| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                # -*- coding: utf-8 -*-  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                # vim:fileencoding=utf-8  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                #  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                # Copyright (c) 2017-2018 Stefan Bender  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                #  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                # This module is part of sciapy.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                # sciapy is free software: you can redistribute it or modify  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                # it under the terms of the GNU General Public License as published  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                # by the Free Software Foundation, version 2.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    11
                 | 
                                    
                             1                          | 
                
                 | 
                """SCIAMACHY data regression MCMC sampler  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                Markov Chain Monte Carlo (MCMC) routines to sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                the posterior probability of SCIAMACHY data regression fits.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                Uses the :class:`emcee.EnsembleSampler` [#]_ do do the real work.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                .. [#] https://emcee.readthedocs.io  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                """  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    20
                 | 
                                    
                             1                          | 
                
                 | 
                import logging  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    21
                 | 
                                    
                             1                          | 
                
                 | 
                from multiprocessing import Pool  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    23
                 | 
                                    
                             1                          | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    24
                 | 
                                    
                             1                          | 
                
                 | 
                from scipy.optimize._differentialevolution import DifferentialEvolutionSolver  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    25
                 | 
                                    
                             1                          | 
                
                 | 
                from scipy.special import logsumexp  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    27
                 | 
                                    
                             1                          | 
                
                 | 
                import celerite  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    28
                 | 
                                    
                             1                          | 
                
                 | 
                import george  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    29
                 | 
                                    
                             1                          | 
                
                 | 
                import emcee  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    31
                 | 
                                    
                             1                          | 
                
                 | 
                try:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    32
                 | 
                                    
                             1                          | 
                
                 | 
                	from tqdm import tqdm  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                	have_tqdm = True  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    34
                 | 
                                    
                             1                          | 
                
                 | 
                except ImportError:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    35
                 | 
                                    
                             1                          | 
                
                 | 
                	have_tqdm = False  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    38
                 | 
                                    
                             1                          | 
                
                 | 
                __all__ = ["mcmc_sample_model"]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    41
                 | 
                                    
                             1                          | 
                
                 | 
                def _lpost(p, model, y=None, beta=1.):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                	model.set_parameter_vector(p)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                	lprior = model.log_prior()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                	if not np.isfinite(lprior):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                		return (-np.inf, [np.nan])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                	log_likelihood = model.log_likelihood(y, quiet=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                	return (beta * (log_likelihood + lprior), [log_likelihood])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                        
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    50
                 | 
                                    
                             1                          | 
                
                View Code Duplication | 
                def _sample_mcmc(sampler, nsamples, p0, rst0,  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                        
                            
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                		show_progress, progress_mod, debug=False):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    52
                 | 
                                    
                             1                          | 
                
                 | 
                	smpl = sampler.sample(p0, rstate0=rst0, iterations=nsamples)  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    53
                 | 
                                    
                             1                          | 
                
                 | 
                	if have_tqdm and show_progress:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                		smpl = tqdm(smpl, total=nsamples, disable=None)  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    55
                 | 
                                    
                             1                          | 
                
                 | 
                	for i, result in enumerate(smpl):  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    56
                 | 
                                    
                             1                          | 
                
                 | 
                		if show_progress and (i + 1) % progress_mod == 0:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                			if not have_tqdm and not debug:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                				logging.info("%5.1f%%", 100 * (float(i + 1) / nsamples)) | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                			if debug:  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                				_pos, _logp, _, _ = result  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                				logging.debug("%5.1f%% lnpmax: %s, p(lnpmax): %s", | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                					100 * (float(i + 1) / nsamples),  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                					np.max(_logp), _pos[np.argmax(_logp)])  | 
            
            
                                                                        
                            
            
                                    
            
            
                | 
                    64
                 | 
                                    
                             1                          | 
                
                 | 
                	return result  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 
                    67
                 | 
                                    
                             1                          | 
                
                View Code Duplication | 
                def mcmc_sample_model(model, y, beta=1.,  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                		nwalkers=100, nburnin=200, nprod=800,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                		nthreads=1, optimized=False,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                		bounds=None,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                		return_logpost=False,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                		show_progress=False, progress_mod=10):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                	"""Markov Chain Monte Carlo sampling interface  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                	MCMC sampling interface to sample posterior probabilities using the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                	:class:`emcee.EnsembleSampler` [#]_.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                	.. [#] https://emcee.readthedocs.io  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                	Arguments  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                	---------  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                	model : celerite.GP, george.GP, or sciapy.regress.RegressionModel instance  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                		The model to draw posterior samples from. It should provide either  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                		`log_likelihood()` and `log_prior()` functions or be directly callable  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                		via `__call__()`.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                	y : (N,) array_like  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                		The data to condition the probabilities on.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                	beta : float, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                		Tempering factor for the probability, default: 1.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                	nwalkers : int, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                		The number of MCMC walkers (default: 100). If this number is smaller  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                		than 4 times the number of parameters, it is multiplied by the number  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                		of parameters. Otherwise it specifies the number of parameters directly.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                	nburnin : int, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                		The number of burn-in samples to draw, default: 200.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                	nprod : int, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                		The number of production samples to draw, default: 800.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                	nthreads : int, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                		The number of threads to use with a `multiprocessing.Pool`,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                		used as `pool` for `emcee.EnsembleSampler`. Default: 1.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                	optimized : bool, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                		Indicate whether the actual (starting) position was determined with an  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                		optimization algorithm beforehand. If `False` (the default), a  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                		pre-burn-in run optimizes the starting position. Sampling continues  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                		from there with the normal burn-in and production runs.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                		In that case, latin hypercube sampling is used to distribute the walker  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                		starting positions equally in parameter space.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                	bounds : iterable, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                		The parameter bounds as a list of (min, max) entries.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                		Default: None  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                	return_logpost : bool, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                		Indicate whether or not to  return the sampled log probabilities as well.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                		Default: False  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                	show_progress : bool, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                		Print the percentage of samples every `progress_mod` samples.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                		Default: False  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                	progress_mod : int, optional  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                		Interval in samples to print the percentage of samples.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                		Default: 10  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                	Returns  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                	-------  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                	samples or (samples, logpost) : array_like or tuple  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                		(nwalkers * nprod, ndim) array of the sampled parameters from the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                		production run if return_logpost is `False`.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                		A tuple of an (nwalkers * nprod, ndim) array (the same as above)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                 | 
                		and an (nwalkers,) array with the second entry containing the  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                		log posterior probabilities if return_logpost is `True`.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                	"""  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    130
                 | 
                                    
                             1                          | 
                
                 | 
                	v = model.get_parameter_vector()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    131
                 | 
                                    
                             1                          | 
                
                 | 
                	ndim = len(v)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    132
                 | 
                                    
                             1                          | 
                
                 | 
                	if nwalkers < 4 * ndim:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    133
                 | 
                                    
                             1                          | 
                
                 | 
                		nwalkers *= ndim  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    134
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("MCMC parameters: %s walkers, %s burn-in samples, " | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                				"%s production samples using %s threads.",  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                				nwalkers, nburnin, nprod, nthreads)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    138
                 | 
                                    
                             1                          | 
                
                 | 
                	if isinstance(model, celerite.GP) or isinstance(model, george.GP):  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    139
                 | 
                                    
                             1                          | 
                
                 | 
                		mod_func = _lpost  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    140
                 | 
                                    
                             1                          | 
                
                 | 
                		mod_args = (model, y, beta)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                	else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                		mod_func = model  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                		mod_args = (beta,)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                	# Initialize the walkers.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    146
                 | 
                                    
                             1                          | 
                
                 | 
                	if not optimized:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                		# scipy.optimize's DifferentialEvolutionSolver uses  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                		# latin hypercube sampling as starting positions.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                		# We just use their initialization to avoid duplicating code.  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                		if bounds is None:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                			bounds = model.get_parameter_bounds()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                		de_solver = DifferentialEvolutionSolver(_lpost,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                					bounds=bounds,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                					popsize=nwalkers // ndim)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                		# The initial population should reflect latin hypercube sampling  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                		p0 = de_solver.population  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                		# fill up to full size in case the number of walkers is not a  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                		# multiple of the number of parameters  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                		missing = nwalkers - p0.shape[0]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                		p0 = np.vstack([p0] +  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                			[v + 1e-2 * np.random.randn(ndim) for _ in range(missing)])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                	else:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    163
                 | 
                                    
                             1                          | 
                
                 | 
                		p0 = np.array([v + 1e-2 * np.random.randn(ndim) for _ in range(nwalkers)])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                	# set up the sampling pool  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    166
                 | 
                                    
                             1                          | 
                
                 | 
                	pool = Pool(processes=nthreads)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    167
                 | 
                                    
                             1                          | 
                
                 | 
                	sampler = emcee.EnsembleSampler(nwalkers, ndim, mod_func, args=mod_args,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                			pool=pool)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    170
                 | 
                                    
                             1                          | 
                
                 | 
                	rst0 = np.random.get_state()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    172
                 | 
                                    
                             1                          | 
                
                 | 
                	if not optimized:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                		logging.info("Running MCMC fit (%s samples)", nburnin) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                		p0, lnp0, rst0, _ = _sample_mcmc(sampler, nburnin, p0, rst0,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                				show_progress, progress_mod, debug=True)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                		logging.info("MCMC fit finished.") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                		p = p0[np.argmax(lnp0)]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                		logging.info("Fit max logpost: %s, params: %s, exp(params): %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                					np.max(lnp0), p, np.exp(p))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                		model.set_parameter_vector(p)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                		logging.debug("params: %s", model.get_parameter_dict()) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                		logging.debug("log_likelihood: %s", model.log_likelihood(y)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                		p0 = [p + 1e-4 * np.random.randn(ndim) for _ in range(nwalkers)]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                		sampler.reset()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    187
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("Running burn-in (%s samples)", nburnin) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    188
                 | 
                                    
                             1                          | 
                
                 | 
                	p0, lnp0, rst0, _ = _sample_mcmc(sampler, nburnin, p0, rst0,  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                			show_progress, progress_mod)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    190
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("Burn-in finished.") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    191
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    192
                 | 
                                    
                             1                          | 
                
                 | 
                	p = p0[np.argmax(lnp0)]  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    193
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("burn-in max logpost: %s, params: %s, exp(params): %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    194
                 | 
                                    
                                                     | 
                
                 | 
                				np.max(lnp0), p, np.exp(p))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    195
                 | 
                                    
                             1                          | 
                
                 | 
                	model.set_parameter_vector(p)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    196
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.debug("params: %s", model.get_parameter_dict()) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    197
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.debug("log_likelihood: %s", model.log_likelihood(y)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    198
                 | 
                                    
                             1                          | 
                
                 | 
                	sampler.reset()  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    199
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    200
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("Running production chain (%s samples)", nprod) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    201
                 | 
                                    
                             1                          | 
                
                 | 
                	_sample_mcmc(sampler, nprod, p0, rst0, show_progress, progress_mod)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    202
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("Production run finished.") | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    203
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    204
                 | 
                                    
                             1                          | 
                
                 | 
                	samples = sampler.flatchain  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    205
                 | 
                                    
                             1                          | 
                
                 | 
                	lnp = sampler.flatlnprobability  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    206
                 | 
                                    
                                                     | 
                
                 | 
                	# first column in the blobs are the log likelihoods  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    207
                 | 
                                    
                             1                          | 
                
                 | 
                	lnlh = np.array(sampler.blobs)[..., 0].ravel().astype(float)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    208
                 | 
                                    
                             1                          | 
                
                 | 
                	post_expect_loglh = np.nanmean(np.array(lnlh))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    209
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("total samples: %s", samples.shape) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    210
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    211
                 | 
                                    
                             1                          | 
                
                 | 
                	samplmean = np.mean(samples, axis=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    212
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("mean: %s, exp(mean): %s, sqrt(exp(mean)): %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    213
                 | 
                                    
                                                     | 
                
                 | 
                			samplmean, np.exp(samplmean), np.sqrt(np.exp(samplmean)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    214
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    215
                 | 
                                    
                             1                          | 
                
                 | 
                	samplmedian = np.median(samples, axis=0)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    216
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("median: %s, exp(median): %s, sqrt(exp(median)): %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    217
                 | 
                                    
                                                     | 
                
                 | 
                			samplmedian, np.exp(samplmedian), np.sqrt(np.exp(samplmedian)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    218
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    219
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("max logpost: %s, params: %s, exp(params): %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    220
                 | 
                                    
                                                     | 
                
                 | 
                			np.max(lnp), samples[np.argmax(lnp)],  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    221
                 | 
                                    
                                                     | 
                
                 | 
                			np.exp(samples[np.argmax(lnp)]))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    222
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    223
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("AIC: %s", 2 * ndim - 2 * np.max(lnp)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    224
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("BIC: %s", np.log(len(y)) * ndim - 2 * np.max(lnp)) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    225
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("poor man's evidence 1 sum: %s, mean: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    226
                 | 
                                    
                                                     | 
                
                 | 
                			np.sum(np.exp(lnp)), np.mean(np.exp(lnp)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    227
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("poor man's evidence 2 max: %s, std: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    228
                 | 
                                    
                                                     | 
                
                 | 
                			np.max(np.exp(lnp)), np.std(np.exp(lnp)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    229
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("poor man's evidence 3: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    230
                 | 
                                    
                                                     | 
                
                 | 
                			np.max(np.exp(lnp)) / np.std(np.exp(lnp)))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    231
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("poor man's evidence 4 sum: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    232
                 | 
                                    
                                                     | 
                
                 | 
                			logsumexp(lnp, b=1. / lnp.shape[0], axis=0))  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    233
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    234
                 | 
                                    
                                                     | 
                
                 | 
                	# mode  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    235
                 | 
                                    
                             1                          | 
                
                 | 
                	model.set_parameter_vector(samples[np.argmax(lnp)])  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    236
                 | 
                                    
                             1                          | 
                
                 | 
                	log_lh = model.log_likelihood(y)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    237
                 | 
                                    
                                                     | 
                
                 | 
                	# Use the likelihood instead of the posterior  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    238
                 | 
                                    
                                                     | 
                
                 | 
                	# https://doi.org/10.3847/1538-3881/aa9332  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    239
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("BIC lh: %s", np.log(len(y)) * ndim - 2 * log_lh) | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    240
                 | 
                                    
                                                     | 
                
                 | 
                	# DIC  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    241
                 | 
                                    
                             1                          | 
                
                 | 
                	sample_deviance = -2 * np.max(lnp)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    242
                 | 
                                    
                             1                          | 
                
                 | 
                	deviance_at_sample = -2 * (model.log_prior() + log_lh)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    243
                 | 
                                    
                             1                          | 
                
                 | 
                	pd = sample_deviance - deviance_at_sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    244
                 | 
                                    
                             1                          | 
                
                 | 
                	dic = 2 * sample_deviance - deviance_at_sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    245
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("max logpost log_lh: %s, AIC: %s, DIC: %s, pd: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    246
                 | 
                                    
                                                     | 
                
                 | 
                			model.log_likelihood(y), 2 * ndim - 2 * log_lh, dic, pd)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    247
                 | 
                                    
                                                     | 
                
                 | 
                	# mean  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    248
                 | 
                                    
                             1                          | 
                
                 | 
                	model.set_parameter_vector(samplmean)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    249
                 | 
                                    
                             1                          | 
                
                 | 
                	log_lh = model.log_likelihood(y)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    250
                 | 
                                    
                             1                          | 
                
                 | 
                	log_lh_mean = log_lh  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    251
                 | 
                                    
                                                     | 
                
                 | 
                	# DIC  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    252
                 | 
                                    
                             1                          | 
                
                 | 
                	sample_deviance = -2 * np.nanmean(lnp)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    253
                 | 
                                    
                             1                          | 
                
                 | 
                	deviance_at_sample = -2 * (model.log_prior() + log_lh)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    254
                 | 
                                    
                             1                          | 
                
                 | 
                	pd = sample_deviance - deviance_at_sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    255
                 | 
                                    
                             1                          | 
                
                 | 
                	dic = 2 * sample_deviance - deviance_at_sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    256
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("mean log_lh: %s, AIC: %s, DIC: %s, pd: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    257
                 | 
                                    
                                                     | 
                
                 | 
                			model.log_likelihood(y), 2 * ndim - 2 * log_lh, dic, pd)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    258
                 | 
                                    
                                                     | 
                
                 | 
                	# median  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    259
                 | 
                                    
                             1                          | 
                
                 | 
                	model.set_parameter_vector(samplmedian)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    260
                 | 
                                    
                             1                          | 
                
                 | 
                	log_lh = model.log_likelihood(y)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    261
                 | 
                                    
                                                     | 
                
                 | 
                	# DIC  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    262
                 | 
                                    
                             1                          | 
                
                 | 
                	sample_deviance = -2 * np.nanmedian(lnp)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    263
                 | 
                                    
                             1                          | 
                
                 | 
                	deviance_at_sample = -2 * (model.log_prior() + log_lh)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    264
                 | 
                                    
                             1                          | 
                
                 | 
                	dic = 2 * sample_deviance - deviance_at_sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    265
                 | 
                                    
                             1                          | 
                
                 | 
                	pd = sample_deviance - deviance_at_sample  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    266
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("median log_lh: %s, AIC: %s, DIC: %s, pd: %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    267
                 | 
                                    
                                                     | 
                
                 | 
                			model.log_likelihood(y), 2 * ndim - 2 * log_lh, dic, pd)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    268
                 | 
                                    
                                                     | 
                
                 | 
                	# (4)--(6) in Ando2011 doi:10.1080/01966324.2011.10737798  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    269
                 | 
                                    
                             1                          | 
                
                 | 
                	pd_ando = 2 * (log_lh_mean - post_expect_loglh)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    270
                 | 
                                    
                             1                          | 
                
                 | 
                	ic5 = - 2 * post_expect_loglh + 2 * pd_ando  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    271
                 | 
                                    
                             1                          | 
                
                 | 
                	ic6 = - 2 * post_expect_loglh + 2 * ndim  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    272
                 | 
                                    
                             1                          | 
                
                 | 
                	logging.info("Ando2011: pd: %s, IC(5): %s, IC(6): %s", | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    273
                 | 
                                    
                                                     | 
                
                 | 
                			pd_ando, ic5, ic6)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    274
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    275
                 | 
                                    
                             1                          | 
                
                 | 
                	if return_logpost:  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    276
                 | 
                                    
                             1                          | 
                
                 | 
                		return samples, lnp  | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    277
                 | 
                                    
                                                     | 
                
                 | 
                	return samples  | 
            
            
                                                        
            
                                    
            
            
                | 
                    278
                 | 
                                    
                                                     | 
                
                 | 
                 |