Total Complexity | 57 |
Total Lines | 524 |
Duplicated Lines | 10.31 % |
Coverage | 16.59% |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.regress.models_cel often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | # vim:fileencoding=utf-8 |
||
3 | # |
||
4 | # Copyright (c) 2017-2018 Stefan Bender |
||
5 | # |
||
6 | # This module is part of sciapy. |
||
7 | # sciapy is free software: you can redistribute it or modify |
||
8 | # it under the terms of the GNU General Public License as published |
||
9 | # by the Free Software Foundation, version 2. |
||
10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
11 | 1 | """SCIAMACHY regression models (celerite version) |
|
12 | |||
13 | Model classes for SCIAMACHY data regression fits using the |
||
14 | :mod:`celerite` [#]_ modelling protocol. |
||
15 | |||
16 | .. [#] https://celerite.readthedocs.io |
||
17 | """ |
||
18 | 1 | from __future__ import absolute_import, division, print_function |
|
19 | |||
20 | 1 | import numpy as np |
|
21 | 1 | from scipy.interpolate import interp1d |
|
22 | |||
23 | 1 | from celerite.modeling import Model, ModelSet, ConstantModel |
|
24 | |||
25 | 1 | __all__ = ["ConstantModel", |
|
26 | "HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
||
27 | "ProxyModel", "TraceGasModelSet", |
||
28 | "setup_proxy_model_with_bounds", "trace_gas_model"] |
||
29 | |||
30 | |||
31 | 1 | class HarmonicModelCosineSine(Model): |
|
32 | """Model for harmonic terms |
||
33 | |||
34 | Models harmonic terms using a cosine and sine part. |
||
35 | The total amplitude and phase can be inferred from that. |
||
36 | |||
37 | Parameters |
||
38 | ---------- |
||
39 | freq : float |
||
40 | The frequency in years^-1 |
||
41 | cos : float |
||
42 | The amplitude of the cosine part |
||
43 | sin : float |
||
44 | The amplitude of the sine part |
||
45 | """ |
||
46 | 1 | parameter_names = ("freq", "cos", "sin") |
|
47 | |||
48 | 1 | def get_value(self, t): |
|
49 | t = np.atleast_1d(t) |
||
50 | return (self.cos * np.cos(self.freq * 2 * np.pi * t) + |
||
51 | self.sin * np.sin(self.freq * 2 * np.pi * t)) |
||
52 | |||
53 | 1 | def get_amplitude(self): |
|
54 | return np.sqrt(self.cos**2 + self.sin**2) |
||
55 | |||
56 | 1 | def get_phase(self): |
|
57 | return np.arctan2(self.sin, self.cos) |
||
58 | |||
59 | 1 | def compute_gradient(self, t): |
|
60 | t = np.atleast_1d(t) |
||
61 | dcos = np.cos(self.freq * 2 * np.pi * t) |
||
62 | dsin = np.sin(self.freq * 2 * np.pi * t) |
||
63 | df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
||
64 | return np.array([df, dcos, dsin]) |
||
65 | |||
66 | |||
67 | 1 | class HarmonicModelAmpPhase(Model): |
|
68 | """Model for harmonic terms |
||
69 | |||
70 | Models harmonic terms using a cosine and sine part. |
||
71 | The total amplitude and phase can be inferred from that. |
||
72 | |||
73 | Parameters |
||
74 | ---------- |
||
75 | freq : float |
||
76 | The frequency in years^-1 |
||
77 | amp : float |
||
78 | The amplitude of the harmonic term |
||
79 | phase : float |
||
80 | The phase of the harmonic part |
||
81 | """ |
||
82 | 1 | parameter_names = ("freq", "amp", "phase") |
|
83 | |||
84 | 1 | def get_value(self, t): |
|
85 | t = np.atleast_1d(t) |
||
86 | return self.amp * np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
87 | |||
88 | 1 | def get_amplitude(self): |
|
89 | return self.amp |
||
90 | |||
91 | 1 | def get_phase(self): |
|
92 | return self.phase |
||
93 | |||
94 | 1 | def compute_gradient(self, t): |
|
95 | t = np.atleast_1d(t) |
||
96 | damp = np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
97 | dphi = -self.amp * np.sin(self.freq * 2 * np.pi * t + self.phase) |
||
98 | df = 2 * np.pi * t * dphi |
||
99 | return np.array([df, damp, dphi]) |
||
100 | |||
101 | |||
102 | 1 | class ProxyModel(Model): |
|
103 | """Model for proxy terms |
||
104 | |||
105 | Models proxy terms with a finite and (semi-)annually varying life time. |
||
106 | |||
107 | Parameters |
||
108 | ---------- |
||
109 | proxy_times : (N,) array_like |
||
110 | The data times of the proxy values |
||
111 | proxy_vals : (N,) array_like |
||
112 | The proxy values at `proxy_times` |
||
113 | amp : float |
||
114 | The amplitude of the proxy term |
||
115 | lag : float |
||
116 | The lag of the proxy value in years. |
||
117 | tau0 : float |
||
118 | The base life time of the proxy |
||
119 | taucos1 : float |
||
120 | The amplitude of the cosine part of the annual life time variation. |
||
121 | tausin1 : float |
||
122 | The amplitude of the sine part of the annual life time variation. |
||
123 | taucos2 : float |
||
124 | The amplitude of the cosine part of the semi-annual life time variation. |
||
125 | tausin2 : float |
||
126 | The amplitude of the sine part of the semi-annual life time variation. |
||
127 | ltscan : float |
||
128 | The number of days to sum the previous proxy values. If it is |
||
129 | negative, the value will be set to three times the maximal lifetime. |
||
130 | No lifetime adjustemets are calculated when set to zero. |
||
131 | center : bool, optional |
||
132 | Centers the proxy values by subtracting the overall mean. The mean is |
||
133 | calculated from the whole `proxy_vals` array and is stored in the |
||
134 | `mean` attribute. |
||
135 | Default: False |
||
136 | sza_intp : scipy.interpolate.interp1d() instance, optional |
||
137 | When not `None`, cos(sza) and sin(sza) are used instead |
||
138 | of the time to model the annual variation of the lifetime. |
||
139 | Semi-annual variations are not used in that case. |
||
140 | Default: None |
||
141 | fit_phase : bool, optional |
||
142 | Fit the phase shift directly instead of using sine and cosine |
||
143 | terms for the (semi-)annual lifetime variations. If True, the fitted |
||
144 | cosine parameter is the amplitude and the sine parameter the phase. |
||
145 | Default: False (= fit sine and cosine terms) |
||
146 | lifetime_prior : str, optional |
||
147 | The prior probability density for each coefficient of the lifetime. |
||
148 | Possible types are "flat" or `None` for a flat prior, "exp" for an |
||
149 | exponential density ~ :math:`\\text{exp}(-|\\tau| / \\text{metric})`, |
||
150 | and "normal" for a normal distribution |
||
151 | ~ :math:`\\text{exp}(-\\tau^2 / (2 * \\text{metric}^2))`. |
||
152 | Default: None (= flat prior). |
||
153 | lifetime_metric : float, optional |
||
154 | The metric (scale) of the lifetime priors in days, see `prior`. |
||
155 | Default 1. |
||
156 | days_per_time_unit : float, optional |
||
157 | The number of days per time unit, used to normalize the lifetime |
||
158 | units. Use 365.25 if the times are in fractional years, or 1 if |
||
159 | they are in days. |
||
160 | Default: 365.25 |
||
161 | """ |
||
162 | 1 | parameter_names = ("amp", "lag", "tau0", |
|
163 | "taucos1", "tausin1", "taucos2", "tausin2", |
||
164 | "ltscan") |
||
165 | |||
166 | 1 | def __init__(self, proxy_times, proxy_vals, |
|
167 | center=False, |
||
168 | sza_intp=None, fit_phase=False, |
||
169 | lifetime_prior=None, lifetime_metric=1., |
||
170 | days_per_time_unit=365.25, |
||
171 | *args, **kwargs): |
||
172 | self.mean = 0. |
||
173 | if center: |
||
174 | self.mean = np.nanmean(proxy_vals) |
||
175 | self.times = proxy_times |
||
176 | self.dt = 1. |
||
177 | self.values = proxy_vals - self.mean |
||
178 | self.sza_intp = sza_intp |
||
179 | self.fit_phase = fit_phase |
||
180 | self.days_per_time_unit = days_per_time_unit |
||
181 | self.omega = 2 * np.pi * days_per_time_unit / 365.25 |
||
182 | self.lifetime_prior = lifetime_prior |
||
183 | self.lifetime_metric = lifetime_metric |
||
184 | # Makes "(m)jd" and "jyear" compatible for the lifetime |
||
185 | # seasonal variation. The julian epoch (the default) |
||
186 | # is slightly offset with respect to (modified) julian days. |
||
187 | self.t_adj = 0. |
||
188 | if self.days_per_time_unit == 1: |
||
189 | # discriminate between julian days and modified julian days, |
||
190 | # 1.8e6 is year 216 in julian days and year 6787 in |
||
191 | # modified julian days. It should be pretty safe to judge on |
||
192 | # that for most use cases. |
||
193 | if self.times[0] > 1.8e6: |
||
194 | # julian days |
||
195 | self.t_adj = 13. |
||
196 | else: |
||
197 | # modified julian days |
||
198 | self.t_adj = -44.25 |
||
199 | super(ProxyModel, self).__init__(*args, **kwargs) |
||
200 | |||
201 | 1 | View Code Duplication | def _lt_corr(self, t, tau, tmax=60.): |
|
|||
202 | """Lifetime corrected values |
||
203 | |||
204 | Corrects for a finite lifetime by summing over the last `tmax` |
||
205 | days with an exponential decay given of lifetime(s) `taus`. |
||
206 | """ |
||
207 | bs = np.arange(self.dt, tmax + self.dt, self.dt) |
||
208 | yp = np.zeros_like(t) |
||
209 | tauexp = np.exp(-self.dt / tau) |
||
210 | taufac = np.ones_like(tau) |
||
211 | for b in bs: |
||
212 | taufac *= tauexp |
||
213 | yp += np.interp(t - self.lag - b / self.days_per_time_unit, |
||
214 | self.times, self.values, left=0., right=0.) * taufac |
||
215 | return yp * self.dt |
||
216 | |||
217 | 1 | View Code Duplication | def _lt_corr_grad(self, t, tau, tmax=60.): |
218 | """Lifetime corrected gradient |
||
219 | |||
220 | Corrects for a finite lifetime by summing over the last `tmax` |
||
221 | days with an exponential decay given of lifetime(s) `taus`. |
||
222 | """ |
||
223 | bs = np.arange(self.dt, tmax + self.dt, self.dt) |
||
224 | ypg = np.zeros_like(t) |
||
225 | tauexp = np.exp(-self.dt / tau) |
||
226 | taufac = np.ones_like(tau) |
||
227 | for b in bs: |
||
228 | taufac *= tauexp |
||
229 | ypg += np.interp(t - self.lag - b / self.days_per_time_unit, |
||
230 | self.times, self.values, left=0., right=0.) * taufac * b |
||
231 | return ypg * self.dt / tau**2 |
||
232 | |||
233 | 1 | def get_value(self, t): |
|
234 | t = np.atleast_1d(t) |
||
235 | proxy_val = np.interp(t - self.lag, |
||
236 | self.times, self.values, left=0., right=0.) |
||
237 | if self.ltscan == 0: |
||
238 | # no lifetime, nothing else to do |
||
239 | return self.amp * proxy_val |
||
240 | # annual variation of the proxy lifetime |
||
241 | if self.sza_intp is not None: |
||
242 | # using the solar zenith angle |
||
243 | tau_cs = (self.taucos1 * np.cos(np.radians(self.sza_intp(t))) |
||
244 | + self.tausin1 * np.sin(np.radians(self.sza_intp(t)))) |
||
245 | elif self.fit_phase: |
||
246 | # using time (cos) and phase (sin) |
||
247 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * (t + self.t_adj) + self.tausin1) |
||
248 | + self.taucos2 * np.cos(2 * self.omega * (t + self.t_adj) + self.tausin2)) |
||
249 | else: |
||
250 | # using time |
||
251 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * (t + self.t_adj)) |
||
252 | + self.tausin1 * np.sin(1 * self.omega * (t + self.t_adj)) |
||
253 | + self.taucos2 * np.cos(2 * self.omega * (t + self.t_adj)) |
||
254 | + self.tausin2 * np.sin(2 * self.omega * (t + self.t_adj))) |
||
255 | tau_cs = np.maximum(0., tau_cs) # clip to zero |
||
256 | tau = self.tau0 + tau_cs |
||
257 | if self.ltscan > 0: |
||
258 | _ltscn = int(np.floor(self.ltscan)) |
||
259 | else: |
||
260 | # infer the scan time from the maximal lifetime |
||
261 | _ltscn = 3 * int(np.ceil(self.tau0 + |
||
262 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
263 | if np.all(tau > 0): |
||
264 | proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
||
265 | return self.amp * proxy_val |
||
266 | |||
267 | 1 | def compute_gradient(self, t): |
|
268 | t = np.atleast_1d(t) |
||
269 | proxy_val = np.interp(t - self.lag, |
||
270 | self.times, self.values, left=0., right=0.) |
||
271 | proxy_val_grad0 = proxy_val.copy() |
||
272 | # annual variation of the proxy lifetime |
||
273 | if self.sza_intp is not None: |
||
274 | # using the solar zenith angle |
||
275 | dtau_cos1 = np.cos(np.radians(self.sza_intp(t))) |
||
276 | dtau_sin1 = np.sin(np.radians(self.sza_intp(t))) |
||
277 | dtau_cos2 = np.zeros_like(t) |
||
278 | dtau_sin2 = np.zeros_like(t) |
||
279 | tau_cs = self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 |
||
280 | elif self.fit_phase: |
||
281 | # using time (cos) and phase (sin) |
||
282 | dtau_cos1 = np.cos(1 * self.omega * (t + self.t_adj) + self.tausin1) |
||
283 | dtau_sin1 = -self.taucos1 * np.sin(1 * self.omega * t + self.tausin1) |
||
284 | dtau_cos2 = np.cos(2 * self.omega * (t + self.t_adj) + self.tausin2) |
||
285 | dtau_sin2 = -self.taucos2 * np.sin(2 * self.omega * t + self.tausin2) |
||
286 | tau_cs = self.taucos1 * dtau_cos1 + self.taucos2 * dtau_cos2 |
||
287 | else: |
||
288 | # using time |
||
289 | dtau_cos1 = np.cos(1 * self.omega * (t + self.t_adj)) |
||
290 | dtau_sin1 = np.sin(1 * self.omega * (t + self.t_adj)) |
||
291 | dtau_cos2 = np.cos(2 * self.omega * (t + self.t_adj)) |
||
292 | dtau_sin2 = np.sin(2 * self.omega * (t + self.t_adj)) |
||
293 | tau_cs = (self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 + |
||
294 | self.taucos2 * dtau_cos2 + self.tausin2 * dtau_sin2) |
||
295 | tau_cs = np.maximum(0., tau_cs) # clip to zero |
||
296 | tau = self.tau0 + tau_cs |
||
297 | if self.ltscan > 0: |
||
298 | _ltscn = int(np.floor(self.ltscan)) |
||
299 | else: |
||
300 | # infer the scan time from the maximal lifetime |
||
301 | _ltscn = 3 * int(np.ceil(self.tau0 + |
||
302 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
303 | if np.all(tau > 0): |
||
304 | proxy_val += self._lt_corr(t, tau, tmax=_ltscn) |
||
305 | proxy_val_grad0 += self._lt_corr_grad(t, tau, tmax=_ltscn) |
||
306 | return np.array([proxy_val, |
||
307 | # set the gradient wrt lag to zero for now |
||
308 | np.zeros_like(t), |
||
309 | self.amp * proxy_val_grad0, |
||
310 | self.amp * proxy_val_grad0 * dtau_cos1, |
||
311 | self.amp * proxy_val_grad0 * dtau_sin1, |
||
312 | self.amp * proxy_val_grad0 * dtau_cos2, |
||
313 | self.amp * proxy_val_grad0 * dtau_sin2, |
||
314 | # set the gradient wrt lifetime scan to zero for now |
||
315 | np.zeros_like(t)]) |
||
316 | |||
317 | 1 | def _log_prior_normal(self): |
|
318 | l_prior = super(ProxyModel, self).log_prior() |
||
319 | if not np.isfinite(l_prior): |
||
320 | return -np.inf |
||
321 | for n, p in self.get_parameter_dict().items(): |
||
322 | if n.startswith("tau"): |
||
323 | # Gaussian prior for the lifetimes |
||
324 | l_prior -= 0.5 * (p / self.lifetime_metric)**2 |
||
325 | return l_prior |
||
326 | |||
327 | 1 | def _log_prior_exp(self): |
|
328 | l_prior = super(ProxyModel, self).log_prior() |
||
329 | if not np.isfinite(l_prior): |
||
330 | return -np.inf |
||
331 | for n, p in self.get_parameter_dict().items(): |
||
332 | if n.startswith("tau"): |
||
333 | # exponential prior for the lifetimes |
||
334 | l_prior -= np.abs(p / self.lifetime_metric) |
||
335 | return l_prior |
||
336 | |||
337 | 1 | def log_prior(self): |
|
338 | _priors = {"exp": self._log_prior_exp, |
||
339 | "normal": self._log_prior_normal} |
||
340 | if self.lifetime_prior is None or self.lifetime_prior == "flat": |
||
341 | return super(ProxyModel, self).log_prior() |
||
342 | return _priors[self.lifetime_prior]() |
||
343 | |||
344 | |||
345 | 1 | class TraceGasModelSet(ModelSet): |
|
346 | """Combined model class for trace gases (and probably other data) |
||
347 | |||
348 | Inherited from :class:`celerite.ModelSet`, provides `get_value()` |
||
349 | and `compute_gradient()` methods. |
||
350 | """ |
||
351 | 1 | def get_value(self, t): |
|
352 | t = np.atleast_1d(t) |
||
353 | v = np.zeros_like(t) |
||
354 | for m in self.models.values(): |
||
355 | v += m.get_value(t) |
||
356 | return v |
||
357 | |||
358 | 1 | def compute_gradient(self, t): |
|
359 | t = np.atleast_1d(t) |
||
360 | grad = [] |
||
361 | for m in self.models.values(): |
||
362 | grad.extend(list(m.compute_gradient(t))) |
||
363 | return np.array(grad) |
||
364 | |||
365 | |||
366 | 1 | def setup_proxy_model_with_bounds(times, values, |
|
367 | max_amp=1e10, max_days=100, |
||
368 | **kwargs): |
||
369 | # extract setup from `kwargs` |
||
370 | center = kwargs.get("center", False) |
||
371 | fit_phase = kwargs.get("fit_phase", False) |
||
372 | lag = kwargs.get("lag", 0.) |
||
373 | lt_metric = kwargs.get("lifetime_metric", 1) |
||
374 | lt_prior = kwargs.get("lifetime_prior", "exp") |
||
375 | lt_scan = kwargs.get("lifetime_scan", 60) |
||
376 | positive = kwargs.get("positive", False) |
||
377 | sza_intp = kwargs.get("sza_intp", None) |
||
378 | time_format = kwargs.get("time_format", "jyear") |
||
379 | |||
380 | return ProxyModel(times, values, |
||
381 | center=center, |
||
382 | sza_intp=sza_intp, |
||
383 | fit_phase=fit_phase, |
||
384 | lifetime_prior=lt_prior, |
||
385 | lifetime_metric=lt_metric, |
||
386 | days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
||
387 | amp=0., |
||
388 | lag=lag, |
||
389 | tau0=0, |
||
390 | taucos1=0, tausin1=0, |
||
391 | taucos2=0, tausin2=0, |
||
392 | ltscan=lt_scan, |
||
393 | bounds=dict([ |
||
394 | ("amp", [0, max_amp] if positive else [-max_amp, max_amp]), |
||
395 | ("lag", [0, max_days]), |
||
396 | ("tau0", [0, max_days]), |
||
397 | ("taucos1", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
398 | ("tausin1", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
399 | # semi-annual cycles for the life time |
||
400 | ("taucos2", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
401 | ("tausin2", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
402 | ("ltscan", [0, 200])]) |
||
403 | ) |
||
404 | |||
405 | |||
406 | 1 | View Code Duplication | def _default_proxy_config(tfmt="jyear"): |
407 | from .load_data import load_dailymeanLya, load_dailymeanAE |
||
408 | proxy_config = {} |
||
409 | # Lyman-alpha |
||
410 | plyat, plyadf = load_dailymeanLya(tfmt=tfmt) |
||
411 | proxy_config.update({"Lya": { |
||
412 | "times": plyat, |
||
413 | "values": plyadf["Lya"], |
||
414 | "center": False, |
||
415 | "positive": False, |
||
416 | "lifetime_scan": 0, |
||
417 | }} |
||
418 | ) |
||
419 | # AE index |
||
420 | paet, paedf = load_dailymeanAE(name="GM", tfmt=tfmt) |
||
421 | proxy_config.update({"GM": { |
||
422 | "times": paet, |
||
423 | "values": paedf["GM"], |
||
424 | "center": False, |
||
425 | "positive": True, |
||
426 | "lifetime_scan": 60, |
||
427 | }} |
||
428 | ) |
||
429 | return proxy_config |
||
430 | |||
431 | |||
432 | 1 | def trace_gas_model(constant=True, freqs=None, proxy_config=None, **kwargs): |
|
433 | """Trace gas model setup |
||
434 | |||
435 | Sets up the trace gas model for easy access. All parameters are optional, |
||
436 | defaults to an offset, no harmonics, proxies are uncentered and unscaled |
||
437 | Lyman-alpha and AE. AE with only positive amplitude and a seasonally |
||
438 | varying lifetime. |
||
439 | |||
440 | Parameters |
||
441 | ---------- |
||
442 | constant : bool, optional |
||
443 | Whether or not to include a constant (offset) term, default is True. |
||
444 | freqs : list, optional |
||
445 | Frequencies of the harmonic terms in 1 / a^-1 (inverse years). |
||
446 | proxy_config : dict, optional |
||
447 | Proxy configuration if different from the standard setup. |
||
448 | **kwargs : optional |
||
449 | Additional keyword arguments, all of them are also passed on to |
||
450 | the proxy setup. For now, supported are the following which are |
||
451 | also passed along to the proxy setup with |
||
452 | `setup_proxy_model_with_bounds()`: |
||
453 | |||
454 | * fit_phase : bool |
||
455 | fit amplitude and phase instead of sine and cosine |
||
456 | * scale : float |
||
457 | the factor by which the data is scaled, used to constrain |
||
458 | the maximum and minimum amplitudes to be fitted. |
||
459 | * time_format : string |
||
460 | The `astropy.time.Time` format string to setup the time axis. |
||
461 | * days_per_time_unit : float |
||
462 | The number of days per time unit, used to normalize the frequencies |
||
463 | for the harmonic terms. Use 365.25 if the times are in fractional years, |
||
464 | 1 if they are in days. Default: 365.25 |
||
465 | * max_amp : float |
||
466 | Maximum magnitude of the coefficients, used to constrain the |
||
467 | parameter search. |
||
468 | * max_days : float |
||
469 | Maximum magnitude of the lifetimes, used to constrain the |
||
470 | parameter search. |
||
471 | |||
472 | Returns |
||
473 | ------- |
||
474 | model : :class:`TraceGasModelSet` (extends :class:`celerite.ModelSet`) |
||
475 | """ |
||
476 | fit_phase = kwargs.get("fit_phase", False) |
||
477 | scale = kwargs.get("scale", 1e-6) |
||
478 | tfmt = kwargs.get("time_format", "jyear") |
||
479 | delta_t = kwargs.get("days_per_time_unit", 365.25) |
||
480 | |||
481 | max_amp = kwargs.pop("max_amp", 1e10 * scale) |
||
482 | max_days = kwargs.pop("max_days", 100) |
||
483 | |||
484 | offset_model = [] |
||
485 | if constant: |
||
486 | offset_model = [("offset", |
||
487 | ConstantModel(value=0., |
||
488 | bounds={"value": [-max_amp, max_amp]}))] |
||
489 | |||
490 | freqs = freqs or [] |
||
491 | harmonic_models = [] |
||
492 | for freq in freqs: |
||
493 | if not fit_phase: |
||
494 | harm = HarmonicModelCosineSine(freq=freq * delta_t / 365.25, |
||
495 | cos=0, sin=0, |
||
496 | bounds=dict([ |
||
497 | ("cos", [-max_amp, max_amp]), |
||
498 | ("sin", [-max_amp, max_amp])]) |
||
499 | ) |
||
500 | else: |
||
501 | harm = HarmonicModelAmpPhase(freq=freq * delta_t / 365.25, |
||
502 | amp=0, phase=0, |
||
503 | bounds=dict([ |
||
504 | ("amp", [0, max_amp]), |
||
505 | ("phase", [-np.pi, np.pi])]) |
||
506 | ) |
||
507 | harm.freeze_parameter("freq") |
||
508 | harmonic_models.append(("f{0:.0f}".format(freq), harm)) |
||
509 | |||
510 | proxy_config = proxy_config or _default_proxy_config(tfmt=tfmt) |
||
511 | proxy_models = [] |
||
512 | for pn, conf in proxy_config.items(): |
||
513 | if "max_amp" not in conf: |
||
514 | conf.update(dict(max_amp=max_amp)) |
||
515 | if "max_days" not in conf: |
||
516 | conf.update(dict(max_days=max_days)) |
||
517 | kw = kwargs.copy() # don't mess with the passed arguments |
||
518 | kw.update(conf) |
||
519 | proxy_models.append( |
||
520 | (pn, setup_proxy_model_with_bounds(**kw)) |
||
521 | ) |
||
522 | |||
523 | return TraceGasModelSet(offset_model + harmonic_models + proxy_models) |
||
524 |