1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2018-2022 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This module is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
8
|
|
|
# it under the terms of the GNU General Public License as published |
9
|
|
|
# by the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
|
|
"""SCIAMACHY regression module tests |
12
|
|
|
""" |
13
|
|
|
import numpy as np |
14
|
|
|
|
15
|
|
|
import pytest |
16
|
|
|
|
17
|
|
|
try: |
18
|
|
|
import pymc3 as pm |
19
|
|
|
import arviz as az |
20
|
|
|
except ImportError: |
21
|
|
|
pytest.skip("Theano/PyMC3 packages not installed", allow_module_level=True) |
22
|
|
|
|
23
|
|
|
try: |
24
|
|
|
from sciapy.regress.models_theano import ( |
25
|
|
|
HarmonicModelCosineSine, |
26
|
|
|
HarmonicModelAmpPhase, |
27
|
|
|
LifetimeModel, |
28
|
|
|
ProxyModel, |
29
|
|
|
) |
30
|
|
|
except ImportError: |
31
|
|
|
pytest.skip("Theano/PyMC3 interface not installed", allow_module_level=True) |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
@pytest.fixture(scope="module") |
35
|
|
|
def xs(): |
36
|
|
|
_xs = np.linspace(0., 11.1, 2048) |
37
|
|
|
return np.ascontiguousarray(_xs, dtype=np.float64) |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def ys(xs, c, s): |
41
|
|
|
_ys = c * np.cos(2 * np.pi * xs) + s * np.sin(2 * np.pi * xs) |
42
|
|
|
return np.ascontiguousarray(_ys, dtype=np.float64) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
@pytest.mark.parametrize( |
46
|
|
|
"c, s", |
47
|
|
|
[ |
48
|
|
|
(0.5, 2.0), |
49
|
|
|
(1.0, 0.5), |
50
|
|
|
(1.0, 1.0), |
51
|
|
|
] |
52
|
|
|
) |
53
|
|
|
def test_harmonics_theano(xs, c, s): |
54
|
|
|
# Initialize random number generator |
55
|
|
|
np.random.seed(93457) |
56
|
|
|
yp = ys(xs, c, s) |
57
|
|
|
yp += 0.5 * np.random.randn(xs.shape[0]) |
58
|
|
|
|
59
|
|
|
with pm.Model() as model1: |
60
|
|
|
cos = pm.Normal("cos", mu=0.0, sd=4.0) |
61
|
|
|
sin = pm.Normal("sin", mu=0.0, sd=4.0) |
62
|
|
|
harm1 = HarmonicModelCosineSine(1., cos, sin) |
63
|
|
|
wave1 = harm1.get_value(xs) |
64
|
|
|
# add amplitude and phase for comparison |
65
|
|
|
pm.Deterministic("amp", harm1.get_amplitude()) |
66
|
|
|
pm.Deterministic("phase", harm1.get_phase()) |
67
|
|
|
resid1 = yp - wave1 |
68
|
|
|
pm.Normal("obs", mu=0.0, observed=resid1) |
69
|
|
|
trace1 = pm.sample(tune=800, draws=800, chains=2, return_inferencedata=True) |
70
|
|
|
|
71
|
|
|
with pm.Model() as model2: |
72
|
|
|
amp2 = pm.HalfNormal("amp", sigma=4.0) |
73
|
|
|
phase2 = pm.Normal("phase", mu=0.0, sd=4.0) |
74
|
|
|
harm2 = HarmonicModelAmpPhase(1., amp2, phase2) |
75
|
|
|
wave2 = harm2.get_value(xs) |
76
|
|
|
resid2 = yp - wave2 |
77
|
|
|
pm.Normal("obs", mu=0.0, observed=resid2) |
78
|
|
|
trace2 = pm.sample(tune=800, draws=800, chains=2, return_inferencedata=True) |
79
|
|
|
|
80
|
|
|
np.testing.assert_allclose( |
81
|
|
|
trace1.posterior.median(dim=("chain", "draw"))[["cos", "sin"]].to_array(), |
82
|
|
|
(c, s), |
83
|
|
|
atol=1e-2, |
84
|
|
|
) |
85
|
|
|
np.testing.assert_allclose( |
86
|
|
|
trace1.posterior.median(dim=("chain", "draw"))[["amp", "phase"]].to_array(), |
87
|
|
|
trace2.posterior.median(dim=("chain", "draw"))[["amp", "phase"]].to_array(), |
88
|
|
|
atol=3e-3, |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
def _test_data(xs, c, s): |
93
|
|
|
# generate proxy "values" |
94
|
|
|
values = ys(xs, c, s) |
95
|
|
|
amp = 3. |
96
|
|
|
lag = 2. |
97
|
|
|
tau0 = 1. |
98
|
|
|
harm0 = HarmonicModelCosineSine(1., c, s) |
99
|
|
|
tau_lt0 = LifetimeModel(harm0, lower=0.) |
100
|
|
|
proxy0 = ProxyModel( |
101
|
|
|
xs, values, |
102
|
|
|
amp=amp, |
103
|
|
|
lag=lag, |
104
|
|
|
tau0=tau0, |
105
|
|
|
tau_harm=tau_lt0, |
106
|
|
|
tau_scan=10, |
107
|
|
|
) |
108
|
|
|
return proxy0.get_value(xs).eval() |
109
|
|
|
|
110
|
|
|
|
111
|
|
|
@pytest.mark.long |
112
|
|
|
def test_proxy_theano(xs, c=3.0, s=1.0): |
113
|
|
|
# Initialize random number generator |
114
|
|
|
np.random.seed(93457) |
115
|
|
|
|
116
|
|
|
# proxy "values" |
117
|
|
|
values = ys(xs, c, s) |
118
|
|
|
|
119
|
|
|
yp = _test_data(xs, c, s) |
120
|
|
|
yp += 0.5 * np.random.randn(xs.shape[0]) |
121
|
|
|
|
122
|
|
|
# using "name" prefixes all variables with <name>_ |
123
|
|
|
with pm.Model(name="proxy") as model: |
124
|
|
|
# amplitude |
125
|
|
|
plamp = pm.Normal("log_amp", mu=0.0, sd=np.log(10.0)) |
126
|
|
|
pamp = pm.Deterministic("amp", pm.math.exp(plamp)) |
127
|
|
|
# lag |
128
|
|
|
pllag = pm.Normal("log_lag", mu=0.0, sd=np.log(10.0)) |
129
|
|
|
plag = pm.Deterministic("lag", pm.math.exp(pllag)) |
130
|
|
|
# lifetime |
131
|
|
|
pltau0 = pm.Normal("log_tau0", mu=0.0, sd=np.log(10.0)) |
132
|
|
|
ptau0 = pm.Deterministic("tau0", pm.math.exp(pltau0)) |
133
|
|
|
cos1 = pm.Normal("tau_cos1", mu=0.0, sd=10.0) |
134
|
|
|
sin1 = pm.Normal("tau_sin1", mu=0.0, sd=10.0) |
135
|
|
|
harm1 = HarmonicModelCosineSine(1., cos1, sin1) |
136
|
|
|
tau1 = LifetimeModel(harm1, lower=0) |
137
|
|
|
|
138
|
|
|
proxy = ProxyModel( |
139
|
|
|
xs, values, |
140
|
|
|
amp=pamp, |
141
|
|
|
lag=plag, |
142
|
|
|
tau0=ptau0, |
143
|
|
|
tau_harm=tau1, |
144
|
|
|
tau_scan=10, |
145
|
|
|
) |
146
|
|
|
prox1 = proxy.get_value(xs) |
147
|
|
|
# Include "jitter" |
148
|
|
|
log_jitter = pm.Normal("log_jitter", mu=0.0, sd=4.0) |
149
|
|
|
pm.Normal("obs", mu=prox1, sd=pm.math.exp(log_jitter), observed=yp) |
150
|
|
|
|
151
|
|
|
maxlp0 = pm.find_MAP() |
152
|
|
|
trace = pm.sample( |
153
|
|
|
chains=2, |
154
|
|
|
draws=1000, |
155
|
|
|
tune=1000, |
156
|
|
|
init="jitter+adapt_full", |
157
|
|
|
random_seed=[286923464, 464329682], |
158
|
|
|
return_inferencedata=True, |
159
|
|
|
start=maxlp0, |
160
|
|
|
target_accept=0.9, |
161
|
|
|
) |
162
|
|
|
|
163
|
|
|
medians = trace.posterior.median(dim=("chain", "draw")) |
164
|
|
|
np.testing.assert_allclose( |
165
|
|
|
medians[[ |
166
|
|
|
"proxy_amp", "proxy_lag", "proxy_tau0", |
167
|
|
|
"proxy_tau_cos1", "proxy_tau_sin1", |
168
|
|
|
"proxy_log_jitter", |
169
|
|
|
]].to_array(), |
170
|
|
|
(3., 2., 1., c, s, np.log(0.5)), |
171
|
|
|
atol=3e-2, rtol=1e-2, |
172
|
|
|
) |
173
|
|
|
|