| Total Complexity | 72 |
| Total Lines | 573 |
| Duplicated Lines | 90.4 % |
| Coverage | 9.09% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.regress.__main__ often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | # vim:fileencoding=utf-8 |
||
| 3 | # |
||
| 4 | # Copyright (c) 2017-2018 Stefan Bender |
||
| 5 | # |
||
| 6 | # This module is part of sciapy. |
||
| 7 | # sciapy is free software: you can redistribute it or modify |
||
| 8 | # it under the terms of the GNU General Public License as published |
||
| 9 | # by the Free Software Foundation, version 2. |
||
| 10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
| 11 | 1 | """SCIAMACHY data regression command line interface |
|
| 12 | |||
| 13 | Command line main program for regression analysis of SCIAMACHY |
||
| 14 | daily zonal mean time series (NO for now). |
||
| 15 | """ |
||
| 16 | |||
| 17 | 1 | import ctypes |
|
| 18 | 1 | import logging |
|
| 19 | |||
| 20 | 1 | import numpy as np |
|
| 21 | 1 | import scipy.optimize as op |
|
| 22 | 1 | from scipy.interpolate import interp1d |
|
| 23 | |||
| 24 | 1 | import george |
|
| 25 | 1 | import celerite |
|
| 26 | |||
| 27 | 1 | import matplotlib as mpl |
|
| 28 | # switch off X11 rendering |
||
| 29 | 1 | mpl.use("Agg") |
|
| 30 | |||
| 31 | 1 | from .load_data import load_solar_gm_table, load_scia_dzm |
|
| 32 | 1 | from .models_cel import CeleriteModelSet as NOModel |
|
| 33 | 1 | from .models_cel import ConstantModel, ProxyModel |
|
| 34 | 1 | from .models_cel import HarmonicModelCosineSine, HarmonicModelAmpPhase |
|
| 35 | 1 | from .mcmc import mcmc_sample_model |
|
| 36 | 1 | from .statistics import mcmc_statistics |
|
| 37 | |||
| 38 | 1 | from ._gpkernels import (george_solvers, |
|
| 39 | setup_george_kernel, setup_celerite_terms) |
||
| 40 | 1 | from ._plot import (plot_single_sample_and_residuals, |
|
| 41 | plot_residual, plot_random_samples) |
||
| 42 | 1 | from ._options import parser |
|
| 43 | |||
| 44 | |||
| 45 | 1 | View Code Duplication | def save_samples_netcdf(filename, model, alt, lat, samples, |
|
|
|||
| 46 | scale=1e-6, |
||
| 47 | lnpost=None, compressed=False): |
||
| 48 | from xarray import Dataset |
||
| 49 | smpl_ds = Dataset(dict([(pname, (["lat", "alt", "sample"], |
||
| 50 | samples[..., i].reshape(1, 1, -1))) |
||
| 51 | for i, pname in enumerate(model.get_parameter_names())] |
||
| 52 | # + [("lpost", (["lat", "alt", "sample"], lnp.reshape(1, 1, -1)))] |
||
| 53 | ), |
||
| 54 | coords={"lat": [lat], "alt": [alt]}) |
||
| 55 | |||
| 56 | for modn in model.mean.models: |
||
| 57 | modl = model.mean.models[modn] |
||
| 58 | if hasattr(modl, "mean"): |
||
| 59 | smpl_ds.attrs[modn + ":mean"] = modl.mean |
||
| 60 | |||
| 61 | units = {"kernel": { |
||
| 62 | "log": "log(10$^{{{0:.0f}}}$ cm$^{{-3}}$)" |
||
| 63 | .format(-np.log10(scale))}, |
||
| 64 | "mean": { |
||
| 65 | "log": "log(10$^{{{0:.0f}}}$ cm$^{{-3}}$)" |
||
| 66 | .format(-np.log10(scale)), |
||
| 67 | "val": "10$^{{{0:.0f}}}$ cm$^{{-3}}$".format(-np.log10(scale)), |
||
| 68 | "amp": "10$^{{{0:.0f}}}$ cm$^{{-3}}$".format(-np.log10(scale)), |
||
| 69 | "tau": "d"}} |
||
| 70 | for pname in smpl_ds.data_vars: |
||
| 71 | _pp = pname.split(':') |
||
| 72 | for _n, _u in units[_pp[0]].items(): |
||
| 73 | if _pp[-1].startswith(_n): |
||
| 74 | logging.debug("units for %s: %s", pname, _u) |
||
| 75 | smpl_ds[pname].attrs["units"] = _u |
||
| 76 | |||
| 77 | smpl_ds["alt"].attrs = {"long_name": "altitude", "units": "km"} |
||
| 78 | smpl_ds["lat"].attrs = {"long_name": "latitude", "units": "degrees_north"} |
||
| 79 | |||
| 80 | _encoding = None |
||
| 81 | if compressed: |
||
| 82 | _encoding = {var: {"zlib": True, "complevel": 1} |
||
| 83 | for var in smpl_ds.data_vars} |
||
| 84 | smpl_ds.to_netcdf(filename, encoding=_encoding) |
||
| 85 | smpl_ds.close() |
||
| 86 | |||
| 87 | |||
| 88 | 1 | View Code Duplication | def _train_test_split(times, data, errs, train_frac, |
| 89 | test_frac, randomize): |
||
| 90 | # split the data into training and test subsets according to the |
||
| 91 | # fraction given (default is 1, i.e. no splitting) |
||
| 92 | ndata = len(times) |
||
| 93 | train_size = int(ndata * train_frac) |
||
| 94 | test_size = min(ndata - train_size, int(ndata * test_frac)) |
||
| 95 | # randomize if requested |
||
| 96 | if randomize: |
||
| 97 | permut_idx = np.random.permutation(np.arange(ndata)) |
||
| 98 | else: |
||
| 99 | permut_idx = np.arange(ndata) |
||
| 100 | train_idx = np.sort(permut_idx[:train_size]) |
||
| 101 | test_idx = np.sort(permut_idx[train_size:train_size + test_size]) |
||
| 102 | times_train = times[train_idx] |
||
| 103 | data_train = data[train_idx] |
||
| 104 | errs_train = errs[train_idx] |
||
| 105 | if test_size > 0: |
||
| 106 | times_test = times[test_idx] |
||
| 107 | data_test = data[test_idx] |
||
| 108 | errs_test = errs[test_idx] |
||
| 109 | else: |
||
| 110 | times_test = times |
||
| 111 | data_test = data |
||
| 112 | errs_test = errs |
||
| 113 | logging.info("using %s of %s samples for training.", len(times_train), ndata) |
||
| 114 | logging.info("using %s of %s samples for testing.", len(times_test), ndata) |
||
| 115 | return (times_train, data_train, errs_train, |
||
| 116 | times_test, data_test, errs_test) |
||
| 117 | |||
| 118 | |||
| 119 | 1 | View Code Duplication | def _r_sun_earth(time, tfmt="jyear"): |
| 120 | """First order approximation of the Sun-Earth distance |
||
| 121 | |||
| 122 | The Sun-to-Earth distance can be used to (un-)normalize proxies |
||
| 123 | to the actual distance to the Sun instead of 1 AU. |
||
| 124 | |||
| 125 | Parameters |
||
| 126 | ---------- |
||
| 127 | time : float |
||
| 128 | Time value in the units given by 'tfmt'. |
||
| 129 | tfmt : str, optional |
||
| 130 | The units of 'time' as supported by the |
||
| 131 | astropy.time time formats. Default: 'jyear'. |
||
| 132 | |||
| 133 | Returns |
||
| 134 | ------- |
||
| 135 | dist : float |
||
| 136 | The Sun-Earth distance at the given day of year in AU. |
||
| 137 | """ |
||
| 138 | from astropy.time import Time |
||
| 139 | tdoy = Time(time, format=tfmt) |
||
| 140 | tdoy.format = "yday" |
||
| 141 | doy = int(tdoy.value.split(':')[1]) |
||
| 142 | return 1 - 0.01672 * np.cos(2 * np.pi / 365.256363 * (doy - 4)) |
||
| 143 | |||
| 144 | |||
| 145 | 1 | View Code Duplication | def main(): |
| 146 | 1 | logging.basicConfig(level=logging.WARNING, |
|
| 147 | format="[%(levelname)-8s] (%(asctime)s) " |
||
| 148 | "%(filename)s:%(lineno)d %(message)s", |
||
| 149 | datefmt="%Y-%m-%d %H:%M:%S %z") |
||
| 150 | |||
| 151 | 1 | args = parser.parse_args() |
|
| 152 | |||
| 153 | logging.info("command line arguments: %s", args) |
||
| 154 | if args.quiet: |
||
| 155 | logging.getLogger().setLevel(logging.ERROR) |
||
| 156 | elif args.verbose: |
||
| 157 | logging.getLogger().setLevel(logging.INFO) |
||
| 158 | else: |
||
| 159 | logging.getLogger().setLevel(args.loglevel) |
||
| 160 | |||
| 161 | from numpy.distutils.system_info import get_info |
||
| 162 | for oblas_path in get_info("openblas")["library_dirs"]: |
||
| 163 | oblas_name = "{0}/libopenblas.so".format(oblas_path) |
||
| 164 | logging.info("Trying %s", oblas_name) |
||
| 165 | try: |
||
| 166 | oblas_lib = ctypes.cdll.LoadLibrary(oblas_name) |
||
| 167 | oblas_cores = oblas_lib.openblas_get_num_threads() |
||
| 168 | oblas_lib.openblas_set_num_threads(args.openblas_threads) |
||
| 169 | logging.info("Using %s/%s Openblas thread(s).", |
||
| 170 | oblas_lib.openblas_get_num_threads(), oblas_cores) |
||
| 171 | except: |
||
| 172 | logging.info("Setting number of openblas threads failed.") |
||
| 173 | |||
| 174 | if args.random_seed is not None: |
||
| 175 | np.random.seed(args.random_seed) |
||
| 176 | |||
| 177 | if args.proxies: |
||
| 178 | proxies = args.proxies.split(',') |
||
| 179 | proxy_dict = dict(_p.split(':') for _p in proxies) |
||
| 180 | else: |
||
| 181 | proxy_dict = {} |
||
| 182 | lag_dict = {pn: 0 for pn in proxy_dict.keys()} |
||
| 183 | |||
| 184 | # Post-processing of arguments... |
||
| 185 | # List of proxy lag fits from csv |
||
| 186 | fit_lags = args.fit_lags.split(',') |
||
| 187 | # List of proxy lifetime fits from csv |
||
| 188 | fit_lifetimes = args.fit_lifetimes.split(',') |
||
| 189 | fit_annlifetimes = args.fit_annlifetimes.split(',') |
||
| 190 | # List of proxy lag times from csv |
||
| 191 | lag_dict.update(dict(_ls.split(':') for _ls in args.lag_times.split(','))) |
||
| 192 | # List of cycles (frequencies in 1/year) from argument list (csv) |
||
| 193 | try: |
||
| 194 | freqs = list(map(float, args.freqs.split(','))) |
||
| 195 | except ValueError: |
||
| 196 | freqs = [] |
||
| 197 | # List of initial parameter values |
||
| 198 | initial = None |
||
| 199 | if args.initial is not None: |
||
| 200 | try: |
||
| 201 | initial = list(map(float, args.initial.split(','))) |
||
| 202 | except ValueError: |
||
| 203 | pass |
||
| 204 | # List of GP kernels from argument list (csv) |
||
| 205 | kernls = args.kernels.split(',') |
||
| 206 | |||
| 207 | lat = args.latitude |
||
| 208 | alt = args.altitude |
||
| 209 | logging.info("location: %.0f°N %.0f km", lat, alt) |
||
| 210 | |||
| 211 | no_ys, no_dens, no_errs, no_szas = load_scia_dzm(args.file, alt, lat, |
||
| 212 | tfmt=args.time_format, |
||
| 213 | scale=args.scale, |
||
| 214 | #subsample_factor=args.random_subsample, |
||
| 215 | #subsample_method="random", |
||
| 216 | akd_threshold=args.akd_threshold, |
||
| 217 | cnt_threshold=args.cnt_threshold, |
||
| 218 | center=args.center_data, |
||
| 219 | season=args.season, |
||
| 220 | SPEs=args.exclude_spe) |
||
| 221 | |||
| 222 | (no_ys_train, no_dens_train, no_errs_train, |
||
| 223 | no_ys_test, no_dens_test, no_errs_test) = _train_test_split( |
||
| 224 | no_ys, no_dens, no_errs, args.train_fraction, |
||
| 225 | args.test_fraction, args.random_train_test) |
||
| 226 | |||
| 227 | sza_intp = interp1d(no_ys, no_szas, fill_value="extrapolate") |
||
| 228 | |||
| 229 | max_amp = 1e10 * args.scale |
||
| 230 | max_days = 100 |
||
| 231 | |||
| 232 | harmonic_models = [] |
||
| 233 | for freq in freqs: |
||
| 234 | if not args.fit_phase: |
||
| 235 | harmonic_models.append(("f{0:.0f}".format(freq), |
||
| 236 | HarmonicModelCosineSine(freq=freq, |
||
| 237 | cos=0, sin=0, |
||
| 238 | bounds=dict([ |
||
| 239 | ("cos", [-max_amp, max_amp]), |
||
| 240 | ("sin", [-max_amp, max_amp])]) |
||
| 241 | ))) |
||
| 242 | else: |
||
| 243 | harmonic_models.append(("f{0:.0f}".format(freq), |
||
| 244 | HarmonicModelAmpPhase(freq=freq, |
||
| 245 | amp=0, phase=0, |
||
| 246 | bounds=dict([ |
||
| 247 | # ("amp", [-max_amp, max_amp]), |
||
| 248 | ("amp", [0, max_amp]), |
||
| 249 | ("phase", [-np.pi, np.pi])]) |
||
| 250 | ))) |
||
| 251 | proxy_models = [] |
||
| 252 | for pn, pf in proxy_dict.items(): |
||
| 253 | pt, pp = load_solar_gm_table(pf, cols=[0, 1], names=["time", pn], tfmt=args.time_format) |
||
| 254 | pv = np.log(pp[pn]) if pn in args.log_proxies.split(',') else pp[pn] |
||
| 255 | if pn in args.norm_proxies_distSEsq: |
||
| 256 | rad_sun_earth = np.vectorize(_r_sun_earth)(pt, tfmt=args.time_format) |
||
| 257 | pv /= rad_sun_earth**2 |
||
| 258 | if pn in args.norm_proxies_SZA: |
||
| 259 | pv *= np.cos(np.radians(sza_intp(pt))) |
||
| 260 | proxy_models.append((pn, |
||
| 261 | ProxyModel(pt, pv, |
||
| 262 | center=pn in args.center_proxies.split(','), |
||
| 263 | sza_intp=sza_intp if args.use_sza else None, |
||
| 264 | fit_phase=args.fit_phase, |
||
| 265 | lifetime_prior=args.lifetime_prior, |
||
| 266 | lifetime_metric=args.lifetime_metric, |
||
| 267 | days_per_time_unit=1 if args.time_format.endswith("d") else 365.25, |
||
| 268 | amp=0., |
||
| 269 | lag=float(lag_dict[pn]), |
||
| 270 | tau0=0, |
||
| 271 | taucos1=0, tausin1=0, |
||
| 272 | taucos2=0, tausin2=0, |
||
| 273 | ltscan=args.lifetime_scan, |
||
| 274 | bounds=dict([ |
||
| 275 | ("amp", |
||
| 276 | [0, max_amp] if pn in args.positive_proxies.split(',') |
||
| 277 | else [-max_amp, max_amp]), |
||
| 278 | ("lag", [0, max_days]), |
||
| 279 | ("tau0", [0, max_days]), |
||
| 280 | ("taucos1", [0, max_days] if args.fit_phase else [-max_days, max_days]), |
||
| 281 | ("tausin1", [-np.pi, np.pi] if args.fit_phase else [-max_days, max_days]), |
||
| 282 | # semi-annual cycles for the life time |
||
| 283 | ("taucos2", [0, max_days] if args.fit_phase else [-max_days, max_days]), |
||
| 284 | ("tausin2", [-np.pi, np.pi] if args.fit_phase else [-max_days, max_days]), |
||
| 285 | ("ltscan", [0, 200])]) |
||
| 286 | ))) |
||
| 287 | logging.info("%s mean: %s", pn, proxy_models[-1][1].mean) |
||
| 288 | offset_model = [("offset", |
||
| 289 | ConstantModel(value=0., |
||
| 290 | bounds={"value": [-max_amp, max_amp]}))] |
||
| 291 | |||
| 292 | model = NOModel(offset_model + harmonic_models + proxy_models) |
||
| 293 | |||
| 294 | logging.debug("model dict: %s", model.get_parameter_dict()) |
||
| 295 | model.freeze_all_parameters() |
||
| 296 | # thaw parameters according to requested fits |
||
| 297 | for pn in proxy_dict.keys(): |
||
| 298 | model.thaw_parameter("{0}:amp".format(pn)) |
||
| 299 | if pn in fit_lags: |
||
| 300 | model.thaw_parameter("{0}:lag".format(pn)) |
||
| 301 | if pn in fit_lifetimes: |
||
| 302 | model.set_parameter("{0}:tau0".format(pn), 1e-3) |
||
| 303 | model.thaw_parameter("{0}:tau0".format(pn)) |
||
| 304 | if pn in fit_annlifetimes: |
||
| 305 | model.thaw_parameter("{0}:taucos1".format(pn)) |
||
| 306 | model.thaw_parameter("{0}:tausin1".format(pn)) |
||
| 307 | for freq in freqs: |
||
| 308 | if not args.fit_phase: |
||
| 309 | model.thaw_parameter("f{0:.0f}:cos".format(freq)) |
||
| 310 | model.thaw_parameter("f{0:.0f}:sin".format(freq)) |
||
| 311 | else: |
||
| 312 | model.thaw_parameter("f{0:.0f}:amp".format(freq)) |
||
| 313 | model.thaw_parameter("f{0:.0f}:phase".format(freq)) |
||
| 314 | if args.fit_offset: |
||
| 315 | #model.set_parameter("offset:value", -100.) |
||
| 316 | #model.set_parameter("offset:value", 0) |
||
| 317 | model.thaw_parameter("offset:value") |
||
| 318 | |||
| 319 | if initial is not None: |
||
| 320 | model.set_parameter_vector(initial) |
||
| 321 | # model.thaw_parameter("GM:ltscan") |
||
| 322 | logging.debug("params: %s", model.get_parameter_dict()) |
||
| 323 | logging.debug("param names: %s", model.get_parameter_names()) |
||
| 324 | logging.debug("param vector: %s", model.get_parameter_vector()) |
||
| 325 | logging.debug("param bounds: %s", model.get_parameter_bounds()) |
||
| 326 | #logging.debug("model value: %s", model.get_value(no_ys)) |
||
| 327 | #logging.debug("default log likelihood: %s", model.log_likelihood(model.vector)) |
||
| 328 | |||
| 329 | # setup the Gaussian Process kernel |
||
| 330 | kernel_base = (1e7 * args.scale)**2 |
||
| 331 | ksub = args.name_suffix |
||
| 332 | |||
| 333 | solver = "basic" |
||
| 334 | skwargs = {} |
||
| 335 | if args.HODLR_Solver: |
||
| 336 | solver = "HODLR" |
||
| 337 | #skwargs = {"tol": 1e-3} |
||
| 338 | |||
| 339 | if args.george: |
||
| 340 | gpname, kernel = setup_george_kernel(kernls, |
||
| 341 | kernel_base=kernel_base, fit_bias=args.fit_bias) |
||
| 342 | gpmodel = george.GP(kernel, mean=model, |
||
| 343 | white_noise=1.e-25, fit_white_noise=args.fit_white, |
||
| 344 | solver=george_solvers[solver], **skwargs) |
||
| 345 | # the george interface does not allow setting the bounds in |
||
| 346 | # the kernel initialization so we prepare simple default bounds |
||
| 347 | kernel_bounds = [(-0.3 * max_amp, 0.3 * max_amp) |
||
| 348 | for _ in gpmodel.kernel.get_parameter_names()] |
||
| 349 | bounds = gpmodel.mean.get_parameter_bounds() + kernel_bounds |
||
| 350 | else: |
||
| 351 | gpname, cel_terms = setup_celerite_terms(kernls, |
||
| 352 | fit_bias=args.fit_bias, fit_white=args.fit_white) |
||
| 353 | gpmodel = celerite.GP(cel_terms, mean=model, |
||
| 354 | fit_white_noise=args.fit_white, |
||
| 355 | fit_mean=True) |
||
| 356 | bounds = gpmodel.get_parameter_bounds() |
||
| 357 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 358 | logging.debug("gpmodel params: %s", gpmodel.get_parameter_dict()) |
||
| 359 | logging.debug("gpmodel bounds: %s", bounds) |
||
| 360 | logging.debug("initial log likelihood: %s", gpmodel.log_likelihood(no_dens_train)) |
||
| 361 | if isinstance(gpmodel, celerite.GP): |
||
| 362 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
||
| 363 | model_name = "_".join(gpmodel.mean.get_parameter_names()).replace(':', '') |
||
| 364 | gpmodel_name = model_name + gpname |
||
| 365 | logging.info("GP model name: %s", gpmodel_name) |
||
| 366 | |||
| 367 | pre_opt = False |
||
| 368 | if args.optimize > 0: |
||
| 369 | def gpmodel_mean(x, *p): |
||
| 370 | gpmodel.set_parameter_vector(p) |
||
| 371 | return gpmodel.mean.get_value(x) |
||
| 372 | |||
| 373 | def gpmodel_res(x, *p): |
||
| 374 | gpmodel.set_parameter_vector(p) |
||
| 375 | return (gpmodel.mean.get_value(x) - no_dens_train) / no_errs_train |
||
| 376 | |||
| 377 | def lpost(p, y, gp): |
||
| 378 | gp.set_parameter_vector(p) |
||
| 379 | return gp.log_likelihood(y, quiet=True) + gp.log_prior() |
||
| 380 | |||
| 381 | def nlpost(p, y, gp): |
||
| 382 | lp = lpost(p, y, gp) |
||
| 383 | return -lp if np.isfinite(lp) else 1e25 |
||
| 384 | |||
| 385 | def grad_nlpost(p, y, gp): |
||
| 386 | gp.set_parameter_vector(p) |
||
| 387 | grad_ll = gp.grad_log_likelihood(y) |
||
| 388 | if isinstance(grad_ll, tuple): |
||
| 389 | # celerite |
||
| 390 | return -grad_ll[1] |
||
| 391 | # george |
||
| 392 | return -grad_ll |
||
| 393 | |||
| 394 | if args.optimize == 1: |
||
| 395 | resop_gp = op.minimize( |
||
| 396 | nlpost, |
||
| 397 | gpmodel.get_parameter_vector(), |
||
| 398 | args=(no_dens_train, gpmodel), |
||
| 399 | bounds=bounds, |
||
| 400 | # method="l-bfgs-b", options=dict(disp=True, maxcor=100, eps=1e-9, ftol=2e-15, gtol=1e-8)) |
||
| 401 | method="l-bfgs-b", jac=grad_nlpost) |
||
| 402 | # method="tnc", options=dict(disp=True, maxiter=500, xtol=1e-12)) |
||
| 403 | # method="nelder-mead", options=dict(disp=True, maxfev=100000, fatol=1.49012e-8, xatol=1.49012e-8)) |
||
| 404 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08)) |
||
| 405 | if args.optimize == 2: |
||
| 406 | resop_gp = op.differential_evolution( |
||
| 407 | nlpost, |
||
| 408 | bounds=bounds, |
||
| 409 | args=(no_dens_train, gpmodel), |
||
| 410 | popsize=2 * args.walkers, tol=0.01) |
||
| 411 | if args.optimize == 3: |
||
| 412 | resop_bh = op.basinhopping( |
||
| 413 | nlpost, |
||
| 414 | gpmodel.get_parameter_vector(), |
||
| 415 | niter=200, |
||
| 416 | minimizer_kwargs=dict( |
||
| 417 | args=(no_dens_train, gpmodel), |
||
| 418 | bounds=bounds, |
||
| 419 | # method="tnc")) |
||
| 420 | # method="l-bfgs-b", options=dict(maxcor=100))) |
||
| 421 | method="l-bfgs-b", jac=grad_nlpost)) |
||
| 422 | # method="Nelder-Mead")) |
||
| 423 | # method="BFGS")) |
||
| 424 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08))) |
||
| 425 | logging.debug("optimization result: %s", resop_bh) |
||
| 426 | resop_gp = resop_bh.lowest_optimization_result |
||
| 427 | if args.optimize == 4: |
||
| 428 | resop_gp, cov_gp = op.curve_fit( |
||
| 429 | gpmodel_mean, |
||
| 430 | no_ys_train, no_dens_train, gpmodel.get_parameter_vector(), |
||
| 431 | bounds=tuple(np.array(bounds).T), |
||
| 432 | # method='lm', |
||
| 433 | # absolute_sigma=True, |
||
| 434 | sigma=no_errs_train) |
||
| 435 | print(resop_gp, np.sqrt(np.diag(cov_gp))) |
||
| 436 | logging.info("%s", resop_gp.message) |
||
| 437 | logging.debug("optimization result: %s", resop_gp) |
||
| 438 | logging.info("gpmodel dict: %s", gpmodel.get_parameter_dict()) |
||
| 439 | logging.info("log posterior trained: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
||
| 440 | gpmodel.compute(no_ys_test, no_errs_test) |
||
| 441 | logging.info("log posterior test: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
||
| 442 | gpmodel.compute(no_ys, no_errs) |
||
| 443 | logging.info("log posterior all: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
||
| 444 | # cross check to make sure that the gpmodel parameter vector is really |
||
| 445 | # set to the fitted parameters |
||
| 446 | logging.info("opt. model vector: %s", resop_gp.x) |
||
| 447 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 448 | logging.debug("opt. log posterior trained 1: %s", lpost(resop_gp.x, no_dens_train, gpmodel)) |
||
| 449 | gpmodel.compute(no_ys_test, no_errs_test) |
||
| 450 | logging.debug("opt. log posterior test 1: %s", lpost(resop_gp.x, no_dens_test, gpmodel)) |
||
| 451 | gpmodel.compute(no_ys, no_errs) |
||
| 452 | logging.debug("opt. log posterior all 1: %s", lpost(resop_gp.x, no_dens, gpmodel)) |
||
| 453 | logging.debug("opt. model vector: %s", gpmodel.get_parameter_vector()) |
||
| 454 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 455 | logging.debug("opt. log posterior trained 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
||
| 456 | gpmodel.compute(no_ys_test, no_errs_test) |
||
| 457 | logging.debug("opt. log posterior test 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
||
| 458 | gpmodel.compute(no_ys, no_errs) |
||
| 459 | logging.debug("opt. log posterior all 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
||
| 460 | pre_opt = resop_gp.success |
||
| 461 | try: |
||
| 462 | logging.info("GM lt: %s", gpmodel.get_parameter("mean:GM:tau0")) |
||
| 463 | except ValueError: |
||
| 464 | pass |
||
| 465 | logging.info("(GP) model: %s", gpmodel.kernel) |
||
| 466 | if isinstance(gpmodel, celerite.GP): |
||
| 467 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
||
| 468 | |||
| 469 | bestfit = gpmodel.get_parameter_vector() |
||
| 470 | filename_base = ("NO_regress_fit_{0}_{1:.0f}_{2:.0f}_{{0}}_{3}" |
||
| 471 | .format(gpmodel_name, lat * 10, alt, ksub)) |
||
| 472 | |||
| 473 | if args.mcmc: |
||
| 474 | gpmodel.compute(no_ys_train, no_errs_train) |
||
| 475 | samples, lnp = mcmc_sample_model(gpmodel, |
||
| 476 | no_dens_train, |
||
| 477 | beta=1.0, |
||
| 478 | nwalkers=args.walkers, nburnin=args.burn_in, |
||
| 479 | nprod=args.production, nthreads=args.threads, |
||
| 480 | show_progress=args.progress, |
||
| 481 | optimized=pre_opt, bounds=bounds, return_logpost=True) |
||
| 482 | |||
| 483 | if args.train_fraction < 1. or args.test_fraction < 1.: |
||
| 484 | logging.info("Statistics for the test samples") |
||
| 485 | mcmc_statistics(gpmodel, |
||
| 486 | no_ys_test, no_dens_test, no_errs_test, |
||
| 487 | no_ys_train, no_dens_train, no_errs_train, |
||
| 488 | samples, lnp, |
||
| 489 | ) |
||
| 490 | logging.info("Statistics for all samples") |
||
| 491 | mcmc_statistics(gpmodel, |
||
| 492 | no_ys, no_dens, no_errs, |
||
| 493 | no_ys_train, no_dens_train, no_errs_train, |
||
| 494 | samples, lnp, |
||
| 495 | ) |
||
| 496 | |||
| 497 | sampl_percs = np.percentile(samples, [2.5, 50, 97.5], axis=0) |
||
| 498 | if args.plot_corner: |
||
| 499 | import corner |
||
| 500 | # Corner plot of the sampled parameters |
||
| 501 | fig = corner.corner(samples, |
||
| 502 | quantiles=[0.025, 0.5, 0.975], |
||
| 503 | show_titles=True, |
||
| 504 | labels=gpmodel.get_parameter_names(), |
||
| 505 | truths=bestfit, |
||
| 506 | hist_args=dict(normed=True)) |
||
| 507 | fig.savefig(filename_base.format("corner") + ".pdf", transparent=True) |
||
| 508 | |||
| 509 | if args.save_samples: |
||
| 510 | if args.samples_format in ["npz"]: |
||
| 511 | # save the samples compressed to save space. |
||
| 512 | np.savez_compressed(filename_base.format("sampls") + ".npz", |
||
| 513 | samples=samples) |
||
| 514 | if args.samples_format in ["nc", "netcdf4"]: |
||
| 515 | save_samples_netcdf(filename_base.format("sampls") + ".nc", |
||
| 516 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
| 517 | if args.samples_format in ["h5", "hdf5"]: |
||
| 518 | save_samples_netcdf(filename_base.format("sampls") + ".h5", |
||
| 519 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
| 520 | # MCMC finished here |
||
| 521 | |||
| 522 | # set the model times and errors to use the full data set for plotting |
||
| 523 | gpmodel.compute(no_ys, no_errs) |
||
| 524 | if args.save_model: |
||
| 525 | try: |
||
| 526 | # python 2 |
||
| 527 | import cPickle as pickle |
||
| 528 | except ImportError: |
||
| 529 | # python 3 |
||
| 530 | import pickle |
||
| 531 | # pickle and save the model |
||
| 532 | with open(filename_base.format("model") + ".pkl", "wb") as f: |
||
| 533 | pickle.dump((gpmodel), f, -1) |
||
| 534 | |||
| 535 | if args.plot_samples and args.mcmc: |
||
| 536 | plot_random_samples(gpmodel, no_ys, no_dens, no_errs, |
||
| 537 | samples, args.scale, |
||
| 538 | filename_base.format("sampls") + ".pdf", |
||
| 539 | size=4, extra_years=[4, 2]) |
||
| 540 | |||
| 541 | if args.plot_median: |
||
| 542 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
||
| 543 | sampl_percs[1], |
||
| 544 | filename_base.format("median") + ".pdf") |
||
| 545 | if args.plot_residuals: |
||
| 546 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
||
| 547 | sampl_percs[1], args.scale, |
||
| 548 | filename_base.format("medres") + ".pdf") |
||
| 549 | if args.plot_maxlnp: |
||
| 550 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
||
| 551 | samples[np.argmax(lnp)], |
||
| 552 | filename_base.format("maxlnp") + ".pdf") |
||
| 553 | if args.plot_maxlnpres: |
||
| 554 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
||
| 555 | samples[np.argmax(lnp)], args.scale, |
||
| 556 | filename_base.format("mlpres") + ".pdf") |
||
| 557 | |||
| 558 | labels = gpmodel.get_parameter_names() |
||
| 559 | logging.info("param percentiles [2.5, 50, 97.5]:") |
||
| 560 | for pc, label in zip(sampl_percs.T, labels): |
||
| 561 | median = pc[1] |
||
| 562 | pc_minus = median - pc[0] |
||
| 563 | pc_plus = pc[2] - median |
||
| 564 | logging.debug("%s: %s", label, pc) |
||
| 565 | logging.info("%s: %.6f (- %.6f) (+ %.6f)", label, |
||
| 566 | median, pc_minus, pc_plus) |
||
| 567 | |||
| 568 | logging.info("Finished successfully.") |
||
| 569 | |||
| 570 | |||
| 571 | 1 | if __name__ == "__main__": |
|
| 572 | main() |
||
| 573 |