1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2014-2017 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This file is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify it |
8
|
|
|
# under the terms of the GNU General Public License as published by |
9
|
|
|
# the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
1 |
|
"""SCIAMACHY level 1c limb spectra netcdf interface |
12
|
|
|
""" |
13
|
|
|
|
14
|
1 |
|
from __future__ import absolute_import, division, print_function |
15
|
|
|
|
16
|
1 |
|
import numpy as np |
17
|
1 |
|
try: |
18
|
1 |
|
from netCDF4 import Dataset as netcdf_file |
19
|
1 |
|
_fmtargs = {"format": "NETCDF4"} |
20
|
|
|
except ImportError: |
21
|
|
|
try: |
22
|
|
|
from scipy.io.netcdf import netcdf_file |
23
|
|
|
_fmtargs = {"version": 1} |
24
|
|
|
except ImportError: |
25
|
|
|
from pupynere import netcdf_file |
26
|
|
|
_fmtargs = {"version": 1} |
27
|
|
|
|
28
|
1 |
|
from ._types import _limb_data_dtype |
29
|
|
|
|
30
|
1 |
View Code Duplication |
def read_from_netcdf(self, filename): |
|
|
|
|
31
|
|
|
"""SCIAMACHY level 1c limb scan netcdf import |
32
|
|
|
|
33
|
|
|
Parameters |
34
|
|
|
---------- |
35
|
|
|
filename : str |
36
|
|
|
The netcdf filename to read the data from. |
37
|
|
|
|
38
|
|
|
Returns |
39
|
|
|
------- |
40
|
|
|
nothing |
41
|
|
|
""" |
42
|
1 |
|
import numpy.lib.recfunctions as rfn |
43
|
1 |
|
ncf = netcdf_file(filename, 'r') |
44
|
|
|
|
45
|
1 |
|
self.textheader_length = ncf.textheader_length |
46
|
1 |
|
self.textheader = ncf.textheader |
47
|
|
|
|
48
|
1 |
|
self.orbit_state = ncf.orbit_state |
49
|
1 |
|
(self.orbit, self.state_in_orbit, self.state_id, |
50
|
|
|
self.profiles_per_state, self.profile_in_state) = self.orbit_state |
51
|
1 |
|
self.date = ncf.date |
52
|
1 |
|
self.cent_lat_lon = ncf.cent_lat_lon |
53
|
1 |
|
self.orbit_phase = ncf.orbit_phase |
54
|
|
|
|
55
|
1 |
|
try: |
56
|
1 |
|
self.nalt = ncf.dimensions['limb'].size |
57
|
1 |
|
self.npix = ncf.dimensions['wavelength'].size |
58
|
|
|
except: |
59
|
|
|
self.nalt = ncf.dimensions['limb'] |
60
|
|
|
self.npix = ncf.dimensions['wavelength'] |
61
|
|
|
|
62
|
1 |
|
self.wls = ncf.variables['wavelength'][:] |
63
|
|
|
|
64
|
|
|
# pre-set the limb_data |
65
|
1 |
|
if self._limb_data_dtype is None: |
66
|
1 |
|
self._limb_data_dtype = _limb_data_dtype[:] |
67
|
1 |
|
self.limb_data = np.zeros((self.nalt), dtype=self._limb_data_dtype) |
68
|
|
|
|
69
|
1 |
|
self.limb_data["sub_sat_lat"] = ncf.variables['sub_sat_lat'][:] |
70
|
1 |
|
self.limb_data["sub_sat_lon"] = ncf.variables['sub_sat_lon'][:] |
71
|
1 |
|
self.limb_data["tp_lat"] = ncf.variables['TP latitude'][:] |
72
|
1 |
|
self.limb_data["tp_lon"] = ncf.variables['TP longitude'][:] |
73
|
1 |
|
self.limb_data["tp_alt"] = ncf.variables['TP altitude'][:] |
74
|
1 |
|
self.limb_data["tp_sza"] = ncf.variables['TP SZA'][:] |
75
|
1 |
|
self.limb_data["tp_saa"] = ncf.variables['TP SAA'][:] |
76
|
1 |
|
self.limb_data["tp_los"] = ncf.variables['TP LOS Zenith'][:] |
77
|
1 |
|
self.limb_data["toa_sza"] = ncf.variables['TOA SZA'][:] |
78
|
1 |
|
self.limb_data["toa_saa"] = ncf.variables['TOA SAA'][:] |
79
|
1 |
|
self.limb_data["toa_los"] = ncf.variables['TOA LOS Zenith'][:] |
80
|
1 |
|
self.limb_data["sat_sza"] = ncf.variables['SAT SZA'][:] |
81
|
1 |
|
self.limb_data["sat_saa"] = ncf.variables['SAT SAA'][:] |
82
|
1 |
|
self.limb_data["sat_los"] = ncf.variables['SAT LOS Zenith'][:] |
83
|
1 |
|
self.limb_data["sat_alt"] = ncf.variables['SAT altitude'][:] |
84
|
1 |
|
self.limb_data["earth_rad"] = ncf.variables['earthradius'][:] |
85
|
|
|
|
86
|
1 |
|
tmp_rad_arr = list(ncf.variables['radiance'][:]) |
87
|
1 |
|
tmp_err_arr = list(ncf.variables['radiance errors'][:]) |
88
|
|
|
|
89
|
|
|
# save to limb_data recarray |
90
|
1 |
|
rads = np.rec.fromarrays([tmp_rad_arr], |
91
|
|
|
dtype=np.dtype([("rad", 'f4', (self.npix,))])) |
92
|
1 |
|
errs = np.rec.fromarrays([tmp_err_arr], |
93
|
|
|
dtype=np.dtype([("err", 'f4', (self.npix,))])) |
94
|
1 |
|
self.limb_data = rfn.merge_arrays([self.limb_data, rads, errs], |
95
|
|
|
usemask=False, asrecarray=True, flatten=True) |
96
|
1 |
|
self._limb_data_dtype = self.limb_data.dtype |
97
|
|
|
|
98
|
1 |
|
for _k in ncf.ncattrs(): |
99
|
1 |
|
if _k.startswith("metadata"): |
100
|
1 |
|
_meta_key = _k.split("::")[1] |
101
|
1 |
|
self.metadata[_meta_key] = getattr(ncf, _k) |
102
|
1 |
|
ncf.close() |
103
|
|
|
|
104
|
1 |
View Code Duplication |
def write_to_netcdf(self, filename): |
|
|
|
|
105
|
|
|
"""SCIAMACHY level 1c limb scan netcdf export |
106
|
|
|
|
107
|
|
|
Parameters |
108
|
|
|
---------- |
109
|
|
|
filename : str |
110
|
|
|
The netcdf filename to write the data to. |
111
|
|
|
|
112
|
|
|
Returns |
113
|
|
|
------- |
114
|
|
|
nothing |
115
|
|
|
""" |
116
|
1 |
|
ncf = netcdf_file(filename, 'w', **_fmtargs) |
117
|
|
|
|
118
|
1 |
|
ncf.textheader_length = self.textheader_length |
119
|
1 |
|
ncf.textheader = self.textheader |
120
|
|
|
|
121
|
1 |
|
ncf.orbit_state = self.orbit_state |
122
|
1 |
|
ncf.date = self.date |
123
|
1 |
|
ncf.cent_lat_lon = self.cent_lat_lon |
124
|
1 |
|
ncf.orbit_phase = self.orbit_phase |
125
|
|
|
|
126
|
1 |
|
ncf.createDimension('limb', self.nalt) |
127
|
1 |
|
ncf.createDimension('wavelength', self.npix) |
128
|
|
|
|
129
|
1 |
|
wavs = ncf.createVariable('wavelength', np.dtype('float32').char, ('wavelength',)) |
130
|
1 |
|
wavs.units = 'nm' |
131
|
1 |
|
wavs[:] = np.asarray(self.wls) |
132
|
|
|
|
133
|
1 |
|
sslat = ncf.createVariable('sub_sat_lat', np.dtype('float32').char, ('limb',)) |
134
|
1 |
|
sslat.units = 'deg' |
135
|
1 |
|
sslat[:] = np.asarray(self.limb_data["sub_sat_lat"]) |
136
|
1 |
|
sslon = ncf.createVariable('sub_sat_lon', np.dtype('float32').char, ('limb',)) |
137
|
1 |
|
sslon.units = 'deg' |
138
|
1 |
|
sslon[:] = np.asarray(self.limb_data["sub_sat_lon"]) |
139
|
1 |
|
tp_lats = ncf.createVariable('TP latitude', np.dtype('float32').char, ('limb',)) |
140
|
1 |
|
tp_lats.units = 'deg' |
141
|
1 |
|
tp_lats[:] = np.asarray(self.limb_data["tp_lat"]) |
142
|
1 |
|
tp_lons = ncf.createVariable('TP longitude', np.dtype('float32').char, ('limb',)) |
143
|
1 |
|
tp_lons.units = 'deg' |
144
|
1 |
|
tp_lons[:] = np.asarray(self.limb_data["tp_lon"]) |
145
|
1 |
|
tp_alts = ncf.createVariable('TP altitude', np.dtype('float32').char, ('limb',)) |
146
|
1 |
|
tp_alts.units = 'km' |
147
|
1 |
|
tp_alts[:] = np.asarray(self.limb_data["tp_alt"]) |
148
|
1 |
|
tp_szas = ncf.createVariable('TP SZA', np.dtype('float32').char, ('limb',)) |
149
|
1 |
|
tp_szas.units = 'deg' |
150
|
1 |
|
tp_szas[:] = np.asarray(self.limb_data["tp_sza"]) |
151
|
1 |
|
tp_saas = ncf.createVariable('TP SAA', np.dtype('float32').char, ('limb',)) |
152
|
1 |
|
tp_saas.units = 'deg' |
153
|
1 |
|
tp_saas[:] = np.asarray(self.limb_data["tp_saa"]) |
154
|
1 |
|
tp_los_zeniths = ncf.createVariable('TP LOS Zenith', np.dtype('float32').char, ('limb',)) |
155
|
1 |
|
tp_los_zeniths.units = 'deg' |
156
|
1 |
|
tp_los_zeniths[:] = np.asarray(self.limb_data["tp_los"]) |
157
|
1 |
|
toa_szas = ncf.createVariable('TOA SZA', np.dtype('float32').char, ('limb',)) |
158
|
1 |
|
toa_szas.units = 'deg' |
159
|
1 |
|
toa_szas[:] = np.asarray(self.limb_data["toa_sza"]) |
160
|
1 |
|
toa_saas = ncf.createVariable('TOA SAA', np.dtype('float32').char, ('limb',)) |
161
|
1 |
|
toa_saas.units = 'deg' |
162
|
1 |
|
toa_saas[:] = np.asarray(self.limb_data["toa_saa"]) |
163
|
1 |
|
toa_los_zeniths = ncf.createVariable('TOA LOS Zenith', np.dtype('float32').char, ('limb',)) |
164
|
1 |
|
toa_los_zeniths.units = 'deg' |
165
|
1 |
|
toa_los_zeniths[:] = np.asarray(self.limb_data["toa_los"]) |
166
|
1 |
|
sat_szas = ncf.createVariable('SAT SZA', np.dtype('float32').char, ('limb',)) |
167
|
1 |
|
sat_szas.units = 'deg' |
168
|
1 |
|
sat_szas[:] = np.asarray(self.limb_data["sat_sza"]) |
169
|
1 |
|
sat_saas = ncf.createVariable('SAT SAA', np.dtype('float32').char, ('limb',)) |
170
|
1 |
|
sat_saas.units = 'deg' |
171
|
1 |
|
sat_saas[:] = np.asarray(self.limb_data["sat_saa"]) |
172
|
1 |
|
sat_los_zeniths = ncf.createVariable('SAT LOS Zenith', np.dtype('float32').char, ('limb',)) |
173
|
1 |
|
sat_los_zeniths.units = 'deg' |
174
|
1 |
|
sat_los_zeniths[:] = np.asarray(self.limb_data["sat_los"]) |
175
|
1 |
|
sat_alts = ncf.createVariable('SAT altitude', np.dtype('float32').char, ('limb',)) |
176
|
1 |
|
sat_alts.units = 'km' |
177
|
1 |
|
sat_alts[:] = np.asarray(self.limb_data["sat_alt"]) |
178
|
1 |
|
eradii_alts = ncf.createVariable('earthradius', np.dtype('float32').char, ('limb',)) |
179
|
1 |
|
eradii_alts.units = 'km' |
180
|
1 |
|
eradii_alts[:] = np.asarray(self.limb_data["earth_rad"]) |
181
|
|
|
|
182
|
1 |
|
rads = ncf.createVariable('radiance', np.dtype('float32').char, |
183
|
|
|
('limb', 'wavelength'), zlib=True, complevel=1) |
184
|
1 |
|
errs = ncf.createVariable('radiance errors', np.dtype('float32').char, |
185
|
|
|
('limb', 'wavelength'), zlib=True, complevel=1) |
186
|
1 |
|
rads.units = 'ph / s / cm^2 / nm' |
187
|
1 |
|
errs.units = 'ph / s / cm^2 / nm' |
188
|
1 |
|
rads[:] = np.asarray(self.limb_data["rad"]).reshape(self.nalt, self.npix) |
189
|
1 |
|
errs[:] = np.asarray(self.limb_data["err"]).reshape(self.nalt, self.npix) |
190
|
|
|
|
191
|
1 |
|
for _k, _v in self.metadata.items(): |
192
|
1 |
|
setattr(ncf, "metadata::" + _k, _v) |
193
|
|
|
ncf.close() |
194
|
|
|
|