHY/Envisat orbit number of the spectra. |
85
|
|
|
spec_base: str, optional |
86
|
|
|
The root path to the level 1c spectra. Uses the current |
87
|
|
|
dir if not set or set to `None` (default). |
88
|
|
|
skip_upleg: bool, optional |
89
|
|
|
Skip upleg limb scans, i.e. night time scans. For NO retrievals, |
90
|
|
|
those are not used and should be not used here. |
91
|
|
|
Default: True |
92
|
|
|
|
93
|
|
|
Returns |
94
|
|
|
------- |
95
|
|
|
(dts, times, lats, lons, mlsts, alsts, eotcorr) |
96
|
|
|
""" |
97
|
|
|
fail = (None,) * 7 |
98
|
|
|
if spec_base is None: |
99
|
|
|
spec_base = os.curdir |
100
|
|
|
spec_path = os.path.join(spec_base, "{0}".format(year)) |
101
|
|
|
spec_path2 = os.path.join(spec_base, "{0}".format(int(year) + 1)) |
102
|
|
|
logging.debug("spec_path: %s", spec_path) |
103
|
|
|
logging.debug("spec_path2: %s", spec_path) |
104
|
|
|
if not (os.path.isdir(spec_path) or os.path.isdir(spec_path2)): |
105
|
|
|
return fail |
106
|
|
|
|
107
|
|
|
# the star stands for the (optional) date subdir |
108
|
|
|
# to find all spectra for the orbit |
109
|
|
|
spfiles = glob.glob( |
110
|
|
|
'{0}/*/SCIA_limb_*_1_0_{1:05d}.dat.l_mpl_binary' |
111
|
|
|
.format(spec_path, orbit)) |
112
|
|
|
# sometimes for whatever reason the orbit ends up in the wrong year subdir |
113
|
|
|
# looks in the subdir for the following year as well. |
114
|
|
|
spfiles += glob.glob( |
115
|
|
|
'{0}/*/SCIA_limb_*_1_0_{1:05d}.dat.l_mpl_binary' |
116
|
|
|
.format(spec_path2, orbit)) |
117
|
|
|
if len(spfiles) < 2: |
118
|
|
|
return fail |
119
|
|
|
|
120
|
|
|
dts = [] |
121
|
|
|
times = [] |
122
|
|
|
lats = [] |
123
|
|
|
lons = [] |
124
|
|
|
mlsts = [] |
125
|
|
|
alsts = [] |
126
|
|
|
|
127
|
|
|
sls = sl.scia_limb_scan() |
128
|
|
|
for f in sorted(spfiles): |
129
|
|
|
sls.read_from_file(f) |
130
|
|
|
# copy the values from the l1c file |
131
|
|
|
lat, lon = sls.cent_lat_lon[:2] |
132
|
|
|
mlst, alst, eotcorr = sls.local_solar_time(False) |
133
|
|
|
tp_lats = sls.limb_data.tp_lat |
134
|
|
|
date = sls.date |
135
|
|
|
# debug output if requested |
136
|
|
|
logging.debug("file: %s", f) |
137
|
|
|
logging.debug("lat: %s, lon: %s", lat, lon) |
138
|
|
|
logging.debug("mlst: %s, alst: %s, eotcorr: %s", mlst, alst, eotcorr) |
139
|
|
|
logging.debug("tp_lats: %s", tp_lats) |
140
|
|
|
logging.debug("date: %s", date) |
141
|
|
|
if skip_upleg and ((tp_lats[1] - tp_lats[-2]) < 0.5): |
142
|
|
|
# Exclude non-downleg measurements where the latitude |
143
|
|
|
# of the last real tangent point (the last is dark sky) |
144
|
|
|
# is larger than or too close to the first latitude. |
145
|
|
|
# Requires an (empirical) separation of +0.5 degree. |
146
|
|
|
logging.debug("excluding upleg point at: %s, %s", lat, lon) |
147
|
|
|
continue |
148
|
|
|
dtdate = pd.to_datetime(dt.datetime(*date), utc=True) |
149
|
|
|
time_hour = dtdate.hour + dtdate.minute / 60.0 + dtdate.second / 3600.0 |
150
|
|
|
logging.debug("mean lst: %s, apparent lst: %s, EoT: %s", mlst, alst, eotcorr) |
151
|
|
|
dts.append(dtdate) |
152
|
|
|
times.append(time_hour) |
153
|
|
|
lats.append(lat) |
154
|
|
|
lons.append(lon) |
155
|
|
|
mlsts.append(mlst) |
156
|
|
|
alsts.append(alst) |
157
|
|
|
|
158
|
|
|
if len(lats) < 2: |
159
|
|
|
# interpolation will fail with less than 2 points |
160
|
|
|
return fail |
161
|
|
|
|
162
|
|
|
return (np.asarray(dts), |
163
|
|
|
np.asarray(times), |
164
|
|
|
np.asarray(lats), |
165
|
|
|
np.asarray(lons), |
166
|
|
|
np.asarray(mlsts), |
167
|
|
|
np.asarray(alsts), eotcorr) |
|
|
|
|
168
|
|
|
|
169
|
|
|
|
170
|
|
View Code Duplication |
def _get_orbit_ds(filename): |
|
|
|
|
171
|
|
|
# >= 1.5 (NO-v1.5) |
172
|
|
|
columns = [ |
173
|
|
|
"id", "alt_max", "alt", "alt_min", |
174
|
|
|
"lat_max", "lat", "lat_min", "lons", "densities", |
175
|
|
|
"dens_err_meas", "dens_err_tot", "dens_tot", "apriori", "akdiag", |
176
|
|
|
] |
177
|
|
|
# peek at the first line to extract the number of columns |
178
|
|
|
with open(filename, 'rb') as _f: |
179
|
|
|
ncols = len(_f.readline().split()) |
180
|
|
|
# reduce the columns depending on the retrieval version |
181
|
|
|
# default is >= 1.5 (NO-v1.5) |
182
|
|
|
if ncols < 16: # < 1.5 (NO_emiss-183-gcaa9349) |
183
|
|
|
columns.remove("akdiag") |
184
|
|
|
if ncols < 15: # < 1.0 (NO_emiss-178-g729efb0) |
185
|
|
|
columns.remove("apriori") |
186
|
|
|
if ncols < 14: # initial output << v1.0 |
187
|
|
|
columns.remove("lons") |
188
|
|
|
sdd_pd = pd.read_table(filename, header=None, names=columns, skiprows=1, sep='\s+') |
189
|
|
|
sdd_pd = sdd_pd.set_index("id") |
190
|
|
|
logging.debug("orbit ds: %s", sdd_pd.to_xarray()) |
191
|
|
|
ind = pd.MultiIndex.from_arrays( |
192
|
|
|
[sdd_pd.lat, sdd_pd.alt], |
193
|
|
|
names=["lats", "alts"], |
194
|
|
|
) |
195
|
|
|
sdd_ds = xr.Dataset.from_dataframe(sdd_pd).assign(id=ind).unstack("id") |
196
|
|
|
logging.debug("orbit dataset: %s", sdd_ds) |
197
|
|
|
sdd_ds["lons"] = sdd_ds.lons.mean("alts") |
198
|
|
|
sdd_ds.load() |
199
|
|
|
logging.debug("orbit ds 2: %s", sdd_ds.stack(id=["lats", "alts"]).reset_index("id")) |
200
|
|
|
return sdd_ds |
201
|
|
|
|
202
|
|
|
|
203
|
|
|
class _circ_interp(object): |
204
|
|
|
"""Interpolation on a circle""" |
205
|
|
|
def __init__(self, x, y, **kw): |
206
|
|
|
self.c_intpf = interp1d(x, np.cos(y), **kw) |
207
|
|
|
self.s_intpf = interp1d(x, np.sin(y), **kw) |
208
|
|
|
|
209
|
|
|
def __call__(self, x): |
210
|
|
|
return np.arctan2(self.s_intpf(x), self.c_intpf(x)) |
211
|
|
|
|
212
|
|
|
|
213
|
|
View Code Duplication |
def process_orbit( |
|
|
|
|
214
|
|
|
orbit, |
215
|
|
|
ref_date="2000-01-01", |
216
|
|
|
dens_path=None, |
217
|
|
|
spec_base=None, |
218
|
|
|
use_msis=True, |
219
|
|
|
): |
220
|
|
|
"""Post process retrieved SCIAMACHY orbit |
221
|
|
|
|
222
|
|
|
Parameters |
223
|
|
|
---------- |
224
|
|
|
orbit: int |
225
|
|
|
SCIAMACHY/Envisat orbit number of the results to process. |
226
|
|
|
ref_date: str, optional |
227
|
|
|
Base date to calculate the relative days from, |
228
|
|
|
of the format "%Y-%m-%d". Default: 2000-01-01 |
229
|
|
|
dens_path: str, optional |
230
|
|
|
The path to the level 2 data. Uses the current |
231
|
|
|
dir if not set or set to `None` (default). |
232
|
|
|
spec_base: str, optional |
233
|
|
|
The root path to the level 1c spectra. Uses the current |
234
|
|
|
dir if not set or set to `None` (default). |
235
|
|
|
|
236
|
|
|
Returns |
237
|
|
|
------- |
238
|
|
|
(dts0, time0, lst0, lon0, sdd): tuple |
239
|
|
|
dts0 - days since ref_date at equator crossing (float) |
240
|
|
|
time0 - utc hour into the day at equator crossing (float) |
241
|
|
|
lst0 - apparent local solar time at the equator (float) |
242
|
|
|
lon0 - longitude of the equator crossing (float) |
243
|
|
|
sdd - `scia_density_pp` instance of the post-processed data |
244
|
|
|
""" |
245
|
|
|
def _read_gm(fname): |
246
|
|
|
return dict(np.genfromtxt(fname, usecols=[0, 2], dtype=None)) |
247
|
|
|
|
248
|
|
|
fail = (None,) * 5 |
249
|
|
|
logging.debug("processing orbit: %s", orbit) |
250
|
|
|
dtrefdate = pd.to_datetime(ref_date, format="%Y-%m-%d", utc=True) |
251
|
|
|
logging.debug("ref date: %s", dtrefdate) |
252
|
|
|
|
253
|
|
|
dfiles = glob.glob( |
254
|
|
|
"{0}/000NO_orbit_{1:05d}_*_Dichten.txt" |
255
|
|
|
.format(dens_path, orbit)) |
256
|
|
|
if len(dfiles) < 1: |
257
|
|
|
return fail |
258
|
|
|
logging.debug("dfiles: %s", dfiles) |
259
|
|
|
logging.debug("splits: %s", [fn.split('/') for fn in dfiles]) |
260
|
|
|
ddict = dict([ |
261
|
|
|
(fn, (fn.split('/')[-3:-1] + fn.split('/')[-1].split('_')[3:4])) |
262
|
|
|
for fn in dfiles |
263
|
|
|
]) |
264
|
|
|
logging.debug("ddict: %s", ddict) |
265
|
|
|
year = ddict[sorted(ddict.keys())[0]][-1][:4] |
266
|
|
|
logging.debug("year: %s", year) |
267
|
|
|
|
268
|
|
|
dts, times, lats, lons, mlsts, alsts, eotcorr = \ |
269
|
|
|
read_spectra(year, orbit, spec_base) |
270
|
|
|
if dts is None: |
271
|
|
|
# return early if reading the spectra failed |
272
|
|
|
return fail |
273
|
|
|
|
274
|
|
|
dts = pd.to_datetime(dts, utc=True) - dtrefdate |
275
|
|
|
dts = np.array([dtd.days + dtd.seconds / 86400. for dtd in dts]) |
276
|
|
|
logging.debug("lats: %s, lons: %s, times: %s", lats, lons, times) |
277
|
|
|
|
278
|
|
|
sdd = _get_orbit_ds(dfiles[0]) |
279
|
|
|
logging.debug("density lats: %s, lons: %s", sdd.lats, sdd.lons) |
280
|
|
|
|
281
|
|
|
# Re-interpolates the location (longitude) and times from the |
282
|
|
|
# limb scan spectra files along the orbit to determine the values |
283
|
|
|
# at the Equator and to fill in possibly missing data. |
284
|
|
|
# |
285
|
|
|
# y values are unit circle angles in radians (0 < φ < 2π or -π < φ < π) |
286
|
|
|
# longitudes |
287
|
|
|
lons_intpf = _circ_interp( |
288
|
|
|
lats[::-1], np.radians(lons[::-1]), |
289
|
|
|
fill_value="extrapolate", |
290
|
|
|
) |
291
|
|
|
# apparent local solar time (EoT corrected) |
292
|
|
|
lst_intpf = _circ_interp( |
293
|
|
|
lats[::-1], np.pi / 12. * alsts[::-1], |
294
|
|
|
fill_value="extrapolate", |
295
|
|
|
) |
296
|
|
|
# mean local solar time |
297
|
|
|
mst_intpf = _circ_interp( |
298
|
|
|
lats[::-1], np.pi / 12. * mlsts[::-1], |
299
|
|
|
fill_value="extrapolate", |
300
|
|
|
) |
301
|
|
|
# utc time (day) |
302
|
|
|
time_intpf = _circ_interp( |
303
|
|
|
lats[::-1], np.pi / 12. * times[::-1], |
304
|
|
|
fill_value="extrapolate", |
305
|
|
|
) |
306
|
|
|
# datetime |
307
|
|
|
dts_retr_interpf = interp1d(lats[::-1], dts[::-1], fill_value="extrapolate") |
308
|
|
|
|
309
|
|
|
# equator values |
310
|
|
|
lon0 = np.degrees(lons_intpf(0.)) % 360. |
311
|
|
|
lst0 = (lst_intpf(0.) * 12. / np.pi) % 24. |
312
|
|
|
mst0 = (mst_intpf(0.) * 12. / np.pi) % 24. |
313
|
|
|
time0 = (time_intpf(0.) * 12. / np.pi) % 24. |
314
|
|
|
dts_retr_interp0 = dts_retr_interpf(0.) |
315
|
|
|
logging.debug("utc day at equator: %s", dts_retr_interp0) |
316
|
|
|
logging.debug("mean LST at equator: %s, apparent LST at equator: %s", mst0, lst0) |
317
|
|
|
|
318
|
|
|
sdd["utc_hour"] = ("lats", (time_intpf(sdd.lats) * 12. / np.pi) % 24.) |
319
|
|
|
sdd["utc_days"] = ("lats", dts_retr_interpf(sdd.lats)) |
320
|
|
|
|
321
|
|
|
if "lons" not in sdd.data_vars: |
322
|
|
|
# recalculate the longitudes |
323
|
|
|
# estimate the equatorial longitude from the |
324
|
|
|
# limb scan latitudes and longitudes |
325
|
|
|
lon0s_tp = lons - PHI_FAC * np.tan(np.radians(lats)) |
326
|
|
|
clon0s_tp = np.cos(np.radians(lon0s_tp)) |
327
|
|
|
slon0s_tp = np.sin(np.radians(lon0s_tp)) |
328
|
|
|
lon0_tp = np.arctan2(np.sum(slon0s_tp[1:-1]), np.sum(clon0s_tp[1:-1])) |
329
|
|
|
lon0_tp = np.degrees((lon0_tp + 2. * np.pi) % (2. * np.pi)) |
330
|
|
|
logging.info("lon0: %s", lon0) |
331
|
|
|
logging.info("lon0 tp: %s", lon0_tp) |
332
|
|
|
# interpolate to the retrieval latitudes |
333
|
|
|
tg_retr_lats = np.tan(np.radians(sdd.lats)) |
334
|
|
|
calc_lons = (tg_retr_lats * PHI_FAC + lon0) % 360. |
335
|
|
|
calc_lons_tp = (tg_retr_lats * PHI_FAC + lon0_tp) % 360. |
336
|
|
|
sdd["lons"] = calc_lons_tp |
337
|
|
|
logging.debug("(calculated) retrieval lons: %s, %s", |
338
|
|
|
calc_lons, calc_lons_tp) |
339
|
|
|
else: |
340
|
|
|
# sdd.lons = sdd.lons % 360. |
341
|
|
|
logging.debug("(original) retrieval lons: %s", sdd.lons) |
342
|
|
|
|
343
|
|
|
sdd["mst"] = (sdd.utc_hour + sdd.lons / 15.) % 24. |
344
|
|
|
sdd["lst"] = sdd.mst + eotcorr / 60. |
345
|
|
|
mean_alt_km = sdd.alts.mean() |
346
|
|
|
|
347
|
|
|
dt_date_this = dt.timedelta(np.asscalar(dts_retr_interp0)) + dtrefdate |
348
|
|
|
logging.info("date: %s", dt_date_this) |
349
|
|
|
|
350
|
|
|
gmlats, gmlons = gmag_igrf(dt_date_this, sdd.lats, sdd.lons, alt=mean_alt_km) |
351
|
|
|
# gmlats, gmlons = apexpy.Apex(dt_date_this).geo2qd(sdd.lats, sdd.lons, mean_alt_km) |
352
|
|
|
sdd["gm_lats"] = ("lats", gmlats) |
353
|
|
|
sdd["gm_lons"] = ("lats", gmlons) |
354
|
|
|
logging.debug("geomag. lats: %s, lons: %s", sdd.gm_lats, sdd.gm_lons) |
355
|
|
|
aacgmgmlats, aacgmgmlons = gmag_aacgm2005(sdd.lats, sdd.lons) |
356
|
|
|
# aacgmgmlats, aacgmgmlons = aacgmv2.convert(sdd.lats, sdd.lons, mean_alt_km, dt_date_this) |
357
|
|
|
sdd["aacgm_gm_lats"] = ("lats", aacgmgmlats) |
358
|
|
|
sdd["aacgm_gm_lons"] = ("lats", aacgmgmlons) |
359
|
|
|
logging.debug("aacgm geomag. lats: %s, lons: %s", |
360
|
|
|
sdd.aacgm_gm_lats, sdd.aacgm_gm_lons) |
361
|
|
|
|
362
|
|
|
# current day for MSIS input |
363
|
|
|
f107_data = _read_gm(F107_FILE) |
364
|
|
|
f107a_data = _read_gm(F107A_FILE) |
365
|
|
|
ap_data = _read_gm(AP_FILE) |
366
|
|
|
msis_dtdate = dt.timedelta(np.asscalar(dts_retr_interp0)) + dtrefdate |
367
|
|
|
msis_dtdate1 = msis_dtdate - dt.timedelta(days=1) |
368
|
|
|
msis_date = msis_dtdate.strftime("%Y-%m-%d").encode() |
369
|
|
|
msis_date1 = msis_dtdate1.strftime("%Y-%m-%d").encode() |
370
|
|
|
msis_f107 = f107_data[msis_date1] |
371
|
|
|
msis_f107a = f107a_data[msis_date] |
372
|
|
|
msis_ap = ap_data[msis_date] |
373
|
|
|
logging.debug("MSIS date: %s, f10.7a: %s, f10.7: %s, ap: %s", |
374
|
|
|
msis_date, msis_f107a, msis_f107, msis_ap) |
375
|
|
|
|
376
|
|
|
# previous day for NOEM input |
377
|
|
|
f107_adj = _read_gm(F107_ADJ_FILE) |
378
|
|
|
kp_data = _read_gm(KP_FILE) |
379
|
|
|
noem_dtdate = dt.timedelta(np.asscalar(dts_retr_interp0) - 1) + dtrefdate |
380
|
|
|
noem_date = noem_dtdate.strftime("%Y-%m-%d").encode() |
381
|
|
|
noem_f107 = f107_adj[noem_date] |
382
|
|
|
noem_kp = kp_data[noem_date] |
383
|
|
|
logging.debug("NOEM date: %s, f10.7: %s, kp: %s", |
384
|
|
|
noem_date, noem_f107, noem_kp) |
385
|
|
|
|
386
|
|
|
for var in ["noem_no"]: |
387
|
|
|
if var not in sdd.data_vars: |
388
|
|
|
sdd[var] = xr.zeros_like(sdd.densities) |
389
|
|
|
if "sza" not in sdd.data_vars: |
390
|
|
|
sdd["sza"] = xr.zeros_like(sdd.lats) |
391
|
|
|
if "akdiag" not in sdd.data_vars: |
392
|
|
|
sdd["akdiag"] = xr.full_like(sdd.densities, np.nan) |
393
|
|
|
#akm_filename = glob.glob('{0}_orbit_{1:05d}_*_AKM*'.format(species, orb))[0] |
394
|
|
|
akm_filename = glob.glob( |
395
|
|
|
"{0}/000NO_orbit_{1:05d}_*_AKM*" |
396
|
|
|
.format(dens_path, orbit))[0] |
397
|
|
|
logging.debug("ak file: %s", akm_filename) |
398
|
|
|
ak = sa.read_akm(akm_filename, sdd.nalt, sdd.nlat) |
399
|
|
|
logging.debug("ak data: %s", ak) |
400
|
|
|
#ak1a = ak.sum(axis = 3) |
401
|
|
|
#dak1a = np.diagonal(ak1a, axis1=0, axis2=2) |
402
|
|
|
sdd["akdiag"] = ak.diagonal(axis1=1, axis2=3).diagonal(axis1=0, axis2=1) |
403
|
|
|
|
404
|
|
|
if msise is not None: |
405
|
|
|
_msis_d_t = msise( |
406
|
|
|
msis_dtdate, |
407
|
|
|
sdd.alts.values[None, :], |
408
|
|
|
sdd.lats.values[:, None], |
409
|
|
|
sdd.lons.values[:, None] % 360., |
410
|
|
|
msis_f107a, msis_f107, msis_ap, |
411
|
|
|
lst=sdd.lst.values[:, None], |
412
|
|
|
) |
413
|
|
|
if "temperature" not in sdd.data_vars or use_msis: |
414
|
|
|
sdd["temperature"] = xr.zeros_like(sdd.densities) |
415
|
|
|
sdd.temperature[:] = _msis_d_t[:, :, -1] |
416
|
|
|
if "dens_tot" not in sdd.data_vars or use_msis: |
417
|
|
|
sdd["dens_tot"] = xr.zeros_like(sdd.densities) |
418
|
|
|
sdd.dens_tot[:] = np.sum(_msis_d_t[:, :, np.r_[:5, 6:9]], axis=2) |
419
|
|
|
for i, (lat, lon) in enumerate( |
420
|
|
|
zip(sdd.lats.values, sdd.lons.values)): |
421
|
|
|
if noem_cpp is not None: |
422
|
|
|
sdd.noem_no[i] = noem_cpp(noem_date.decode(), sdd.alts, |
423
|
|
|
[lat], [lon], noem_f107, noem_kp)[:] |
424
|
|
|
else: |
425
|
|
|
sdd.noem_no[i][:] = np.nan |
426
|
|
|
sdd.sza[:] = solar_zenith_angle( |
427
|
|
|
mean_alt_km, |
428
|
|
|
sdd.lats, sdd.lons, |
429
|
|
|
(pd.to_timedelta(sdd.utc_days.values, unit="days") + dtrefdate).to_pydatetime(), |
430
|
|
|
) |
431
|
|
|
sdd["vmr"] = sdd.densities / sdd.dens_tot * 1.e9 # ppb |
432
|
|
|
# drop unused variables |
433
|
|
|
sdd = sdd.drop(["alt_min", "alt", "alt_max", "lat_min", "lat", "lat_max"]) |
434
|
|
|
# time and orbit |
435
|
|
|
sdd = sdd.expand_dims("time") |
436
|
|
|
sdd["time"] = ("time", [dts_retr_interp0]) |
437
|
|
|
sdd["orbit"] = ("time", [orbit]) |
438
|
|
|
return dts_retr_interp0, time0, lst0, lon0, sdd |
439
|
|
|
|
440
|
|
|
|
441
|
|
View Code Duplication |
def get_orbits_from_date(date, mlt=False, path=None, L2_version="v6.2"): |
|
|
|
|
442
|
|
|
"""Find SCIAMACHY orbits with retrieved data at a date |
443
|
|
|
|
444
|
|
|
Parameters |
445
|
|
|
---------- |
446
|
|
|
date: str |
447
|
|
|
The date in the format "%Y-%m-%d". |
448
|
|
|
mlt: bool, optional |
449
|
|
|
Look for MLT mode data instead of nominal mode data. |
450
|
|
|
Increases the heuristics to find all MLT orbits. |
451
|
|
|
path: str, optional |
452
|
|
|
The path to the level 2 data. If `None` tries to infer |
453
|
|
|
the data directory from the L2 version using |
454
|
|
|
'./*<L2_version>'. Default: None |
455
|
|
|
|
456
|
|
|
Returns |
457
|
|
|
------- |
458
|
|
|
orbits: list |
459
|
|
|
List of found orbits with retrieved data files |
460
|
|
|
""" |
461
|
|
|
logging.debug("pre-processing: %s", date) |
462
|
|
|
if path is None: |
463
|
|
|
density_base = os.curdir |
464
|
|
|
path = "{0}/*{1}".format(density_base, L2_version) |
465
|
|
|
logging.debug("path: %s", path) |
466
|
|
|
|
467
|
|
|
dfiles = glob.glob("{0}/000NO_orbit_*_{1}_Dichten.txt".format( |
468
|
|
|
path, date.replace("-", ""))) |
469
|
|
|
orbits = sorted([int(os.path.basename(df).split('_')[2]) for df in dfiles]) |
470
|
|
|
if mlt: |
471
|
|
|
orbits.append(orbits[-1] + 1) |
472
|
|
|
return orbits |
473
|
|
|
|
474
|
|
|
|
475
|
|
View Code Duplication |
def combine_orbit_data(orbits, |
|
|
|
|
476
|
|
|
ref_date="2000-01-01", |
477
|
|
|
L2_version="v6.2", |
478
|
|
|
dens_path=None, spec_base=None, |
479
|
|
|
save_nc=False): |
480
|
|
|
"""Combine post-processed SCIAMACHY retrieved orbit data |
481
|
|
|
|
482
|
|
|
Parameters |
483
|
|
|
---------- |
484
|
|
|
orbits: list |
485
|
|
|
List of SCIAMACHY/Envisat orbit numbers to process. |
486
|
|
|
ref_date: str, optional |
487
|
|
|
Base date to calculate the relative days from, |
488
|
|
|
of the format "%Y-%m-%d". Default: 2000-01-01 |
489
|
|
|
L2_version: str, optional |
490
|
|
|
SCIAMACHY level 2 data version to process |
491
|
|
|
dens_path: str, optional |
492
|
|
|
The path to the level 2 data. If `None` tries to infer |
493
|
|
|
the data directory from the L2 version looking for anything |
494
|
|
|
in the current directory that ends in <L2_version>: './*<L2_version>'. |
495
|
|
|
Default: None |
496
|
|
|
spec_base: str, optional |
497
|
|
|
The root path to the level 1c spectra. Uses the current |
498
|
|
|
dir if not set or set to `None` (default). |
499
|
|
|
save_nc: bool, optional |
500
|
|
|
Save the intermediate orbit data sets to netcdf files |
501
|
|
|
for debugging. |
502
|
|
|
|
503
|
|
|
Returns |
504
|
|
|
------- |
505
|
|
|
(sdday, sdday_ds): tuple |
506
|
|
|
`sdday` contains the combined data as a `scia_density_day` instance, |
507
|
|
|
`sdday_ds` contains the same data as a `xarray.Dataset`. |
508
|
|
|
""" |
509
|
|
|
if dens_path is None: |
510
|
|
|
# try some heuristics |
511
|
|
|
density_base = os.curdir |
512
|
|
|
dens_path = "{0}/*{1}".format(density_base, L2_version) |
513
|
|
|
|
514
|
|
|
sddayl = [] |
515
|
|
|
for orbit in sorted(orbits): |
516
|
|
|
dateo, timeo, lsto, lono, sdens = process_orbit(orbit, |
517
|
|
|
ref_date=ref_date, dens_path=dens_path, spec_base=spec_base) |
518
|
|
|
logging.info( |
519
|
|
|
"orbit: %s, eq. date: %s, eq. hour: %s, eq. app. lst: %s, eq. lon: %s", |
520
|
|
|
orbit, dateo, timeo, lsto, lono |
521
|
|
|
) |
522
|
|
|
if sdens is not None: |
523
|
|
|
sddayl.append(sdens) |
524
|
|
|
if save_nc: |
525
|
|
|
sdens.to_netcdf(sdens.filename[:-3] + "nc") |
526
|
|
|
if not sddayl: |
527
|
|
|
return None |
528
|
|
|
return xr.concat(sddayl, dim="time") |
529
|
|
|
|
530
|
|
|
|
531
|
|
|
VAR_ATTRS = { |
532
|
|
|
"2.1": { |
533
|
|
|
"MSIS_Dens": dict( |
534
|
|
|
units='cm^{-3}', |
535
|
|
|
long_name='total number density (NRLMSIS-00)', |
536
|
|
|
), |
537
|
|
|
"MSIS_Temp": dict( |
538
|
|
|
units='K', |
539
|
|
|
long_name='temperature', |
540
|
|
|
model="NRLMSIS-00", |
541
|
|
|
), |
542
|
|
|
}, |
543
|
|
|
"2.2": { |
544
|
|
|
}, |
545
|
|
|
"2.3": { |
546
|
|
|
"aacgm_gm_lats": dict( |
547
|
|
|
long_name='geomagnetic_latitude', |
548
|
|
|
model='AACGM2005 at 80 km', |
549
|
|
|
units='degrees_north', |
550
|
|
|
), |
551
|
|
|
"aacgm_gm_lons": dict( |
552
|
|
|
long_name='geomagnetic_longitude', |
553
|
|
|
model='AACGM2005 at 80 km', |
554
|
|
|
units='degrees_east', |
555
|
|
|
), |
556
|
|
|
"orbit": dict( |
557
|
|
|
axis='T', calendar='standard', |
558
|
|
|
long_name='SCIAMACHY/Envisat orbit number', |
559
|
|
|
standard_name="orbit", |
560
|
|
|
units='1', |
561
|
|
|
), |
562
|
|
|
}, |
563
|
|
|
} |
564
|
|
|
VAR_RENAME = { |
565
|
|
|
"2.1": { |
566
|
|
|
# Rename to v2.1 variable names |
567
|
|
|
"MSIS_Dens": "TOT_DENS", |
568
|
|
|
"MSIS_Temp": "temperature", |
569
|
|
|
}, |
570
|
|
|
"2.2": { |
571
|
|
|
}, |
572
|
|
|
"2.3": { |
573
|
|
|
}, |
574
|
|
|
} |
575
|
|
|
FLOAT_VARS = [ |
576
|
|
|
"altitude", "latitude", "longitude", |
577
|
|
|
"app_LST", "mean_LST", "mean_SZA", |
578
|
|
|
"aacgm_gm_lats", "aacgm_gm_lons", |
579
|
|
|
"gm_lats", "gm_lons", |
580
|
|
|
] |
581
|
|
|
|
582
|
|
|
|
583
|
|
View Code Duplication |
def sddata_set_attrs( |
|
|
|
|
584
|
|
|
sdday_ds, |
585
|
|
|
file_version="2.2", |
586
|
|
|
ref_date="2000-01-01", |
587
|
|
|
rename=True, |
588
|
|
|
species="NO", |
589
|
|
|
): |
590
|
|
|
"""Customize xarray Dataset variables and attributes |
591
|
|
|
|
592
|
|
|
Changes the variable names to match those exported from the |
593
|
|
|
`scia_density_day` class. |
594
|
|
|
|
595
|
|
|
Parameters |
596
|
|
|
---------- |
597
|
|
|
sdday_ds: `xarray.Dataset` instance |
598
|
|
|
The combined dataset. |
599
|
|
|
file_version: string "major.minor", optional |
600
|
|
|
The netcdf file datase version, determines some variable |
601
|
|
|
names and attributes. |
602
|
|
|
ref_date: str, optional |
603
|
|
|
Base date to calculate the relative days from, |
604
|
|
|
of the format "%Y-%m-%d". Default: 2000-01-01 |
605
|
|
|
rename: bool, optional |
606
|
|
|
Rename the dataset variables to match the |
607
|
|
|
`scia_density_day` exported ones. |
608
|
|
|
Default: True |
609
|
|
|
species: str, optional |
610
|
|
|
The name of the level 2 species, used to prefix the |
611
|
|
|
dataset variables to be named <species>_<variable>. |
612
|
|
|
Default: "NO". |
613
|
|
|
""" |
614
|
|
|
if rename: |
615
|
|
|
sdday_ds = sdday_ds.rename({ |
616
|
|
|
# 2d vars |
617
|
|
|
"akdiag": "{0}_AKDIAG".format(species), |
618
|
|
|
"apriori": "{0}_APRIORI".format(species), |
619
|
|
|
"densities": "{0}_DENS".format(species), |
620
|
|
|
"dens_err_meas": "{0}_ERR".format(species), |
621
|
|
|
"dens_err_tot": "{0}_ETOT".format(species), |
622
|
|
|
"dens_tot": "MSIS_Dens", |
623
|
|
|
"noem_no": "{0}_NOEM".format(species), |
624
|
|
|
"temperature": "MSIS_Temp", |
625
|
|
|
"vmr": "{0}_VMR".format(species), |
626
|
|
|
# 1d vars and dimensions |
627
|
|
|
"alts": "altitude", |
628
|
|
|
"lats": "latitude", |
629
|
|
|
"lons": "longitude", |
630
|
|
|
"lst": "app_LST", |
631
|
|
|
"mst": "mean_LST", |
632
|
|
|
"sza": "mean_SZA", |
633
|
|
|
"utc_hour": "UTC", |
634
|
|
|
}) |
635
|
|
|
# relative standard deviation |
636
|
|
|
sdday_ds["{0}_RSTD".format(species)] = 100.0 * np.abs( |
637
|
|
|
sdday_ds["{0}_ERR".format(species)] / sdday_ds["{0}_DENS".format(species)]) |
638
|
|
|
# fix coordinate attributes |
639
|
|
|
sdday_ds["time"].attrs = dict(axis='T', standard_name='time', |
640
|
|
|
calendar='standard', long_name='equatorial crossing time', |
641
|
|
|
units="days since {0}".format( |
642
|
|
|
pd.to_datetime(ref_date, utc=True).isoformat(sep=" "))) |
643
|
|
|
sdday_ds["altitude"].attrs = dict(axis='Z', positive='up', |
644
|
|
|
long_name='altitude', standard_name='altitude', units='km') |
645
|
|
|
sdday_ds["latitude"].attrs = dict(axis='Y', long_name='latitude', |
646
|
|
|
standard_name='latitude', units='degrees_north') |
647
|
|
|
# Default variable attributes |
648
|
|
|
sdday_ds["{0}_DENS".format(species)].attrs = { |
649
|
|
|
"units": "cm^{-3}", |
650
|
|
|
"long_name": "{0} number density".format(species)} |
651
|
|
|
sdday_ds["{0}_ERR".format(species)].attrs = { |
652
|
|
|
"units": "cm^{-3}", |
653
|
|
|
"long_name": "{0} density measurement error".format(species)} |
654
|
|
|
sdday_ds["{0}_ETOT".format(species)].attrs = { |
655
|
|
|
"units": "cm^{-3}", |
656
|
|
|
"long_name": "{0} density total error".format(species)} |
657
|
|
|
sdday_ds["{0}_RSTD".format(species)].attrs = dict( |
658
|
|
|
units='%', |
659
|
|
|
long_name='{0} relative standard deviation'.format(species)) |
660
|
|
|
sdday_ds["{0}_AKDIAG".format(species)].attrs = dict( |
661
|
|
|
units='1', |
662
|
|
|
long_name='{0} averaging kernel diagonal element'.format(species)) |
663
|
|
|
sdday_ds["{0}_APRIORI".format(species)].attrs = dict( |
664
|
|
|
units='cm^{-3}', long_name='{0} apriori density'.format(species)) |
665
|
|
|
sdday_ds["{0}_NOEM".format(species)].attrs = dict( |
666
|
|
|
units='cm^{-3}', long_name='NOEM {0} number density'.format(species)) |
667
|
|
|
sdday_ds["{0}_VMR".format(species)].attrs = dict( |
668
|
|
|
units='ppb', long_name='{0} volume mixing ratio'.format(species)) |
669
|
|
|
sdday_ds["MSIS_Dens"].attrs = dict(units='cm^{-3}', |
670
|
|
|
long_name='MSIS total number density', |
671
|
|
|
model="NRLMSIS-00") |
672
|
|
|
sdday_ds["MSIS_Temp"].attrs = dict(units='K', |
673
|
|
|
long_name='MSIS temperature', |
674
|
|
|
model="NRLMSIS-00") |
675
|
|
|
sdday_ds["longitude"].attrs = dict(long_name='longitude', |
676
|
|
|
standard_name='longitude', units='degrees_east') |
677
|
|
|
sdday_ds["app_LST"].attrs = dict(units='hours', |
678
|
|
|
long_name='apparent local solar time') |
679
|
|
|
sdday_ds["mean_LST"].attrs = dict(units='hours', |
680
|
|
|
long_name='mean local solar time') |
681
|
|
|
sdday_ds["mean_SZA"].attrs = dict(units='degrees', |
682
|
|
|
long_name='solar zenith angle at mean altitude') |
683
|
|
|
sdday_ds["UTC"].attrs = dict(units='hours', |
684
|
|
|
long_name='measurement utc time') |
685
|
|
|
sdday_ds["utc_days"].attrs = dict( |
686
|
|
|
units='days since {0}'.format( |
687
|
|
|
pd.to_datetime(ref_date, utc=True).isoformat(sep=" ")), |
688
|
|
|
long_name='measurement utc day') |
689
|
|
|
sdday_ds["gm_lats"].attrs = dict(long_name='geomagnetic_latitude', |
690
|
|
|
model='IGRF', units='degrees_north') |
691
|
|
|
sdday_ds["gm_lons"].attrs = dict(long_name='geomagnetic_longitude', |
692
|
|
|
model='IGRF', units='degrees_east') |
693
|
|
|
sdday_ds["aacgm_gm_lats"].attrs = dict(long_name='geomagnetic_latitude', |
694
|
|
|
# model='AACGM2005 80 km', # v2.3 |
695
|
|
|
model='AACGM', # v2.1, v2.2 |
696
|
|
|
units='degrees_north') |
697
|
|
|
sdday_ds["aacgm_gm_lons"].attrs = dict(long_name='geomagnetic_longitude', |
698
|
|
|
# model='AACGM2005 80 km', # v2.3 |
699
|
|
|
model='AACGM', # v2.1, v2.2 |
700
|
|
|
units='degrees_east') |
701
|
|
|
sdday_ds["orbit"].attrs = dict( |
702
|
|
|
axis='T', calendar='standard', |
703
|
|
|
# long_name='SCIAMACHY/Envisat orbit number', # v2.3 |
704
|
|
|
long_name='orbit', # v2.1, v2.2 |
705
|
|
|
standard_name="orbit", |
706
|
|
|
# units='1', # v2.3 |
707
|
|
|
units='orbit number', # v2.1, v2.2 |
708
|
|
|
) |
709
|
|
|
# Overwrite version-specific variable attributes |
710
|
|
|
for _v, _a in VAR_ATTRS[file_version].items(): |
711
|
|
|
sdday_ds[_v].attrs = _a |
712
|
|
|
if rename: |
713
|
|
|
# version specific renaming |
714
|
|
|
sdday_ds = sdday_ds.rename(VAR_RENAME[file_version]) |
715
|
|
|
if int(file_version.split(".")[0]) < 3: |
716
|
|
|
# invert latitudes for backwards-compatitbility |
717
|
|
|
sdday_ds = sdday_ds.sortby("latitude", ascending=False) |
718
|
|
|
else: |
719
|
|
|
sdday_ds = sdday_ds.sortby("latitude", ascending=True) |
720
|
|
|
|
721
|
|
|
# for var in FLOAT_VARS: |
722
|
|
|
# _attrs = sdday_ds[var].attrs |
723
|
|
|
# sdday_ds[var] = sdday_ds[var].astype('float32') |
724
|
|
|
# sdday_ds[var].attrs = _attrs |
725
|
|
|
|
726
|
|
|
dateo = pd.to_datetime( |
727
|
|
|
xr.conventions.decode_cf_variable("date", sdday_ds.time).data[0], |
728
|
|
|
utc=True, |
729
|
|
|
).strftime("%Y-%m-%d") |
730
|
|
|
logging.debug("date %s dataset: %s", dateo, sdday_ds) |
731
|
|
|
return sdday_ds |
732
|
|
|
|
733
|
|
|
|
734
|
|
View Code Duplication |
def main(): |
|
|
|
|
735
|
|
|
"""SCIAMACHY level 2 post processing |
736
|
|
|
""" |
737
|
|
|
logging.basicConfig(level=logging.WARNING, |
738
|
|
|
format="[%(levelname)-8s] (%(asctime)s) " |
739
|
|
|
"%(filename)s:%(lineno)d %(message)s", |
740
|
|
|
datefmt="%Y-%m-%d %H:%M:%S %z") |
741
|
|
|
|
742
|
|
|
parser = ap.ArgumentParser() |
743
|
|
|
parser.add_argument("file", default="SCIA_NO.nc", |
744
|
|
|
help="the filename of the output netcdf file") |
745
|
|
|
parser.add_argument("-M", "--month", metavar="YEAR-MM", |
746
|
|
|
help="infer start and end dates for month") |
747
|
|
|
parser.add_argument("-D", "--date_range", metavar="START_DATE:END_DATE", |
748
|
|
|
help="colon-separated start and end dates") |
749
|
|
|
parser.add_argument("-d", "--dates", help="comma-separated list of dates") |
750
|
|
|
parser.add_argument("-B", "--base_date", |
751
|
|
|
metavar="YEAR-MM-DD", default="2000-01-01", |
752
|
|
|
help="Reference date to base the time values (days) on " |
753
|
|
|
"(default: %(default)s).") |
754
|
|
|
parser.add_argument("-f", "--orbit_file", |
755
|
|
|
help="the file containing the input orbits") |
756
|
|
|
parser.add_argument("-r", "--retrieval_version", default="v6.2", |
757
|
|
|
help="SCIAMACHY level 2 data version to process") |
758
|
|
|
parser.add_argument("-R", "--file_version", default="2.2", |
759
|
|
|
help="Postprocessing format version of the output file") |
760
|
|
|
parser.add_argument("-A", "--author", default="unknown", |
761
|
|
|
help="Author of the post-processed data set " |
762
|
|
|
"(default: %(default)s)") |
763
|
|
|
parser.add_argument("-p", "--path", default=None, |
764
|
|
|
help="path containing the L2 data") |
765
|
|
|
parser.add_argument("-s", "--spectra", default=None, metavar="PATH", |
766
|
|
|
help="path containing the L1c spectra") |
767
|
|
|
parser.add_argument("-m", "--mlt", action="store_true", default=False, |
768
|
|
|
help="indicate nominal (False, default) or MLT data (True)") |
769
|
|
|
parser.add_argument("-X", "--xarray", action="store_true", default=False, |
770
|
|
|
help="DEPRECATED, kept for compatibility reasons, does nothing.") |
771
|
|
|
loglevels = parser.add_mutually_exclusive_group() |
772
|
|
|
loglevels.add_argument("-l", "--loglevel", default="WARNING", |
773
|
|
|
choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], |
774
|
|
|
help="change the loglevel (default: 'WARNING')") |
775
|
|
|
loglevels.add_argument("-q", "--quiet", action="store_true", default=False, |
776
|
|
|
help="less output, same as --loglevel=ERROR (default: False)") |
777
|
|
|
loglevels.add_argument("-v", "--verbose", action="store_true", default=False, |
778
|
|
|
help="verbose output, same as --loglevel=INFO (default: False)") |
779
|
|
|
args = parser.parse_args() |
780
|
|
|
if args.quiet: |
781
|
|
|
logging.getLogger().setLevel(logging.ERROR) |
782
|
|
|
elif args.verbose: |
783
|
|
|
logging.getLogger().setLevel(logging.INFO) |
784
|
|
|
else: |
785
|
|
|
logging.getLogger().setLevel(args.loglevel) |
786
|
|
|
|
787
|
|
|
logging.info("processing L2 version: %s", args.retrieval_version) |
788
|
|
|
logging.info("writing data file version: %s", args.file_version) |
789
|
|
|
|
790
|
|
|
pddrange = [] |
791
|
|
|
if args.month is not None: |
792
|
|
|
d0 = pd.to_datetime(args.month + "-01", utc=True) |
793
|
|
|
pddrange += pd.date_range(d0, d0 + pd.tseries.offsets.MonthEnd()) |
794
|
|
|
if args.date_range is not None: |
795
|
|
|
pddrange += pd.date_range(*args.date_range.split(':')) |
796
|
|
|
if args.dates is not None: |
797
|
|
|
pddrange += pd.to_datetime(args.dates.split(','), utc=True) |
798
|
|
|
logging.debug("pddrange: %s", pddrange) |
799
|
|
|
|
800
|
|
|
olist = [] |
801
|
|
|
for date in pddrange: |
802
|
|
|
try: |
803
|
|
|
olist += get_orbits_from_date(date.strftime("%Y-%m-%d"), |
804
|
|
|
mlt=args.mlt, path=args.path, L2_version=args.retrieval_version) |
805
|
|
|
except: # handle NaT |
806
|
|
|
pass |
807
|
|
|
if args.orbit_file is not None: |
808
|
|
|
olist += np.genfromtxt(args.orbit_file, dtype=np.int32).tolist() |
809
|
|
|
logging.debug("olist: %s", olist) |
810
|
|
|
|
811
|
|
|
if not olist: |
812
|
|
|
logging.warn("No orbits to process.") |
813
|
|
|
return |
814
|
|
|
|
815
|
|
|
sd_xr = combine_orbit_data(olist, |
816
|
|
|
ref_date=args.base_date, |
817
|
|
|
L2_version=args.retrieval_version, |
818
|
|
|
dens_path=args.path, spec_base=args.spectra, save_nc=False) |
819
|
|
|
|
820
|
|
|
if sd_xr is None: |
821
|
|
|
logging.warn("Processed data is empty.") |
822
|
|
|
return |
823
|
|
|
|
824
|
|
|
sd_xr = sddata_set_attrs(sd_xr, ref_date=args.base_date, file_version=args.file_version) |
825
|
|
|
sd_xr = sd_xr[sorted(sd_xr.variables)] |
826
|
|
|
sd_xr.attrs["author"] = args.author |
827
|
|
|
sd_xr.attrs["creation_time"] = dt.datetime.utcnow().strftime( |
828
|
|
|
"%a %b %d %Y %H:%M:%S +00:00 (UTC)") |
829
|
|
|
sd_xr.attrs["software"] = "sciapy {0}".format(__version__) |
|
|
|
|
830
|
|
|
sd_xr.attrs["L2_data_version"] = args.retrieval_version |
831
|
|
|
sd_xr.attrs["version"] = args.file_version |
832
|
|
|
print(sd_xr) |
833
|
|
|
sd_xr.to_netcdf(args.file, unlimited_dims=["time"]) |
834
|
|
|
|
835
|
|
|
|
836
|
|
|
if __name__ == "__main__": |
837
|
|
|
main() |
838
|
|
|
|