| Conditions | 54 |
| Total Lines | 387 |
| Code Lines | 300 |
| Lines | 387 |
| Ratio | 100 % |
| Tests | 3 |
| CRAP Score | 2852.6378 |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like sciapy.regress.__main__.main() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 145 | 1 | View Code Duplication | def main(): |
| 146 | 1 | logging.basicConfig(level=logging.WARNING, |
|
| 147 | format="[%(levelname)-8s] (%(asctime)s) " |
||
| 148 | "%(filename)s:%(lineno)d %(message)s", |
||
| 149 | datefmt="%Y-%m-%d %H:%M:%S %z") |
||
| 150 | |||
| 151 | 1 | args = parser.parse_args() |
|
| 152 | |||
| 153 | logging.info("command line arguments: %s", args) |
||
| 154 | if args.quiet: |
||
| 155 | logging.getLogger().setLevel(logging.ERROR) |
||
| 156 | elif args.verbose: |
||
| 157 | logging.getLogger().setLevel(logging.INFO) |
||
| 158 | else: |
||
| 159 | logging.getLogger().setLevel(args.loglevel) |
||
| 160 | |||
| 161 | from numpy.distutils.system_info import get_info |
||
| 162 | for oblas_path in get_info("openblas")["library_dirs"]: |
||
| 163 | oblas_name = "{0}/libopenblas.so".format(oblas_path) |
||
| 164 | logging.info("Trying %s", oblas_name) |
||
| 165 | try: |
||
| 166 | oblas_lib = ctypes.cdll.LoadLibrary(oblas_name) |
||
| 167 | oblas_cores = oblas_lib.openblas_get_num_threads() |
||
| 168 | oblas_lib.openblas_set_num_threads(args.openblas_threads) |
||
| 169 | logging.info("Using %s/%s Openblas thread(s).", |
||
| 170 | oblas_lib.openblas_get_num_threads(), oblas_cores) |
||
| 171 | except: |
||
| 172 | logging.info("Setting number of openblas threads failed.") |
||
| 173 | |||
| 174 | if args.random_seed is not None: |
||
| 175 | np.random.seed(args.random_seed) |
||
| 176 | |||
| 177 | if args.proxies: |
||
| 178 | proxies = args.proxies.split(',') |
||
| 179 | proxy_dict = dict(_p.split(':') for _p in proxies) |
||
| 180 | else: |
||
| 181 | proxy_dict = {} |
||
| 182 | lag_dict = {pn: 0 for pn in proxy_dict.keys()} |
||
| 183 | |||
| 184 | # Post-processing of arguments... |
||
| 185 | # List of proxy lag fits from csv |
||
| 186 | fit_lags = args.fit_lags.split(',') |
||
| 187 | # List of proxy lifetime fits from csv |
||
| 188 | fit_lifetimes = args.fit_lifetimes.split(',') |
||
| 189 | fit_annlifetimes = args.fit_annlifetimes.split(',') |
||
| 190 | # List of proxy lag times from csv |
||
| 191 | lag_dict.update(dict(_ls.split(':') for _ls in args.lag_times.split(','))) |
||
| 192 | # List of cycles (frequencies in 1/year) from argument list (csv) |
||
| 193 | try: |
||
| 194 | freqs = list(map(float, args.freqs.split(','))) |
||
| 195 | except ValueError: |
||
| 196 | freqs = [] |
||
| 197 | # List of initial parameter values |
||
| 198 | initial = None |
||
| 199 | if args.initial is not None: |
||
| 200 | try: |
||
| 201 | initial = list(map(float, args.initial.split(','))) |
||
| 202 | except ValueError: |
||
| 203 | pass |
||
| 204 | # List of GP kernels from argument list (csv) |
||
| 205 | kernls = args.kernels.split(',') |
||
| 206 | |||
| 207 | lat = args.latitude |
||
| 208 | alt = args.altitude |
||
| 209 | logging.info("location: %.0f°N %.0f km", lat, alt) |
||
| 210 | |||
| 211 | no_ys, no_dens, no_errs, no_szas = load_scia_dzm(args.file, alt, lat, |
||
| 212 | tfmt=args.time_format, |
||
| 213 | scale=args.scale, |
||
| 214 | #subsample_factor=args.random_subsample, |
||
| 215 | #subsample_method="random", |
||
| 216 | akd_threshold=args.akd_threshold, |
||
| 217 | cnt_threshold=args.cnt_threshold, |
||
| 218 | center=args.center_data, |
||
| 219 | season=args.season, |
||
| 220 | SPEs=args.exclude_spe) |
||
| 221 | |||
| 222 | (no_ys_train, no_dens_train, no_errs_train, |
||
| 223 | no_ys_test, no_dens_test, no_errs_test) = _train_test_split( |
||
| 224 | no_ys, no_dens, no_errs, args.train_fraction, |
||
| 225 | args.test_fraction, args.random_train_test) |
||
| 226 | |||
| 227 | sza_intp = interp1d(no_ys, no_szas, bounds_error=False) |
||
| 228 | |||
| 229 | max_amp = 1e10 * args.scale |
||
| 230 | max_days = 100 |
||
| 231 | |||
| 232 | proxy_config = {} |
||
| 233 | for pn, pf in proxy_dict.items(): |
||
| 234 | pt, pp = load_solar_gm_table(pf, cols=[0, 1], names=["time", pn], tfmt=args.time_format) |
||
| 235 | # use log of proxy values |
||
| 236 | pv = np.log(pp[pn]) if pn in args.log_proxies.split(',') else pp[pn] |
||
| 237 | # normalize to sun--earth distance squared |
||
| 238 | if pn in args.norm_proxies_distSEsq.split(','): |
||
| 239 | rad_sun_earth = np.vectorize(_r_sun_earth)(pt, tfmt=args.time_format) |
||
| 240 | pv /= rad_sun_earth**2 |
||
| 241 | # normalize by cos(SZA) |
||
| 242 | if pn in args.norm_proxies_SZA.split(',') and sza_intp is not None: |
||
| 243 | pv *= np.cos(np.radians(sza_intp(pt))) |
||
| 244 | proxy_config.update({pn: |
||
| 245 | dict(times=pt, values=pv, |
||
| 246 | center=pn in args.center_proxies.split(','), |
||
| 247 | positive=pn in args.positive_proxies.split(','), |
||
| 248 | lag=float(lag_dict[pn]), |
||
| 249 | max_amp=max_amp, max_days=max_days, |
||
| 250 | sza_intp=sza_intp if args.use_sza else None, |
||
| 251 | )} |
||
| 252 | ) |
||
| 253 | |||
| 254 | model = trace_gas_model(constant=args.fit_offset, |
||
| 255 | proxy_config=proxy_config, **vars(args)) |
||
| 256 | |||
| 257 | logging.debug("model dict: %s", model.get_parameter_dict()) |
||
| 258 | model.freeze_all_parameters() |
||
| 259 | # thaw parameters according to requested fits |
||
| 260 | for pn in proxy_dict.keys(): |
||
| 261 | model.thaw_parameter("{0}:amp".format(pn)) |
||
| 262 | if pn in fit_lags: |
||
| 263 | model.thaw_parameter("{0}:lag".format(pn)) |
||
| 264 | if pn in fit_lifetimes: |
||
| 265 | model.set_parameter("{0}:tau0".format(pn), 1e-3) |
||
| 266 | model.thaw_parameter("{0}:tau0".format(pn)) |
||
| 267 | if pn in fit_annlifetimes: |
||
| 268 | model.thaw_parameter("{0}:taucos1".format(pn)) |
||
| 269 | model.thaw_parameter("{0}:tausin1".format(pn)) |
||
| 270 | for freq in freqs: |
||
| 271 | if not args.fit_phase: |
||
| 272 | model.thaw_parameter("f{0:.0f}:cos".format(freq)) |
||
| 273 | model.thaw_parameter("f{0:.0f}:sin".format(freq)) |
||
| 274 | else: |
||
| 275 | model.thaw_parameter("f{0:.0f}:amp".format(freq)) |
||
| 276 | model.thaw_parameter("f{0:.0f}:phase".format(freq)) |
||
| 277 | if args.fit_offset: |
||
| 278 | #model.set_parameter("offset:value", -100.) |
||
| 279 | #model.set_parameter("offset:value", 0) |
||
| 280 | model.thaw_parameter("offset:value") |
||
| 281 | |||
| 282 | if initial is not None: |
||
| 283 | model.set_parameter_vector(initial) |
||
| 284 | # model.thaw_parameter("GM:ltscan") |
||
| 285 | logging.debug("params: %s", model.get_parameter_dict()) |
||
| 286 | logging.debug("param names: %s", model.get_parameter_names()) |
||
| 287 | logging.debug("param vector: %s", model.get_parameter_vector()) |
||
| 288 | logging.debug("param bounds: %s", model.get_parameter_bounds()) |
||
| 289 | #logging.debug("model value: %s", model.get_value(no_ys)) |
||
| 290 | #logging.debug("default log likelihood: %s", model.log_likelihood(model.vector)) |
||
| 291 | |||
| 292 | # setup the Gaussian Process kernel |
||
| 293 | kernel_base = (1e7 * args.scale)**2 |
||
| 294 | ksub = args.name_suffix |
||
| 295 | |||
| 296 | solver = "basic" |
||
| 297 | skwargs = {} |
||
| 298 | if args.HODLR_Solver: |
||
| 299 | solver = "HODLR" |
||
| 300 | #skwargs = {"tol": 1e-3} |
||
| 301 | |||
| 302 | if args.george: |
||
| 303 | gpname, kernel = setup_george_kernel(kernls, |
||
| 304 | kernel_base=kernel_base, fit_bias=args.fit_bias) |
||
| 305 | gpmodel = george.GP(kernel, mean=model, |
||
| 306 | white_noise=1.e-25, fit_white_noise=args.fit_white, |
||
| 307 | solver=george_solvers[solver], **skwargs) |
||
| 308 | # the george interface does not allow setting the bounds in |
||
| 309 | # the kernel initialization so we prepare simple default bounds |
||
| 310 | kernel_bounds = [(-0.3 * max_amp, 0.3 * max_amp) |
||
| 311 | for _ in gpmodel.kernel.get_parameter_names()] |
||
| 312 | bounds = gpmodel.mean.get_parameter_bounds() + kernel_bounds |
||
| 313 | else: |
||
| 314 | gpname, cel_terms = setup_celerite_terms(kernls, |
||
| 315 | fit_bias=args.fit_bias, fit_white=args.fit_white) |
||
| 316 | gpmodel = celerite.GP(cel_terms, mean=model, |
||
| 317 | fit_white_noise=args.fit_white, |
||
| 318 | fit_mean=True) |
||
| 319 | bounds = gpmodel.get_parameter_bounds() |
||
| 320 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 321 | logging.debug("gpmodel params: %s", gpmodel.get_parameter_dict()) |
||
| 322 | logging.debug("gpmodel bounds: %s", bounds) |
||
| 323 | logging.debug("initial log likelihood: %s", gpmodel.log_likelihood(no_dens_train)) |
||
| 324 | if isinstance(gpmodel, celerite.GP): |
||
| 325 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
||
| 326 | model_name = "_".join(gpmodel.mean.get_parameter_names()).replace(':', '') |
||
| 327 | gpmodel_name = model_name + gpname |
||
| 328 | logging.info("GP model name: %s", gpmodel_name) |
||
| 329 | |||
| 330 | pre_opt = False |
||
| 331 | if args.optimize > 0: |
||
| 332 | def gpmodel_mean(x, *p): |
||
| 333 | gpmodel.set_parameter_vector(p) |
||
| 334 | return gpmodel.mean.get_value(x) |
||
| 335 | |||
| 336 | def gpmodel_res(x, *p): |
||
| 337 | gpmodel.set_parameter_vector(p) |
||
| 338 | return (gpmodel.mean.get_value(x) - no_dens_train) / no_errs_train |
||
| 339 | |||
| 340 | def lpost(p, y, gp): |
||
| 341 | gp.set_parameter_vector(p) |
||
| 342 | return gp.log_likelihood(y, quiet=True) + gp.log_prior() |
||
| 343 | |||
| 344 | def nlpost(p, y, gp): |
||
| 345 | lp = lpost(p, y, gp) |
||
| 346 | return -lp if np.isfinite(lp) else 1e25 |
||
| 347 | |||
| 348 | def grad_nlpost(p, y, gp): |
||
| 349 | gp.set_parameter_vector(p) |
||
| 350 | grad_ll = gp.grad_log_likelihood(y) |
||
| 351 | if isinstance(grad_ll, tuple): |
||
| 352 | # celerite |
||
| 353 | return -grad_ll[1] |
||
| 354 | # george |
||
| 355 | return -grad_ll |
||
| 356 | |||
| 357 | if args.optimize == 1: |
||
| 358 | resop_gp = op.minimize( |
||
| 359 | nlpost, |
||
| 360 | gpmodel.get_parameter_vector(), |
||
| 361 | args=(no_dens_train, gpmodel), |
||
| 362 | bounds=bounds, |
||
| 363 | # method="l-bfgs-b", options=dict(disp=True, maxcor=100, eps=1e-9, ftol=2e-15, gtol=1e-8)) |
||
| 364 | method="l-bfgs-b", jac=grad_nlpost) |
||
| 365 | # method="tnc", options=dict(disp=True, maxiter=500, xtol=1e-12)) |
||
| 366 | # method="nelder-mead", options=dict(disp=True, maxfev=100000, fatol=1.49012e-8, xatol=1.49012e-8)) |
||
| 367 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08)) |
||
| 368 | if args.optimize == 2: |
||
| 369 | resop_gp = op.differential_evolution( |
||
| 370 | nlpost, |
||
| 371 | bounds=bounds, |
||
| 372 | args=(no_dens_train, gpmodel), |
||
| 373 | popsize=2 * args.walkers, tol=0.01) |
||
| 374 | if args.optimize == 3: |
||
| 375 | resop_bh = op.basinhopping( |
||
| 376 | nlpost, |
||
| 377 | gpmodel.get_parameter_vector(), |
||
| 378 | niter=200, |
||
| 379 | minimizer_kwargs=dict( |
||
| 380 | args=(no_dens_train, gpmodel), |
||
| 381 | bounds=bounds, |
||
| 382 | # method="tnc")) |
||
| 383 | # method="l-bfgs-b", options=dict(maxcor=100))) |
||
| 384 | method="l-bfgs-b", jac=grad_nlpost)) |
||
| 385 | # method="Nelder-Mead")) |
||
| 386 | # method="BFGS")) |
||
| 387 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08))) |
||
| 388 | logging.debug("optimization result: %s", resop_bh) |
||
| 389 | resop_gp = resop_bh.lowest_optimization_result |
||
| 390 | if args.optimize == 4: |
||
| 391 | resop_gp, cov_gp = op.curve_fit( |
||
| 392 | gpmodel_mean, |
||
| 393 | no_ys_train, no_dens_train, gpmodel.get_parameter_vector(), |
||
| 394 | bounds=tuple(np.array(bounds).T), |
||
| 395 | # method='lm', |
||
| 396 | # absolute_sigma=True, |
||
| 397 | sigma=no_errs_train) |
||
| 398 | print(resop_gp, np.sqrt(np.diag(cov_gp))) |
||
| 399 | logging.info("%s", resop_gp.message) |
||
| 400 | logging.debug("optimization result: %s", resop_gp) |
||
| 401 | logging.info("gpmodel dict: %s", gpmodel.get_parameter_dict()) |
||
| 402 | logging.info("log posterior trained: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
||
| 403 | gpmodel.compute(no_ys_test, no_errs_test) |
||
| 404 | logging.info("log posterior test: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
||
| 405 | gpmodel.compute(no_ys, no_errs) |
||
| 406 | logging.info("log posterior all: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
||
| 407 | # cross check to make sure that the gpmodel parameter vector is really |
||
| 408 | # set to the fitted parameters |
||
| 409 | logging.info("opt. model vector: %s", resop_gp.x) |
||
| 410 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 411 | logging.debug("opt. log posterior trained 1: %s", lpost(resop_gp.x, no_dens_train, gpmodel)) |
||
| 412 | gpmodel.compute(no_ys_test, no_errs_test) |
||
| 413 | logging.debug("opt. log posterior test 1: %s", lpost(resop_gp.x, no_dens_test, gpmodel)) |
||
| 414 | gpmodel.compute(no_ys, no_errs) |
||
| 415 | logging.debug("opt. log posterior all 1: %s", lpost(resop_gp.x, no_dens, gpmodel)) |
||
| 416 | logging.debug("opt. model vector: %s", gpmodel.get_parameter_vector()) |
||
| 417 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 418 | logging.debug("opt. log posterior trained 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
||
| 419 | gpmodel.compute(no_ys_test, no_errs_test) |
||
| 420 | logging.debug("opt. log posterior test 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
||
| 421 | gpmodel.compute(no_ys, no_errs) |
||
| 422 | logging.debug("opt. log posterior all 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
||
| 423 | pre_opt = resop_gp.success |
||
| 424 | try: |
||
| 425 | logging.info("GM lt: %s", gpmodel.get_parameter("mean:GM:tau0")) |
||
| 426 | except ValueError: |
||
| 427 | pass |
||
| 428 | logging.info("(GP) model: %s", gpmodel.kernel) |
||
| 429 | if isinstance(gpmodel, celerite.GP): |
||
| 430 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
||
| 431 | |||
| 432 | bestfit = gpmodel.get_parameter_vector() |
||
| 433 | filename_base = ("NO_regress_fit_{0}_{1:.0f}_{2:.0f}_{{0}}_{3}" |
||
| 434 | .format(gpmodel_name, lat * 10, alt, ksub)) |
||
| 435 | |||
| 436 | if args.mcmc: |
||
| 437 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 438 | samples, lnp = mcmc_sample_model(gpmodel, |
||
| 439 | no_dens_train, |
||
| 440 | beta=1.0, |
||
| 441 | nwalkers=args.walkers, nburnin=args.burn_in, |
||
| 442 | nprod=args.production, nthreads=args.threads, |
||
| 443 | show_progress=args.progress, |
||
| 444 | optimized=pre_opt, bounds=bounds, return_logpost=True) |
||
| 445 | |||
| 446 | if args.train_fraction < 1. or args.test_fraction < 1.: |
||
| 447 | logging.info("Statistics for the test samples") |
||
| 448 | mcmc_statistics(gpmodel, |
||
| 449 | no_ys_test, no_dens_test, no_errs_test, |
||
| 450 | no_ys_train, no_dens_train, no_errs_train, |
||
| 451 | samples, lnp, |
||
| 452 | ) |
||
| 453 | logging.info("Statistics for all samples") |
||
| 454 | mcmc_statistics(gpmodel, |
||
| 455 | no_ys, no_dens, no_errs, |
||
| 456 | no_ys_train, no_dens_train, no_errs_train, |
||
| 457 | samples, lnp, |
||
| 458 | ) |
||
| 459 | |||
| 460 | sampl_percs = np.percentile(samples, [2.5, 50, 97.5], axis=0) |
||
| 461 | if args.plot_corner: |
||
| 462 | import corner |
||
| 463 | # Corner plot of the sampled parameters |
||
| 464 | fig = corner.corner(samples, |
||
| 465 | quantiles=[0.025, 0.5, 0.975], |
||
| 466 | show_titles=True, |
||
| 467 | labels=gpmodel.get_parameter_names(), |
||
| 468 | truths=bestfit, |
||
| 469 | hist_args=dict(normed=True)) |
||
| 470 | fig.savefig(filename_base.format("corner") + ".pdf", transparent=True) |
||
| 471 | |||
| 472 | if args.save_samples: |
||
| 473 | if args.samples_format in ["npz"]: |
||
| 474 | # save the samples compressed to save space. |
||
| 475 | np.savez_compressed(filename_base.format("sampls") + ".npz", |
||
| 476 | samples=samples) |
||
| 477 | if args.samples_format in ["nc", "netcdf4"]: |
||
| 478 | save_samples_netcdf(filename_base.format("sampls") + ".nc", |
||
| 479 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
| 480 | if args.samples_format in ["h5", "hdf5"]: |
||
| 481 | save_samples_netcdf(filename_base.format("sampls") + ".h5", |
||
| 482 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
| 483 | # MCMC finished here |
||
| 484 | |||
| 485 | # set the model times and errors to use the full data set for plotting |
||
| 486 | gpmodel.compute(no_ys, no_errs) |
||
| 487 | if args.save_model: |
||
| 488 | try: |
||
| 489 | # python 2 |
||
| 490 | import cPickle as pickle |
||
| 491 | except ImportError: |
||
| 492 | # python 3 |
||
| 493 | import pickle |
||
| 494 | # pickle and save the model |
||
| 495 | with open(filename_base.format("model") + ".pkl", "wb") as f: |
||
| 496 | pickle.dump((gpmodel), f, -1) |
||
| 497 | |||
| 498 | if args.plot_samples and args.mcmc: |
||
| 499 | plot_random_samples(gpmodel, no_ys, no_dens, no_errs, |
||
| 500 | samples, args.scale, |
||
| 501 | filename_base.format("sampls") + ".pdf", |
||
| 502 | size=4, extra_years=[4, 2]) |
||
| 503 | |||
| 504 | if args.plot_median: |
||
| 505 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
||
| 506 | sampl_percs[1], |
||
| 507 | filename_base.format("median") + ".pdf") |
||
| 508 | if args.plot_residuals: |
||
| 509 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
||
| 510 | sampl_percs[1], args.scale, |
||
| 511 | filename_base.format("medres") + ".pdf") |
||
| 512 | if args.plot_maxlnp: |
||
| 513 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
||
| 514 | samples[np.argmax(lnp)], |
||
| 515 | filename_base.format("maxlnp") + ".pdf") |
||
| 516 | if args.plot_maxlnpres: |
||
| 517 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
||
| 518 | samples[np.argmax(lnp)], args.scale, |
||
| 519 | filename_base.format("mlpres") + ".pdf") |
||
| 520 | |||
| 521 | labels = gpmodel.get_parameter_names() |
||
| 522 | logging.info("param percentiles [2.5, 50, 97.5]:") |
||
| 523 | for pc, label in zip(sampl_percs.T, labels): |
||
| 524 | median = pc[1] |
||
| 525 | pc_minus = median - pc[0] |
||
| 526 | pc_plus = pc[2] - median |
||
| 527 | logging.debug("%s: %s", label, pc) |
||
| 528 | logging.info("%s: %.6f (- %.6f) (+ %.6f)", label, |
||
| 529 | median, pc_minus, pc_plus) |
||
| 530 | |||
| 531 | logging.info("Finished successfully.") |
||
| 532 | |||
| 536 |