Conditions | 52 |
Total Lines | 398 |
Code Lines | 310 |
Lines | 398 |
Ratio | 100 % |
Tests | 3 |
CRAP Score | 2647.1703 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like sciapy.regress.__main__.main() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
188 | 1 | View Code Duplication | def main(): |
189 | 1 | logging.basicConfig(level=logging.WARNING, |
|
190 | format="[%(levelname)-8s] (%(asctime)s) " |
||
191 | "%(filename)s:%(lineno)d %(message)s", |
||
192 | datefmt="%Y-%m-%d %H:%M:%S %z") |
||
193 | |||
194 | 1 | args = parser.parse_args() |
|
195 | |||
196 | logging.info("command line arguments: %s", args) |
||
197 | if args.quiet: |
||
198 | logging.getLogger().setLevel(logging.ERROR) |
||
199 | elif args.verbose: |
||
200 | logging.getLogger().setLevel(logging.INFO) |
||
201 | else: |
||
202 | logging.getLogger().setLevel(args.loglevel) |
||
203 | |||
204 | from numpy.distutils.system_info import get_info |
||
205 | for oblas_path in get_info("openblas")["library_dirs"]: |
||
206 | oblas_name = "{0}/libopenblas.so".format(oblas_path) |
||
207 | logging.info("Trying %s", oblas_name) |
||
208 | try: |
||
209 | oblas_lib = ctypes.cdll.LoadLibrary(oblas_name) |
||
210 | oblas_cores = oblas_lib.openblas_get_num_threads() |
||
211 | oblas_lib.openblas_set_num_threads(args.openblas_threads) |
||
212 | logging.info("Using %s/%s Openblas thread(s).", |
||
213 | oblas_lib.openblas_get_num_threads(), oblas_cores) |
||
214 | except: |
||
215 | logging.info("Setting number of openblas threads failed.") |
||
216 | |||
217 | if args.random_seed is not None: |
||
218 | np.random.seed(args.random_seed) |
||
219 | |||
220 | if args.proxies: |
||
221 | proxies = args.proxies.split(',') |
||
222 | proxy_dict = dict(_p.split(':') for _p in proxies) |
||
223 | else: |
||
224 | proxy_dict = {} |
||
225 | lag_dict = {pn: 0 for pn in proxy_dict.keys()} |
||
226 | |||
227 | # Post-processing of arguments... |
||
228 | # List of proxy lag fits from csv |
||
229 | fit_lags = args.fit_lags.split(',') |
||
230 | # List of proxy lifetime fits from csv |
||
231 | fit_lifetimes = args.fit_lifetimes.split(',') |
||
232 | fit_annlifetimes = args.fit_annlifetimes.split(',') |
||
233 | # List of proxy lag times from csv |
||
234 | lag_dict.update(dict(_ls.split(':') for _ls in args.lag_times.split(','))) |
||
235 | # List of cycles (frequencies in 1/year) from argument list (csv) |
||
236 | try: |
||
237 | freqs = list(map(float, args.freqs.split(','))) |
||
238 | except ValueError: |
||
239 | freqs = [] |
||
240 | # List of initial parameter values |
||
241 | initial = None |
||
242 | if args.initial is not None: |
||
243 | try: |
||
244 | initial = list(map(float, args.initial.split(','))) |
||
245 | except ValueError: |
||
246 | pass |
||
247 | # List of GP kernels from argument list (csv) |
||
248 | kernls = args.kernels.split(',') |
||
249 | |||
250 | lat = args.latitude |
||
251 | alt = args.altitude |
||
252 | logging.info("location: %.0f°N %.0f km", lat, alt) |
||
253 | |||
254 | no_ys, no_dens, no_errs, no_szas = load_scia_dzm(args.file, alt, lat, |
||
255 | tfmt=args.time_format, |
||
256 | scale=args.scale, |
||
257 | #subsample_factor=args.random_subsample, |
||
258 | #subsample_method="random", |
||
259 | akd_threshold=args.akd_threshold, |
||
260 | cnt_threshold=args.cnt_threshold, |
||
261 | center=args.center_data, |
||
262 | season=args.season, |
||
263 | SPEs=args.exclude_spe) |
||
264 | |||
265 | (no_ys_train, no_dens_train, no_errs_train, |
||
266 | no_ys_test, no_dens_test, no_errs_test) = _train_test_split( |
||
267 | no_ys, no_dens, no_errs, args.train_fraction, |
||
268 | args.test_fraction, args.random_train_test) |
||
269 | |||
270 | sza_intp = interp1d(no_ys, no_szas, fill_value="extrapolate") |
||
271 | |||
272 | max_amp = 1e10 * args.scale |
||
273 | max_days = 100 |
||
274 | |||
275 | harmonic_models = [] |
||
276 | for freq in freqs: |
||
277 | if not args.fit_phase: |
||
278 | harmonic_models.append(("f{0:.0f}".format(freq), |
||
279 | HarmonicModelCosineSine(freq=freq, |
||
280 | cos=0, sin=0, |
||
281 | bounds=dict([ |
||
282 | ("cos", [-max_amp, max_amp]), |
||
283 | ("sin", [-max_amp, max_amp])]) |
||
284 | ))) |
||
285 | else: |
||
286 | harmonic_models.append(("f{0:.0f}".format(freq), |
||
287 | HarmonicModelAmpPhase(freq=freq, |
||
288 | amp=0, phase=0, |
||
289 | bounds=dict([ |
||
290 | # ("amp", [-max_amp, max_amp]), |
||
291 | ("amp", [0, max_amp]), |
||
292 | ("phase", [-np.pi, np.pi])]) |
||
293 | ))) |
||
294 | proxy_models = [] |
||
295 | for pn, pf in proxy_dict.items(): |
||
296 | pt, pp = load_solar_gm_table(pf, cols=[0, 1], names=["time", pn], tfmt=args.time_format) |
||
297 | proxy_models.append( |
||
298 | _prepare_proxy_model(pn, pt, pp[pn], args, |
||
299 | lag=float(lag_dict[pn]), |
||
300 | sza_intp=sza_intp if args.use_sza else None, |
||
301 | max_amp=max_amp, max_days=max_days, |
||
302 | ) |
||
303 | ) |
||
304 | logging.info("%s mean: %s", pn, proxy_models[-1][1].mean) |
||
305 | offset_model = [("offset", |
||
306 | ConstantModel(value=0., |
||
307 | bounds={"value": [-max_amp, max_amp]}))] |
||
308 | |||
309 | model = NOModel(offset_model + harmonic_models + proxy_models) |
||
310 | |||
311 | logging.debug("model dict: %s", model.get_parameter_dict()) |
||
312 | model.freeze_all_parameters() |
||
313 | # thaw parameters according to requested fits |
||
314 | for pn in proxy_dict.keys(): |
||
315 | model.thaw_parameter("{0}:amp".format(pn)) |
||
316 | if pn in fit_lags: |
||
317 | model.thaw_parameter("{0}:lag".format(pn)) |
||
318 | if pn in fit_lifetimes: |
||
319 | model.set_parameter("{0}:tau0".format(pn), 1e-3) |
||
320 | model.thaw_parameter("{0}:tau0".format(pn)) |
||
321 | if pn in fit_annlifetimes: |
||
322 | model.thaw_parameter("{0}:taucos1".format(pn)) |
||
323 | model.thaw_parameter("{0}:tausin1".format(pn)) |
||
324 | for freq in freqs: |
||
325 | if not args.fit_phase: |
||
326 | model.thaw_parameter("f{0:.0f}:cos".format(freq)) |
||
327 | model.thaw_parameter("f{0:.0f}:sin".format(freq)) |
||
328 | else: |
||
329 | model.thaw_parameter("f{0:.0f}:amp".format(freq)) |
||
330 | model.thaw_parameter("f{0:.0f}:phase".format(freq)) |
||
331 | if args.fit_offset: |
||
332 | #model.set_parameter("offset:value", -100.) |
||
333 | #model.set_parameter("offset:value", 0) |
||
334 | model.thaw_parameter("offset:value") |
||
335 | |||
336 | if initial is not None: |
||
337 | model.set_parameter_vector(initial) |
||
338 | # model.thaw_parameter("GM:ltscan") |
||
339 | logging.debug("params: %s", model.get_parameter_dict()) |
||
340 | logging.debug("param names: %s", model.get_parameter_names()) |
||
341 | logging.debug("param vector: %s", model.get_parameter_vector()) |
||
342 | logging.debug("param bounds: %s", model.get_parameter_bounds()) |
||
343 | #logging.debug("model value: %s", model.get_value(no_ys)) |
||
344 | #logging.debug("default log likelihood: %s", model.log_likelihood(model.vector)) |
||
345 | |||
346 | # setup the Gaussian Process kernel |
||
347 | kernel_base = (1e7 * args.scale)**2 |
||
348 | ksub = args.name_suffix |
||
349 | |||
350 | solver = "basic" |
||
351 | skwargs = {} |
||
352 | if args.HODLR_Solver: |
||
353 | solver = "HODLR" |
||
354 | #skwargs = {"tol": 1e-3} |
||
355 | |||
356 | if args.george: |
||
357 | gpname, kernel = setup_george_kernel(kernls, |
||
358 | kernel_base=kernel_base, fit_bias=args.fit_bias) |
||
359 | gpmodel = george.GP(kernel, mean=model, |
||
360 | white_noise=1.e-25, fit_white_noise=args.fit_white, |
||
361 | solver=george_solvers[solver], **skwargs) |
||
362 | # the george interface does not allow setting the bounds in |
||
363 | # the kernel initialization so we prepare simple default bounds |
||
364 | kernel_bounds = [(-0.3 * max_amp, 0.3 * max_amp) |
||
365 | for _ in gpmodel.kernel.get_parameter_names()] |
||
366 | bounds = gpmodel.mean.get_parameter_bounds() + kernel_bounds |
||
367 | else: |
||
368 | gpname, cel_terms = setup_celerite_terms(kernls, |
||
369 | fit_bias=args.fit_bias, fit_white=args.fit_white) |
||
370 | gpmodel = celerite.GP(cel_terms, mean=model, |
||
371 | fit_white_noise=args.fit_white, |
||
372 | fit_mean=True) |
||
373 | bounds = gpmodel.get_parameter_bounds() |
||
374 | gpmodel.compute(no_ys_train, no_errs_train) |
||
375 | logging.debug("gpmodel params: %s", gpmodel.get_parameter_dict()) |
||
376 | logging.debug("gpmodel bounds: %s", bounds) |
||
377 | logging.debug("initial log likelihood: %s", gpmodel.log_likelihood(no_dens_train)) |
||
378 | if isinstance(gpmodel, celerite.GP): |
||
379 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
||
380 | model_name = "_".join(gpmodel.mean.get_parameter_names()).replace(':', '') |
||
381 | gpmodel_name = model_name + gpname |
||
382 | logging.info("GP model name: %s", gpmodel_name) |
||
383 | |||
384 | pre_opt = False |
||
385 | if args.optimize > 0: |
||
386 | def gpmodel_mean(x, *p): |
||
387 | gpmodel.set_parameter_vector(p) |
||
388 | return gpmodel.mean.get_value(x) |
||
389 | |||
390 | def gpmodel_res(x, *p): |
||
391 | gpmodel.set_parameter_vector(p) |
||
392 | return (gpmodel.mean.get_value(x) - no_dens_train) / no_errs_train |
||
393 | |||
394 | def lpost(p, y, gp): |
||
395 | gp.set_parameter_vector(p) |
||
396 | return gp.log_likelihood(y, quiet=True) + gp.log_prior() |
||
397 | |||
398 | def nlpost(p, y, gp): |
||
399 | lp = lpost(p, y, gp) |
||
400 | return -lp if np.isfinite(lp) else 1e25 |
||
401 | |||
402 | def grad_nlpost(p, y, gp): |
||
403 | gp.set_parameter_vector(p) |
||
404 | grad_ll = gp.grad_log_likelihood(y) |
||
405 | if isinstance(grad_ll, tuple): |
||
406 | # celerite |
||
407 | return -grad_ll[1] |
||
408 | # george |
||
409 | return -grad_ll |
||
410 | |||
411 | if args.optimize == 1: |
||
412 | resop_gp = op.minimize( |
||
413 | nlpost, |
||
414 | gpmodel.get_parameter_vector(), |
||
415 | args=(no_dens_train, gpmodel), |
||
416 | bounds=bounds, |
||
417 | # method="l-bfgs-b", options=dict(disp=True, maxcor=100, eps=1e-9, ftol=2e-15, gtol=1e-8)) |
||
418 | method="l-bfgs-b", jac=grad_nlpost) |
||
419 | # method="tnc", options=dict(disp=True, maxiter=500, xtol=1e-12)) |
||
420 | # method="nelder-mead", options=dict(disp=True, maxfev=100000, fatol=1.49012e-8, xatol=1.49012e-8)) |
||
421 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08)) |
||
422 | if args.optimize == 2: |
||
423 | resop_gp = op.differential_evolution( |
||
424 | nlpost, |
||
425 | bounds=bounds, |
||
426 | args=(no_dens_train, gpmodel), |
||
427 | popsize=2 * args.walkers, tol=0.01) |
||
428 | if args.optimize == 3: |
||
429 | resop_bh = op.basinhopping( |
||
430 | nlpost, |
||
431 | gpmodel.get_parameter_vector(), |
||
432 | niter=200, |
||
433 | minimizer_kwargs=dict( |
||
434 | args=(no_dens_train, gpmodel), |
||
435 | bounds=bounds, |
||
436 | # method="tnc")) |
||
437 | # method="l-bfgs-b", options=dict(maxcor=100))) |
||
438 | method="l-bfgs-b", jac=grad_nlpost)) |
||
439 | # method="Nelder-Mead")) |
||
440 | # method="BFGS")) |
||
441 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08))) |
||
442 | logging.debug("optimization result: %s", resop_bh) |
||
443 | resop_gp = resop_bh.lowest_optimization_result |
||
444 | if args.optimize == 4: |
||
445 | resop_gp, cov_gp = op.curve_fit( |
||
446 | gpmodel_mean, |
||
447 | no_ys_train, no_dens_train, gpmodel.get_parameter_vector(), |
||
448 | bounds=tuple(np.array(bounds).T), |
||
449 | # method='lm', |
||
450 | # absolute_sigma=True, |
||
451 | sigma=no_errs_train) |
||
452 | print(resop_gp, np.sqrt(np.diag(cov_gp))) |
||
453 | logging.info("%s", resop_gp.message) |
||
454 | logging.debug("optimization result: %s", resop_gp) |
||
455 | logging.info("gpmodel dict: %s", gpmodel.get_parameter_dict()) |
||
456 | logging.info("log posterior trained: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
||
457 | gpmodel.compute(no_ys_test, no_errs_test) |
||
458 | logging.info("log posterior test: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
||
459 | gpmodel.compute(no_ys, no_errs) |
||
460 | logging.info("log posterior all: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
||
461 | # cross check to make sure that the gpmodel parameter vector is really |
||
462 | # set to the fitted parameters |
||
463 | logging.info("opt. model vector: %s", resop_gp.x) |
||
464 | gpmodel.compute(no_ys_train, no_errs_train) |
||
465 | logging.debug("opt. log posterior trained 1: %s", lpost(resop_gp.x, no_dens_train, gpmodel)) |
||
466 | gpmodel.compute(no_ys_test, no_errs_test) |
||
467 | logging.debug("opt. log posterior test 1: %s", lpost(resop_gp.x, no_dens_test, gpmodel)) |
||
468 | gpmodel.compute(no_ys, no_errs) |
||
469 | logging.debug("opt. log posterior all 1: %s", lpost(resop_gp.x, no_dens, gpmodel)) |
||
470 | logging.debug("opt. model vector: %s", gpmodel.get_parameter_vector()) |
||
471 | gpmodel.compute(no_ys_train, no_errs_train) |
||
472 | logging.debug("opt. log posterior trained 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
||
473 | gpmodel.compute(no_ys_test, no_errs_test) |
||
474 | logging.debug("opt. log posterior test 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
||
475 | gpmodel.compute(no_ys, no_errs) |
||
476 | logging.debug("opt. log posterior all 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
||
477 | pre_opt = resop_gp.success |
||
478 | try: |
||
479 | logging.info("GM lt: %s", gpmodel.get_parameter("mean:GM:tau0")) |
||
480 | except ValueError: |
||
481 | pass |
||
482 | logging.info("(GP) model: %s", gpmodel.kernel) |
||
483 | if isinstance(gpmodel, celerite.GP): |
||
484 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
||
485 | |||
486 | bestfit = gpmodel.get_parameter_vector() |
||
487 | filename_base = ("NO_regress_fit_{0}_{1:.0f}_{2:.0f}_{{0}}_{3}" |
||
488 | .format(gpmodel_name, lat * 10, alt, ksub)) |
||
489 | |||
490 | if args.mcmc: |
||
491 | gpmodel.compute(no_ys_train, no_errs_train) |
||
492 | samples, lnp = mcmc_sample_model(gpmodel, |
||
493 | no_dens_train, |
||
494 | beta=1.0, |
||
495 | nwalkers=args.walkers, nburnin=args.burn_in, |
||
496 | nprod=args.production, nthreads=args.threads, |
||
497 | show_progress=args.progress, |
||
498 | optimized=pre_opt, bounds=bounds, return_logpost=True) |
||
499 | |||
500 | if args.train_fraction < 1. or args.test_fraction < 1.: |
||
501 | logging.info("Statistics for the test samples") |
||
502 | mcmc_statistics(gpmodel, |
||
503 | no_ys_test, no_dens_test, no_errs_test, |
||
504 | no_ys_train, no_dens_train, no_errs_train, |
||
505 | samples, lnp, |
||
506 | ) |
||
507 | logging.info("Statistics for all samples") |
||
508 | mcmc_statistics(gpmodel, |
||
509 | no_ys, no_dens, no_errs, |
||
510 | no_ys_train, no_dens_train, no_errs_train, |
||
511 | samples, lnp, |
||
512 | ) |
||
513 | |||
514 | sampl_percs = np.percentile(samples, [2.5, 50, 97.5], axis=0) |
||
515 | if args.plot_corner: |
||
516 | import corner |
||
517 | # Corner plot of the sampled parameters |
||
518 | fig = corner.corner(samples, |
||
519 | quantiles=[0.025, 0.5, 0.975], |
||
520 | show_titles=True, |
||
521 | labels=gpmodel.get_parameter_names(), |
||
522 | truths=bestfit, |
||
523 | hist_args=dict(normed=True)) |
||
524 | fig.savefig(filename_base.format("corner") + ".pdf", transparent=True) |
||
525 | |||
526 | if args.save_samples: |
||
527 | if args.samples_format in ["npz"]: |
||
528 | # save the samples compressed to save space. |
||
529 | np.savez_compressed(filename_base.format("sampls") + ".npz", |
||
530 | samples=samples) |
||
531 | if args.samples_format in ["nc", "netcdf4"]: |
||
532 | save_samples_netcdf(filename_base.format("sampls") + ".nc", |
||
533 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
534 | if args.samples_format in ["h5", "hdf5"]: |
||
535 | save_samples_netcdf(filename_base.format("sampls") + ".h5", |
||
536 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
537 | # MCMC finished here |
||
538 | |||
539 | # set the model times and errors to use the full data set for plotting |
||
540 | gpmodel.compute(no_ys, no_errs) |
||
541 | if args.save_model: |
||
542 | try: |
||
543 | # python 2 |
||
544 | import cPickle as pickle |
||
545 | except ImportError: |
||
546 | # python 3 |
||
547 | import pickle |
||
548 | # pickle and save the model |
||
549 | with open(filename_base.format("model") + ".pkl", "wb") as f: |
||
550 | pickle.dump((gpmodel), f, -1) |
||
551 | |||
552 | if args.plot_samples and args.mcmc: |
||
553 | plot_random_samples(gpmodel, no_ys, no_dens, no_errs, |
||
554 | samples, args.scale, |
||
555 | filename_base.format("sampls") + ".pdf", |
||
556 | size=4, extra_years=[4, 2]) |
||
557 | |||
558 | if args.plot_median: |
||
559 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
||
560 | sampl_percs[1], |
||
561 | filename_base.format("median") + ".pdf") |
||
562 | if args.plot_residuals: |
||
563 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
||
564 | sampl_percs[1], args.scale, |
||
565 | filename_base.format("medres") + ".pdf") |
||
566 | if args.plot_maxlnp: |
||
567 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
||
568 | samples[np.argmax(lnp)], |
||
569 | filename_base.format("maxlnp") + ".pdf") |
||
570 | if args.plot_maxlnpres: |
||
571 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
||
572 | samples[np.argmax(lnp)], args.scale, |
||
573 | filename_base.format("mlpres") + ".pdf") |
||
574 | |||
575 | labels = gpmodel.get_parameter_names() |
||
576 | logging.info("param percentiles [2.5, 50, 97.5]:") |
||
577 | for pc, label in zip(sampl_percs.T, labels): |
||
578 | median = pc[1] |
||
579 | pc_minus = median - pc[0] |
||
580 | pc_plus = pc[2] - median |
||
581 | logging.debug("%s: %s", label, pc) |
||
582 | logging.info("%s: %.6f (- %.6f) (+ %.6f)", label, |
||
583 | median, pc_minus, pc_plus) |
||
584 | |||
585 | logging.info("Finished successfully.") |
||
586 | |||
590 |