Total Complexity | 41 |
Total Lines | 543 |
Duplicated Lines | 83.43 % |
Coverage | 80.68% |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.level2.density often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | # vim:fileencoding=utf-8 |
||
3 | # |
||
4 | # Copyright (c) 2015-2018 Stefan Bender |
||
5 | # |
||
6 | # This file is part of sciapy. |
||
7 | # sciapy is free software: you can redistribute it or modify it |
||
8 | # under the terms of the GNU General Public License as published by |
||
9 | # the Free Software Foundation, version 2. |
||
10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
11 | 1 | """SCIAMACHY level 2 number density retrieval results interface |
|
12 | |||
13 | Interface classes for the level 2 retrieval results from text (ascii) |
||
14 | files and netcdf files for further processing. |
||
15 | """ |
||
16 | |||
17 | 1 | from __future__ import absolute_import, division, print_function |
|
18 | |||
19 | 1 | import os |
|
20 | 1 | import re |
|
21 | 1 | import sys |
|
22 | 1 | import datetime as dt |
|
23 | |||
24 | 1 | import numpy as np |
|
25 | 1 | try: |
|
26 | 1 | from netCDF4 import Dataset as netcdf_file |
|
27 | 1 | fmtargs = {"format": "NETCDF4"} |
|
28 | except ImportError: |
||
29 | try: |
||
30 | from scipy.io.netcdf import netcdf_file |
||
31 | fmtargs = {"version": 1} |
||
32 | except ImportError: |
||
33 | from pupynere import netcdf_file |
||
34 | fmtargs = {"version": 1} |
||
35 | |||
36 | 1 | __all__ = ["scia_densities", "_UTC"] |
|
37 | |||
38 | 1 | try: |
|
39 | 1 | _UTC = dt.timezone.utc |
|
40 | except AttributeError: |
||
41 | # python 2.7 |
||
42 | class UTC(dt.tzinfo): |
||
|
|||
43 | def utcoffset(self, d): |
||
44 | return dt.timedelta(0) |
||
45 | def tzname(self, d): |
||
46 | return "UTC" |
||
47 | def dst(self, d): |
||
48 | return dt.timedelta(0) |
||
49 | _UTC = UTC() |
||
50 | |||
51 | 1 | _meas_dtypes = [[('gp_id', int), |
|
52 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
53 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
54 | ('density', float), ('dens_err_meas', float), |
||
55 | ('dens_err_tot', float), ('dens_tot', float)], |
||
56 | [('gp_id', int), |
||
57 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
58 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
59 | ('longitude', float), |
||
60 | ('density', float), ('dens_err_meas', float), |
||
61 | ('dens_err_tot', float), ('dens_tot', float)], |
||
62 | [('gp_id', int), |
||
63 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
64 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
65 | ('longitude', float), |
||
66 | ('density', float), ('dens_err_meas', float), |
||
67 | ('dens_err_tot', float), ('dens_tot', float), |
||
68 | ('apriori', float)], |
||
69 | [('gp_id', int), |
||
70 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
71 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
72 | ('longitude', float), |
||
73 | ('density', float), ('dens_err_meas', float), |
||
74 | ('dens_err_tot', float), ('dens_tot', float), |
||
75 | ('apriori', float), ('akdiag', float)]] |
||
76 | |||
77 | |||
78 | 1 | def _unique_values(vals): |
|
79 | 1 | ldum = [] |
|
80 | 1 | [ldum.append(i) for i in vals if not ldum.count(i)] |
|
81 | 1 | return np.asarray(ldum).flatten() |
|
82 | |||
83 | |||
84 | 1 | View Code Duplication | class scia_densities(object): |
85 | """SCIAMACHY orbital retrieved number densities |
||
86 | |||
87 | Class interface to orbit-wise SCIAMACHY retrieval results. |
||
88 | The attributes are based on the text file layout and are |
||
89 | tied to the NO retrieval for now. |
||
90 | |||
91 | Parameters |
||
92 | ---------- |
||
93 | ref_date: str, optional |
||
94 | The reference date on which to base the date calculations on. |
||
95 | Default: "2000-01-01" |
||
96 | ver: str, optional |
||
97 | Explicit density version, used for exporting the data. |
||
98 | Not used if set to `None`. |
||
99 | Default: `None` |
||
100 | data_ver: str, optional |
||
101 | Level 2 data version to use, as "ver" used for exporting. |
||
102 | Not used if set to `None`. |
||
103 | Default: `None` |
||
104 | |||
105 | Attributes |
||
106 | ---------- |
||
107 | version |
||
108 | file version string |
||
109 | data_version |
||
110 | level 2 data version |
||
111 | date0 |
||
112 | reference date |
||
113 | nalt |
||
114 | number of altitudes in the orbit |
||
115 | nlat |
||
116 | number of latitudes in the orbit |
||
117 | nlon |
||
118 | number of longitudes in the orbit, if longitudes are available |
||
119 | orbit |
||
120 | SCIAMACHY/Envisat orbit number |
||
121 | date |
||
122 | number of days of the orbit counting from the reference date |
||
123 | date0 |
||
124 | alts_min |
||
125 | alts |
||
126 | alts_max |
||
127 | the altitude bins: minimum, central, and maximum altitude |
||
128 | lats_min |
||
129 | lats |
||
130 | lats_max |
||
131 | the latitude bins: minimum, central, and maximum latitude |
||
132 | lons: |
||
133 | the central longitude of the bins, only used if available |
||
134 | |||
135 | densities |
||
136 | NO number densities in the bins, (nlat, nalt) array_like |
||
137 | dens_err_meas |
||
138 | NO number densities measurement uncertainty, |
||
139 | (nlat, nalt) array_like |
||
140 | dens_err_tot |
||
141 | NO number densities total uncertainty, (nlat, nalt) array_like |
||
142 | dens_tot |
||
143 | total number densities calculated and interpolated NRLMSIS-00 |
||
144 | values, (nlat, nalt) array_like |
||
145 | |||
146 | apriori |
||
147 | prior NO number densities, (nlat, nalt) array_like if available, |
||
148 | otherwise `None` |
||
149 | akdiag |
||
150 | diagonal element of the averaging kernel matrix at the retrieval |
||
151 | grid point. (nlat, nalt) array_like if available otherwise `None` |
||
152 | |||
153 | Methods |
||
154 | ------- |
||
155 | read_from_textfile |
||
156 | read_from_netcdf |
||
157 | read_from_file |
||
158 | write_to_textfile |
||
159 | write_to_netcdf |
||
160 | |||
161 | Note |
||
162 | ---- |
||
163 | The variables are empty when initialized, use one of the |
||
164 | read_from_...() methods to fill with actual data. |
||
165 | """ |
||
166 | 1 | def __init__(self, author="unknown", ref_date="2000-01-01", ver=None, data_ver=None): |
|
167 | 1 | self.author = author |
|
168 | 1 | self.version = ver |
|
169 | 1 | self.data_version = data_ver |
|
170 | 1 | self.date0 = dt.datetime.strptime(ref_date, "%Y-%m-%d").replace(tzinfo=_UTC) |
|
171 | 1 | self.nalt = 0 |
|
172 | 1 | self.nlat = 0 |
|
173 | 1 | self.nlon = 0 |
|
174 | 1 | self.orbit = -1 |
|
175 | 1 | self.date = -1 |
|
176 | 1 | self.alts_min = np.array([]) |
|
177 | 1 | self.alts = np.array([]) |
|
178 | 1 | self.alts_max = np.array([]) |
|
179 | 1 | self.lats_min = np.array([]) |
|
180 | 1 | self.lats = np.array([]) |
|
181 | 1 | self.lats_max = np.array([]) |
|
182 | 1 | self.lons = np.array([]) |
|
183 | 1 | self.akdiag = None |
|
184 | 1 | self.apriori = None |
|
185 | |||
186 | 1 | def read_from_textfile(self, filename): |
|
187 | """Read NO densities from ascii table file |
||
188 | |||
189 | Parameters |
||
190 | ---------- |
||
191 | filename: str, file object or io.TextIOBase.buffer |
||
192 | The filename or stream to read the data from. For example |
||
193 | to read from stdin in python 3, pass `sys.stdin.buffer`. |
||
194 | """ |
||
195 | 1 | if hasattr(filename, 'seek'): |
|
196 | f = filename |
||
197 | else: |
||
198 | 1 | f = open(filename, 'rb') |
|
199 | # example filename:000NO_orbit_41467_20100203_Dichten.txt |
||
200 | 1 | fn_fields = os.path.basename(filename).split('_') |
|
201 | 1 | self.orbit = int(fn_fields[2]) |
|
202 | 1 | self.date = (dt.datetime.strptime(fn_fields[3], "%Y%m%d") |
|
203 | .replace(tzinfo=_UTC) - self.date0).days |
||
204 | 1 | if self.data_version is None: |
|
205 | # try some heuristics to find the level 2 data version |
||
206 | 1 | _dir = os.path.dirname(filename) |
|
207 | 1 | _m = re.search(".*[_-]v([0-9]+[.].*)", _dir) |
|
208 | 1 | if _m: |
|
209 | 1 | self.data_version = _m.group(1) |
|
210 | else: |
||
211 | 1 | self.data_version = "unknown" |
|
212 | 1 | line = f.readline() |
|
213 | 1 | data = line.split() |
|
214 | 1 | mydtype = _meas_dtypes[len(data) - 13] |
|
215 | 1 | marr = np.genfromtxt(f, dtype=mydtype) |
|
216 | 1 | f.close() |
|
217 | |||
218 | # unique altitudes |
||
219 | 1 | self.alts_min = _unique_values(marr['alt_min']) |
|
220 | 1 | self.alts = _unique_values(marr['alt']) |
|
221 | 1 | self.alts_max = _unique_values(marr['alt_max']) |
|
222 | |||
223 | # unique latitudes |
||
224 | 1 | self.lats_min = _unique_values(marr['lat_min']) |
|
225 | 1 | self.lats = _unique_values(marr['lat']) |
|
226 | 1 | self.lats_max = _unique_values(marr['lat_max']) |
|
227 | |||
228 | # unique longitudes if available |
||
229 | 1 | try: |
|
230 | 1 | self.lons = _unique_values(marr['longitude']) |
|
231 | except: |
||
232 | pass |
||
233 | |||
234 | 1 | self.nalt = len(self.alts) |
|
235 | 1 | self.nlat = len(self.lats) |
|
236 | 1 | self.nlon = len(self.lons) |
|
237 | |||
238 | # reorder by latitude first, then altitude |
||
239 | 1 | self.densities = marr['density'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
240 | 1 | self.dens_err_meas = marr['dens_err_meas'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
241 | 1 | self.dens_err_tot = marr['dens_err_tot'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
242 | 1 | self.dens_tot = marr['dens_tot'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
243 | |||
244 | # apriori if available |
||
245 | 1 | try: |
|
246 | 1 | self.apriori = marr['apriori'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
247 | except: |
||
248 | pass |
||
249 | # akdiag if available |
||
250 | 1 | try: |
|
251 | 1 | self.akdiag = marr['akdiag'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
252 | except: |
||
253 | pass |
||
254 | |||
255 | 1 | def write_to_textfile(self, filename): |
|
256 | """Write NO densities to ascii table files |
||
257 | |||
258 | Parameters |
||
259 | ---------- |
||
260 | filename: str or file object or io.TextIOBase.buffer |
||
261 | The filename or stream to write the data to. For writing to |
||
262 | stdout in python 3, pass `sys.stdout.buffer`. |
||
263 | """ |
||
264 | 1 | if hasattr(filename, 'seek'): |
|
265 | f = filename |
||
266 | else: |
||
267 | 1 | f = open(filename, 'w') |
|
268 | |||
269 | 1 | header = "%5s %13s %12s %13s %13s %12s %13s %13s %13s %12s %12s %12s" % ("GP_ID", |
|
270 | "Max_Hoehe[km]", "Hoehe[km]", "Min_Hoehe[km]", |
||
271 | "Max_Breite[°]", "Breite[°]", "Min_Breite[°]", |
||
272 | "Laenge[°]", |
||
273 | "Dichte[cm^-3]", "Fehler Mess[cm^-3]", |
||
274 | "Fehler tot[cm^-3]", "Gesamtdichte[cm^-3]") |
||
275 | 1 | if self.apriori is not None: |
|
276 | 1 | header = header + " %12s" % ("apriori[cm^-3]",) |
|
277 | 1 | if self.akdiag is not None: |
|
278 | 1 | header = header + " %12s" % ("AKdiag",) |
|
279 | 1 | print(header, file=f) |
|
280 | |||
281 | 1 | oformat = "%5i %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E" |
|
282 | 1 | oformata = " %+1.5E" |
|
283 | |||
284 | 1 | for i, a in enumerate(self.alts): |
|
285 | 1 | for j, b in enumerate(self.lats): |
|
286 | 1 | print(oformat % (i * self.nlat + j, |
|
287 | self.alts_max[i], a, self.alts_min[i], |
||
288 | self.lats_max[j], b, self.lats_min[j], self.lons[j], |
||
289 | self.densities[j, i], self.dens_err_meas[j, i], |
||
290 | self.dens_err_tot[j, i], self.dens_tot[j, i]), |
||
291 | end="", file=f) |
||
292 | 1 | if self.apriori is not None: |
|
293 | 1 | print(" " + oformata % self.apriori[j, i], end="", file=f) |
|
294 | 1 | if self.akdiag is not None: |
|
295 | 1 | print(" " + oformata % self.akdiag[j, i], end="", file=f) |
|
296 | 1 | print("", file=f) |
|
297 | |||
298 | 1 | def write_to_netcdf(self, filename, close=True): |
|
299 | """Write NO densities to netcdf files |
||
300 | |||
301 | This function has no stream, i.e. file object, support. |
||
302 | |||
303 | Parameters |
||
304 | ---------- |
||
305 | filename: str |
||
306 | The name of the file to write the data to. |
||
307 | close: bool, optional |
||
308 | Whether or not to close the file after writing. |
||
309 | Setting to `False` enables appending further data |
||
310 | to the same file. |
||
311 | Default: True |
||
312 | |||
313 | Returns |
||
314 | ------- |
||
315 | Nothing if `close` is True. If `close` is False, returns either an |
||
316 | `netCDF4.Dataset`, |
||
317 | `scipy.io.netcdf.netcdf_file` or |
||
318 | `pupynere.netcdf_file` instance depending on availability. |
||
319 | """ |
||
320 | 1 | alts_min_out = np.asarray(self.alts_min).reshape(self.nalt) |
|
321 | 1 | alts_out = np.asarray(self.alts).reshape(self.nalt) |
|
322 | 1 | alts_max_out = np.asarray(self.alts_max).reshape(self.nalt) |
|
323 | |||
324 | 1 | lats_min_out = np.asarray(self.lats_min).reshape(self.nlat) |
|
325 | 1 | lats_out = np.asarray(self.lats).reshape(self.nlat) |
|
326 | 1 | lats_max_out = np.asarray(self.lats_max).reshape(self.nlat) |
|
327 | |||
328 | 1 | ncf = netcdf_file(filename, 'w', **fmtargs) |
|
329 | |||
330 | 1 | if self.version is not None: |
|
331 | 1 | ncf.version = self.version |
|
332 | 1 | if self.data_version is not None: |
|
333 | 1 | ncf.L2_data_version = self.data_version |
|
334 | #ncf.creation_time = dt.datetime.utcnow().replace(tzinfo=_UTC).strftime("%a %b %d %Y %H:%M:%S %z (%Z)") |
||
335 | 1 | ncf.creation_time = dt.datetime.utcnow().strftime("%a %b %d %Y %H:%M:%S +00:00 (UTC)") |
|
336 | 1 | ncf.author = self.author |
|
337 | |||
338 | # create netcdf file |
||
339 | 1 | ncf.createDimension('altitude', self.nalt) |
|
340 | 1 | ncf.createDimension('latitude', self.nlat) |
|
341 | 1 | ncf.createDimension('time', None) |
|
342 | |||
343 | 1 | forbit = ncf.createVariable('orbit', np.dtype('int64').char, ('time',)) |
|
344 | 1 | ftime = ncf.createVariable('time', np.dtype('int64').char, ('time',)) |
|
345 | |||
346 | 1 | falts_min = ncf.createVariable('alt_min', np.dtype('float64').char, ('altitude',)) |
|
347 | 1 | falts = ncf.createVariable('altitude', np.dtype('float64').char, ('altitude',)) |
|
348 | 1 | falts_max = ncf.createVariable('alt_max', np.dtype('float64').char, ('altitude',)) |
|
349 | 1 | flats_min = ncf.createVariable('lat_min', np.dtype('float64').char, ('latitude',)) |
|
350 | 1 | flats = ncf.createVariable('latitude', np.dtype('float64').char, ('latitude',)) |
|
351 | 1 | flats_max = ncf.createVariable('lat_max', np.dtype('float64').char, ('latitude',)) |
|
352 | |||
353 | 1 | falts_min.units = 'km' |
|
354 | 1 | falts_min.positive = 'up' |
|
355 | 1 | falts.units = 'km' |
|
356 | 1 | falts.positive = 'up' |
|
357 | 1 | falts_max.units = 'km' |
|
358 | 1 | falts_max.positive = 'up' |
|
359 | 1 | flats_min.units = 'degrees_north' |
|
360 | 1 | flats.units = 'degrees_north' |
|
361 | 1 | flats_max.units = 'degrees_north' |
|
362 | |||
363 | 1 | forbit.units = '1' |
|
364 | 1 | forbit.long_name = 'SCIAMACHY/Envisat orbit number' |
|
365 | 1 | ftime.units = 'days since {0}'.format(self.date0.isoformat(sep=' ')) |
|
366 | 1 | ftime.standard_name = 'time' |
|
367 | |||
368 | 1 | fdens = ncf.createVariable('density', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
369 | 1 | fdens.units = 'cm^{-3}' |
|
370 | 1 | fdens.standard_name = 'number_concentration_of_nitrogen_monoxide_molecules_in_air' |
|
371 | 1 | fdens_err_meas = ncf.createVariable('error_meas', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
372 | 1 | fdens_err_meas.units = 'cm^{-3}' |
|
373 | 1 | fdens_err_meas.long_name = 'NO number density measurement error' |
|
374 | 1 | fdens_err_tot = ncf.createVariable('error_tot', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
375 | 1 | fdens_err_tot.units = 'cm^{-3}' |
|
376 | 1 | fdens_err_tot.long_name = 'NO number density total error' |
|
377 | 1 | fdens_tot = ncf.createVariable('density_air', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
378 | 1 | fdens_tot.units = 'cm^{-3}' |
|
379 | 1 | fdens_tot.long_name = 'approximate overall number concentration of air molecules (NRLMSIS-00)' |
|
380 | |||
381 | 1 | ftime[:] = self.date |
|
382 | 1 | forbit[:] = self.orbit |
|
383 | |||
384 | 1 | falts_min[:] = alts_min_out |
|
385 | 1 | falts[:] = alts_out |
|
386 | 1 | falts_max[:] = alts_max_out |
|
387 | 1 | flats_min[:] = lats_min_out |
|
388 | 1 | flats[:] = lats_out |
|
389 | 1 | flats_max[:] = lats_max_out |
|
390 | # reorder by latitude first, then altitude |
||
391 | 1 | fdens[0, :] = self.densities |
|
392 | # reorder by latitude first, then altitude |
||
393 | 1 | fdens_err_meas[0, :] = self.dens_err_meas |
|
394 | 1 | fdens_err_tot[0, :] = self.dens_err_tot |
|
395 | 1 | fdens_tot[0, :] = self.dens_tot |
|
396 | |||
397 | # longitudes if they are available |
||
398 | 1 | if self.nlon > 0: |
|
399 | 1 | lons_out = np.asarray(self.lons).reshape(self.nlon) |
|
400 | 1 | flons = ncf.createVariable('longitude', np.dtype('float64').char, ('time', 'latitude',)) |
|
401 | 1 | flons.units = 'degrees_east' |
|
402 | 1 | flons[0, :] = lons_out |
|
403 | |||
404 | 1 | if self.apriori is not None: |
|
405 | 1 | fapriori = ncf.createVariable('apriori', |
|
406 | np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
||
407 | 1 | fapriori.units = 'cm^{-3}' |
|
408 | 1 | fapriori.long_name = 'apriori NO number density' |
|
409 | 1 | fapriori[0, :] = self.apriori |
|
410 | |||
411 | 1 | if self.akdiag is not None: |
|
412 | 1 | fakdiag = ncf.createVariable('akm_diagonal', |
|
413 | np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
||
414 | 1 | fakdiag.units = '1' |
|
415 | 1 | fakdiag.long_name = 'averaging kernel matrix diagonal element' |
|
416 | 1 | fakdiag[0, :] = self.akdiag |
|
417 | 1 | if close: |
|
418 | 1 | ncf.close() |
|
419 | else: |
||
420 | 1 | return ncf |
|
421 | |||
422 | 1 | def read_from_netcdf(self, filename, close=True): |
|
423 | """Read NO densities from netcdf files |
||
424 | |||
425 | This function has no stream, i.e. file object support. |
||
426 | |||
427 | Parameters |
||
428 | ---------- |
||
429 | filename: str |
||
430 | The filename to read the data from. |
||
431 | close: bool, optional |
||
432 | Whether or not to close the file after reading. |
||
433 | Setting to `False` enables reading further data |
||
434 | from the same file. |
||
435 | Default: True |
||
436 | |||
437 | Returns |
||
438 | ------- |
||
439 | Nothing if `close` is True. If `close` is False, returns either an |
||
440 | `netCDF4.Dataset`, |
||
441 | `scipy.io.netcdf.netcdf_file` or |
||
442 | `pupynere.netcdf_file` instance depending on availability. |
||
443 | """ |
||
444 | 1 | ncf = netcdf_file(filename, 'r') |
|
445 | |||
446 | 1 | try: |
|
447 | 1 | self.author = ncf.author |
|
448 | except AttributeError: |
||
449 | pass |
||
450 | 1 | try: |
|
451 | 1 | self.version = ncf.version |
|
452 | 1 | except AttributeError: |
|
453 | 1 | pass |
|
454 | 1 | try: |
|
455 | 1 | self.data_version = ncf.L2_data_version |
|
456 | except AttributeError: |
||
457 | pass |
||
458 | |||
459 | 1 | self.nalt = len(ncf.dimensions['altitude']) |
|
460 | 1 | self.nlat = len(ncf.dimensions['latitude']) |
|
461 | |||
462 | 1 | self.alts_min = ncf.variables['alt_min'][:] |
|
463 | 1 | self.alts = ncf.variables['altitude'][:] |
|
464 | 1 | self.alts_max = ncf.variables['alt_max'][:] |
|
465 | 1 | self.lats_min = ncf.variables['lat_min'][:] |
|
466 | 1 | self.lats = ncf.variables['latitude'][:] |
|
467 | 1 | self.lats_max = ncf.variables['lat_max'][:] |
|
468 | |||
469 | 1 | self.date = ncf.variables['time'][:] |
|
470 | 1 | self.orbit = ncf.variables['orbit'][:] |
|
471 | |||
472 | 1 | self.densities = ncf.variables['density'][:] |
|
473 | 1 | self.dens_err_meas = ncf.variables['error_meas'][:] |
|
474 | 1 | self.dens_err_tot = ncf.variables['error_tot'][:] |
|
475 | 1 | self.dens_tot = ncf.variables['density_air'][:] |
|
476 | |||
477 | # longitudes if they are available |
||
478 | 1 | try: |
|
479 | 1 | self.lons = ncf.variables['longitude'][:] |
|
480 | 1 | self.nlon = self.lons.shape[1] |
|
481 | except: |
||
482 | pass |
||
483 | |||
484 | # apriori |
||
485 | 1 | try: |
|
486 | 1 | self.apriori = ncf.variables['apriori'][:] |
|
487 | except: |
||
488 | pass |
||
489 | |||
490 | # akm diagonal elements |
||
491 | 1 | try: |
|
492 | 1 | self.akdiag = ncf.variables['akm_diagonal'][:] |
|
493 | except: |
||
494 | pass |
||
495 | |||
496 | 1 | if close: |
|
497 | 1 | ncf.close() |
|
498 | else: |
||
499 | return ncf |
||
500 | |||
501 | 1 | def read_from_file(self, filename): |
|
502 | """Wrapper to read NO desnities from files |
||
503 | |||
504 | Simple wrapper to delegate reading the data from either netcdf |
||
505 | or ascii files. Poor man's logic: simply try netcdf first, and |
||
506 | if that fails, read as ascii. |
||
507 | |||
508 | Parameters |
||
509 | ---------- |
||
510 | filename: str |
||
511 | The filename to read the data from. |
||
512 | """ |
||
513 | 1 | try: |
|
514 | # try netcdf first |
||
515 | 1 | self.read_from_netcdf(filename) |
|
516 | 1 | except: |
|
517 | # fall back to text file as a last resort |
||
518 | 1 | self.read_from_textfile(filename) |
|
519 | |||
520 | |||
521 | 1 | View Code Duplication | def main(*args): |
522 | argc = len(sys.argv) |
||
523 | if argc < 2: |
||
524 | print("Not enough arguments, Usage:\n" |
||
525 | "{0} [input] output [< input]".format(sys.argv[0])) |
||
526 | sys.exit(1) |
||
527 | elif argc < 3: |
||
528 | try: |
||
529 | infile = sys.stdin.buffer # Python 3 |
||
530 | except AttributeError: |
||
531 | infile = sys.stdin |
||
532 | outfile = sys.argv[1] |
||
533 | else: |
||
534 | infile = sys.argv[1] |
||
535 | outfile = sys.argv[2] |
||
536 | sdl = scia_densities() |
||
537 | sdl.read_from_file(infile) |
||
538 | sdl.write_to_netcdf(outfile) |
||
539 | |||
540 | |||
541 | 1 | if __name__ == "__main__": |
|
542 | sys.exit(main()) |
||
543 |