| Total Complexity | 43 |
| Total Lines | 348 |
| Duplicated Lines | 89.37 % |
| Coverage | 21.43% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.regress.models_cel often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | # vim:fileencoding=utf-8 |
||
| 3 | # |
||
| 4 | # Copyright (c) 2017-2018 Stefan Bender |
||
| 5 | # |
||
| 6 | # This module is part of sciapy. |
||
| 7 | # sciapy is free software: you can redistribute it or modify |
||
| 8 | # it under the terms of the GNU General Public License as published |
||
| 9 | # by the Free Software Foundation, version 2. |
||
| 10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
| 11 | 1 | """SCIAMACHY regression models (celerite version) |
|
| 12 | |||
| 13 | Model classes for SCIAMACHY data regression fits using the |
||
| 14 | :mod:`celerite` [#]_ modeling protocol. |
||
| 15 | |||
| 16 | .. [#] https://celerite.readthedocs.io |
||
| 17 | """ |
||
| 18 | 1 | from __future__ import absolute_import, division, print_function |
|
| 19 | |||
| 20 | 1 | import numpy as np |
|
| 21 | 1 | from scipy.interpolate import interp1d |
|
| 22 | |||
| 23 | 1 | from celerite.modeling import Model, ModelSet, ConstantModel |
|
| 24 | |||
| 25 | 1 | __all__ = ["ConstantModel", |
|
| 26 | "HarmonicModelCosineSine", "HarmonicModelAmpPhase", |
||
| 27 | "ProxyModel", "CeleriteModelSet"] |
||
| 28 | |||
| 29 | 1 | View Code Duplication | class HarmonicModelCosineSine(Model): |
|
|
|||
| 30 | """Model for harmonic terms |
||
| 31 | |||
| 32 | Models harmonic terms using a cosine and sine part. |
||
| 33 | The total amplitude and phase can be inferred from that. |
||
| 34 | |||
| 35 | Parameters |
||
| 36 | ---------- |
||
| 37 | freq : float |
||
| 38 | The frequency in years^-1 |
||
| 39 | cos : float |
||
| 40 | The amplitude of the cosine part |
||
| 41 | sin : float |
||
| 42 | The amplitude of the sine part |
||
| 43 | """ |
||
| 44 | 1 | parameter_names = ("freq", "cos", "sin") |
|
| 45 | |||
| 46 | 1 | def get_value(self, t): |
|
| 47 | return (self.cos * np.cos(self.freq * 2 * np.pi * t) + |
||
| 48 | self.sin * np.sin(self.freq * 2 * np.pi * t)) |
||
| 49 | |||
| 50 | 1 | def get_amplitude(self): |
|
| 51 | return np.sqrt(self.cos**2 + self.sin**2) |
||
| 52 | |||
| 53 | 1 | def get_phase(self): |
|
| 54 | return np.arctan2(self.sin, self.cos) |
||
| 55 | |||
| 56 | 1 | def compute_gradient(self, t): |
|
| 57 | dcos = np.cos(self.freq * 2 * np.pi * t) |
||
| 58 | dsin = np.sin(self.freq * 2 * np.pi * t) |
||
| 59 | df = 2 * np.pi * t * (self.sin * dcos - self.cos * dsin) |
||
| 60 | return np.array([df, dcos, dsin]) |
||
| 61 | |||
| 62 | |||
| 63 | 1 | View Code Duplication | class HarmonicModelAmpPhase(Model): |
| 64 | """Model for harmonic terms |
||
| 65 | |||
| 66 | Models harmonic terms using a cosine and sine part. |
||
| 67 | The total amplitude and phase can be inferred from that. |
||
| 68 | |||
| 69 | Parameters |
||
| 70 | ---------- |
||
| 71 | freq : float |
||
| 72 | The frequency in years^-1 |
||
| 73 | amp : float |
||
| 74 | The amplitude of the harmonic term |
||
| 75 | phase : float |
||
| 76 | The phase of the harmonic part |
||
| 77 | """ |
||
| 78 | 1 | parameter_names = ("freq", "amp", "phase") |
|
| 79 | |||
| 80 | 1 | def get_value(self, t): |
|
| 81 | return self.amp * np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
| 82 | |||
| 83 | 1 | def get_amplitude(self): |
|
| 84 | return self.amp |
||
| 85 | |||
| 86 | 1 | def get_phase(self): |
|
| 87 | return self.phase |
||
| 88 | |||
| 89 | 1 | def compute_gradient(self, t): |
|
| 90 | damp = np.cos(self.freq * 2 * np.pi * t + self.phase) |
||
| 91 | dphi = -self.amp * np.sin(self.freq * 2 * np.pi * t + self.phase) |
||
| 92 | df = 2 * np.pi * t * dphi |
||
| 93 | return np.array([df, damp, dphi]) |
||
| 94 | |||
| 95 | |||
| 96 | 1 | View Code Duplication | class ProxyModel(Model): |
| 97 | """Model for proxy terms |
||
| 98 | |||
| 99 | Models proxy terms with a finite and (semi-)annually varying life time. |
||
| 100 | |||
| 101 | Parameters |
||
| 102 | ---------- |
||
| 103 | proxy_times : (N,) array_like |
||
| 104 | The data times of the proxy values |
||
| 105 | proxy_vals : (N,) array_like |
||
| 106 | The proxy values at `proxy_times` |
||
| 107 | amp : float |
||
| 108 | The amplitude of the proxy term |
||
| 109 | lag : float |
||
| 110 | The lag of the proxy value in years. |
||
| 111 | tau0 : float |
||
| 112 | The base life time of the proxy |
||
| 113 | taucos1 : float |
||
| 114 | The amplitude of the cosine part of the annual life time variation. |
||
| 115 | tausin1 : float |
||
| 116 | The amplitude of the sine part of the annual life time variation. |
||
| 117 | taucos2 : float |
||
| 118 | The amplitude of the cosine part of the semi-annual life time variation. |
||
| 119 | tausin2 : float |
||
| 120 | The amplitude of the sine part of the semi-annual life time variation. |
||
| 121 | ltscan : float |
||
| 122 | The number of days to sum the previous proxy values. If it is |
||
| 123 | negative, the value will be set to three times the maximal lifetime. |
||
| 124 | No lifetime adjustemets are calculated when set to zero. |
||
| 125 | center : bool, optional |
||
| 126 | Centers the proxy values by subtracting the overall mean. The mean is |
||
| 127 | calculated from the whole `proxy_vals` array and is stored in the |
||
| 128 | `mean` attribute. |
||
| 129 | Default: False |
||
| 130 | sza_intp : scipy.interpolate.interp1d() instance, optional |
||
| 131 | When not `None`, cos(sza) and sin(sza) are used instead |
||
| 132 | of the time to model the annual variation of the lifetime. |
||
| 133 | Semi-annual variations are not used in that case. |
||
| 134 | Default: None |
||
| 135 | fit_phase : bool, optional |
||
| 136 | Fit the phase shift directly instead of using sine and cosine |
||
| 137 | terms for the (semi-)annual lifetime variations. If True, the fitted |
||
| 138 | cosine parameter is the amplitude and the sine parameter the phase. |
||
| 139 | Default: False (= fit sine and cosine terms) |
||
| 140 | lifetime_prior : str, optional |
||
| 141 | The prior probability density for each coefficient of the lifetime. |
||
| 142 | Possible types are "flat" or `None` for a flat prior, "exp" for an |
||
| 143 | exponential density ~ :math:`\\text{exp}(-|\\tau| / \\text{metric})`, |
||
| 144 | and "normal" for a normal distribution |
||
| 145 | ~ :math:`\\text{exp}(-\\tau^2 / (2 * \\text{metric}^2))`. |
||
| 146 | Default: None (= flat prior). |
||
| 147 | lifetime_metric : float, optional |
||
| 148 | The metric (scale) of the lifetime priors in days, see `prior`. |
||
| 149 | Default 1. |
||
| 150 | days_per_time_unit : float, optional |
||
| 151 | The number of days per time unit, used to normalize the lifetime |
||
| 152 | units. Use 365.25 if the times are in fractional years, or 1 if |
||
| 153 | they are in days. |
||
| 154 | Default: 365.25 |
||
| 155 | """ |
||
| 156 | 1 | parameter_names = ("amp", "lag", "tau0", |
|
| 157 | "taucos1", "tausin1", "taucos2", "tausin2", |
||
| 158 | "ltscan") |
||
| 159 | |||
| 160 | 1 | def __init__(self, proxy_times, proxy_vals, |
|
| 161 | center=False, |
||
| 162 | sza_intp=None, fit_phase=False, |
||
| 163 | lifetime_prior=None, lifetime_metric=1., |
||
| 164 | days_per_time_unit=365.25, |
||
| 165 | *args, **kwargs): |
||
| 166 | self.mean = 0. |
||
| 167 | if center: |
||
| 168 | self.mean = np.nanmean(proxy_vals) |
||
| 169 | self.intp = interp1d(proxy_times, proxy_vals - self.mean, |
||
| 170 | bounds_error=False) |
||
| 171 | self.sza_intp = sza_intp |
||
| 172 | self.fit_phase = fit_phase |
||
| 173 | self.days_per_time_unit = days_per_time_unit |
||
| 174 | self.omega = 2 * np.pi * days_per_time_unit / 365.25 |
||
| 175 | self.lifetime_prior = lifetime_prior |
||
| 176 | self.lifetime_metric = lifetime_metric |
||
| 177 | super(ProxyModel, self).__init__(*args, **kwargs) |
||
| 178 | |||
| 179 | 1 | def get_value(self, t): |
|
| 180 | proxy_val = self.intp(t - self.lag) |
||
| 181 | if self.ltscan == 0: |
||
| 182 | # no lifetime, nothing else to do |
||
| 183 | return self.amp * proxy_val |
||
| 184 | # annual variation of the proxy lifetime |
||
| 185 | if self.sza_intp is not None: |
||
| 186 | # using the solar zenith angle |
||
| 187 | tau_cs = (self.taucos1 * np.cos(np.radians(self.sza_intp(t))) |
||
| 188 | + self.tausin1 * np.sin(np.radians(self.sza_intp(t)))) |
||
| 189 | elif self.fit_phase: |
||
| 190 | # using time (cos) and phase (sin) |
||
| 191 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * t + self.tausin1) |
||
| 192 | + self.taucos2 * np.cos(2 * self.omega * t + self.tausin2)) |
||
| 193 | else: |
||
| 194 | # using time |
||
| 195 | tau_cs = (self.taucos1 * np.cos(1 * self.omega * t) |
||
| 196 | + self.tausin1 * np.sin(1 * self.omega * t) |
||
| 197 | + self.taucos2 * np.cos(2 * self.omega * t) |
||
| 198 | + self.tausin2 * np.sin(2 * self.omega * t)) |
||
| 199 | tau_cs[tau_cs < 0] = 0. # clip to zero |
||
| 200 | tau = self.tau0 + tau_cs |
||
| 201 | if self.ltscan > 0: |
||
| 202 | _ltscn = int(np.floor(self.ltscan)) |
||
| 203 | else: |
||
| 204 | # infer the scan time from the maximal lifetime |
||
| 205 | _ltscn = 3 * int(np.ceil(self.tau0 + |
||
| 206 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
| 207 | if np.all(tau > 0): |
||
| 208 | bs = np.arange(1, _ltscn + 1, 1.)[None, :] |
||
| 209 | taufacs = np.exp(-bs / tau[:, None]) |
||
| 210 | proxy_val += np.sum( |
||
| 211 | self.intp(t[:, None] - self.lag - |
||
| 212 | bs / self.days_per_time_unit) * taufacs, |
||
| 213 | axis=1) |
||
| 214 | return self.amp * proxy_val |
||
| 215 | |||
| 216 | 1 | def compute_gradient(self, t): |
|
| 217 | proxy_val = self.intp(t - self.lag) |
||
| 218 | proxy_val_grad0 = self.intp(t - self.lag) |
||
| 219 | # annual variation of the proxy lifetime |
||
| 220 | if self.sza_intp is not None: |
||
| 221 | # using the solar zenith angle |
||
| 222 | dtau_cos1 = np.cos(np.radians(self.sza_intp(t))) |
||
| 223 | dtau_sin1 = np.sin(np.radians(self.sza_intp(t))) |
||
| 224 | dtau_cos2 = np.zeros_like(t) |
||
| 225 | dtau_sin2 = np.zeros_like(t) |
||
| 226 | tau_cs = self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 |
||
| 227 | elif self.fit_phase: |
||
| 228 | # using time (cos) and phase (sin) |
||
| 229 | dtau_cos1 = np.cos(1 * self.omega * t + self.tausin1) |
||
| 230 | dtau_sin1 = -self.taucos1 * np.sin(1 * self.omega * t + self.tausin1) |
||
| 231 | dtau_cos2 = np.cos(2 * self.omega * t + self.tausin2) |
||
| 232 | dtau_sin2 = -self.taucos2 * np.sin(2 * self.omega * t + self.tausin2) |
||
| 233 | tau_cs = self.taucos1 * dtau_cos1 + self.taucos2 * dtau_cos2 |
||
| 234 | else: |
||
| 235 | # using time |
||
| 236 | dtau_cos1 = np.cos(1 * self.omega * t) |
||
| 237 | dtau_sin1 = np.sin(1 * self.omega * t) |
||
| 238 | dtau_cos2 = np.cos(2 * self.omega * t) |
||
| 239 | dtau_sin2 = np.sin(2 * self.omega * t) |
||
| 240 | tau_cs = (self.taucos1 * dtau_cos1 + self.tausin1 * dtau_sin1 + |
||
| 241 | self.taucos2 * dtau_cos2 + self.tausin2 * dtau_sin2) |
||
| 242 | tau_cs[tau_cs < 0] = 0. # clip to zero |
||
| 243 | tau = self.tau0 + tau_cs |
||
| 244 | if self.ltscan > 0: |
||
| 245 | _ltscn = int(np.floor(self.ltscan)) |
||
| 246 | else: |
||
| 247 | # infer the scan time from the maximal lifetime |
||
| 248 | _ltscn = 3 * int(np.ceil(self.tau0 + |
||
| 249 | np.sqrt(self.taucos1**2 + self.tausin1**2))) |
||
| 250 | if np.all(tau > 0): |
||
| 251 | bs = np.arange(1, _ltscn + 1, 1.)[None, :] |
||
| 252 | taufacs = np.exp(-bs / tau[:, None]) |
||
| 253 | proxy_ts = self.intp(t[:, None] - self.lag - |
||
| 254 | bs / self.days_per_time_unit) * taufacs |
||
| 255 | proxy_val += np.sum(proxy_ts, axis=1) |
||
| 256 | proxy_val_grad0 += np.sum(proxy_ts * bs / tau[:, None]**2, axis=1) |
||
| 257 | return np.array([proxy_val, |
||
| 258 | # set the gradient wrt lag to zero for now |
||
| 259 | np.zeros_like(t), |
||
| 260 | self.amp * proxy_val_grad0, |
||
| 261 | self.amp * proxy_val_grad0 * dtau_cos1, |
||
| 262 | self.amp * proxy_val_grad0 * dtau_sin1, |
||
| 263 | self.amp * proxy_val_grad0 * dtau_cos2, |
||
| 264 | self.amp * proxy_val_grad0 * dtau_sin2, |
||
| 265 | # set the gradient wrt lifetime scan to zero for now |
||
| 266 | np.zeros_like(t)]) |
||
| 267 | |||
| 268 | 1 | def _log_prior_normal(self): |
|
| 269 | l_prior = super(ProxyModel, self).log_prior() |
||
| 270 | if not np.isfinite(l_prior): |
||
| 271 | return -np.inf |
||
| 272 | for n, p in self.get_parameter_dict().items(): |
||
| 273 | if n.startswith("tau"): |
||
| 274 | # Gaussian prior for the lifetimes |
||
| 275 | l_prior -= 0.5 * (p / self.lifetime_metric)**2 |
||
| 276 | return l_prior |
||
| 277 | |||
| 278 | 1 | def _log_prior_exp(self): |
|
| 279 | l_prior = super(ProxyModel, self).log_prior() |
||
| 280 | if not np.isfinite(l_prior): |
||
| 281 | return -np.inf |
||
| 282 | for n, p in self.get_parameter_dict().items(): |
||
| 283 | if n.startswith("tau"): |
||
| 284 | # exponential prior for the lifetimes |
||
| 285 | l_prior -= np.abs(p / self.lifetime_metric) |
||
| 286 | return l_prior |
||
| 287 | |||
| 288 | 1 | def log_prior(self): |
|
| 289 | _priors = {"exp": self._log_prior_exp, |
||
| 290 | "normal": self._log_prior_normal} |
||
| 291 | if self.lifetime_prior is None or self.lifetime_prior == "flat": |
||
| 292 | return super(ProxyModel, self).log_prior() |
||
| 293 | return _priors[self.lifetime_prior]() |
||
| 294 | |||
| 295 | |||
| 296 | 1 | View Code Duplication | class CeleriteModelSet(ModelSet): |
| 297 | |||
| 298 | 1 | def get_value(self, t): |
|
| 299 | v = np.zeros_like(t) |
||
| 300 | for m in self.models.values(): |
||
| 301 | v += m.get_value(t) |
||
| 302 | return v |
||
| 303 | |||
| 304 | 1 | def compute_gradient(self, t): |
|
| 305 | grad = [] |
||
| 306 | for m in self.models.values(): |
||
| 307 | grad.extend(list(m.compute_gradient(t))) |
||
| 308 | return np.array(grad) |
||
| 309 | |||
| 310 | |||
| 311 | 1 | View Code Duplication | def _setup_proxy_model_with_bounds(times, values, |
| 312 | max_amp=1e10, max_days=100, |
||
| 313 | **kwargs): |
||
| 314 | # extract setup from `kwargs` |
||
| 315 | center = kwargs.get("center", False) |
||
| 316 | fit_phase = kwargs.get("fit_phase", False) |
||
| 317 | lag = kwargs.get("lag", 0.) |
||
| 318 | lt_metric = kwargs.get("lifetime_metric", 1) |
||
| 319 | lt_prior = kwargs.get("lifetime_prior", "exp") |
||
| 320 | lt_scan = kwargs.get("lifetime_scan", 60) |
||
| 321 | positive = kwargs.get("positive", False) |
||
| 322 | sza_intp = kwargs.get("sza_intp", None) |
||
| 323 | time_format = kwargs.get("time_format", "jyear") |
||
| 324 | |||
| 325 | return ProxyModel(times, values, |
||
| 326 | center=center, |
||
| 327 | sza_intp=sza_intp, |
||
| 328 | fit_phase=fit_phase, |
||
| 329 | lifetime_prior=lt_prior, |
||
| 330 | lifetime_metric=lt_metric, |
||
| 331 | days_per_time_unit=1 if time_format.endswith("d") else 365.25, |
||
| 332 | amp=0., |
||
| 333 | lag=lag, |
||
| 334 | tau0=0, |
||
| 335 | taucos1=0, tausin1=0, |
||
| 336 | taucos2=0, tausin2=0, |
||
| 337 | ltscan=lt_scan, |
||
| 338 | bounds=dict([ |
||
| 339 | ("amp", [0, max_amp] if positive else [-max_amp, max_amp]), |
||
| 340 | ("lag", [0, max_days]), |
||
| 341 | ("tau0", [0, max_days]), |
||
| 342 | ("taucos1", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
| 343 | ("tausin1", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
| 344 | # semi-annual cycles for the life time |
||
| 345 | ("taucos2", [0, max_days] if fit_phase else [-max_days, max_days]), |
||
| 346 | ("tausin2", [-np.pi, np.pi] if fit_phase else [-max_days, max_days]), |
||
| 347 | ("ltscan", [0, 200])]) |
||
| 348 | ) |
||
| 349 |