| Total Complexity | 44 |
| Total Lines | 555 |
| Duplicated Lines | 83.78 % |
| Coverage | 85.29% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like sciapy.level2.density often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 2 | # vim:fileencoding=utf-8 |
||
| 3 | # |
||
| 4 | # Copyright (c) 2015-2018 Stefan Bender |
||
| 5 | # |
||
| 6 | # This file is part of sciapy. |
||
| 7 | # sciapy is free software: you can redistribute it or modify it |
||
| 8 | # under the terms of the GNU General Public License as published by |
||
| 9 | # the Free Software Foundation, version 2. |
||
| 10 | # See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
||
| 11 | 1 | """SCIAMACHY level 2 number density retrieval results interface |
|
| 12 | |||
| 13 | Interface classes for the level 2 retrieval results from text (ascii) |
||
| 14 | files and netcdf files for further processing. |
||
| 15 | """ |
||
| 16 | |||
| 17 | 1 | from __future__ import absolute_import, division, print_function |
|
| 18 | |||
| 19 | 1 | import os |
|
| 20 | 1 | import re |
|
| 21 | 1 | import sys |
|
| 22 | 1 | import datetime as dt |
|
| 23 | |||
| 24 | 1 | import numpy as np |
|
| 25 | 1 | try: |
|
| 26 | 1 | from netCDF4 import Dataset as netcdf_file |
|
| 27 | 1 | fmtargs = {"format": "NETCDF4"} |
|
| 28 | except ImportError: |
||
| 29 | try: |
||
| 30 | from scipy.io.netcdf import netcdf_file |
||
| 31 | fmtargs = {"version": 1} |
||
| 32 | except ImportError: |
||
| 33 | from pupynere import netcdf_file |
||
| 34 | fmtargs = {"version": 1} |
||
| 35 | |||
| 36 | 1 | __all__ = ["scia_densities", "_UTC"] |
|
| 37 | |||
| 38 | 1 | try: |
|
| 39 | 1 | _UTC = dt.timezone.utc |
|
| 40 | except AttributeError: |
||
| 41 | # python 2.7 |
||
| 42 | class UTC(dt.tzinfo): |
||
|
|
|||
| 43 | def utcoffset(self, d): |
||
| 44 | return dt.timedelta(0) |
||
| 45 | def tzname(self, d): |
||
| 46 | return "UTC" |
||
| 47 | def dst(self, d): |
||
| 48 | return dt.timedelta(0) |
||
| 49 | _UTC = UTC() |
||
| 50 | |||
| 51 | 1 | _meas_dtypes = [ |
|
| 52 | # initial output << v1.0 |
||
| 53 | [('gp_id', int), |
||
| 54 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
| 55 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
| 56 | ('density', float), ('dens_err_meas', float), |
||
| 57 | ('dens_err_tot', float), ('dens_tot', float)], |
||
| 58 | # < 1.0 (NO_emiss-178-g729efb0) |
||
| 59 | [('gp_id', int), |
||
| 60 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
| 61 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
| 62 | ('longitude', float), |
||
| 63 | ('density', float), ('dens_err_meas', float), |
||
| 64 | ('dens_err_tot', float), ('dens_tot', float)], |
||
| 65 | # < 1.5 (NO_emiss-183-gcaa9349) |
||
| 66 | [('gp_id', int), |
||
| 67 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
| 68 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
| 69 | ('longitude', float), |
||
| 70 | ('density', float), ('dens_err_meas', float), |
||
| 71 | ('dens_err_tot', float), ('dens_tot', float), |
||
| 72 | ('apriori', float)], |
||
| 73 | # >= 1.5 (NO-v1.5) |
||
| 74 | [('gp_id', int), |
||
| 75 | ('alt_max', float), ('alt', float), ('alt_min', float), |
||
| 76 | ('lat_max', float), ('lat', float), ('lat_min', float), |
||
| 77 | ('longitude', float), |
||
| 78 | ('density', float), ('dens_err_meas', float), |
||
| 79 | ('dens_err_tot', float), ('dens_tot', float), |
||
| 80 | ('apriori', float), ('akdiag', float)], |
||
| 81 | ] |
||
| 82 | |||
| 83 | |||
| 84 | 1 | View Code Duplication | class scia_densities(object): |
| 85 | """SCIAMACHY orbital retrieved number densities |
||
| 86 | |||
| 87 | Class interface to orbit-wise SCIAMACHY retrieval results. |
||
| 88 | The attributes are based on the text file layout and are |
||
| 89 | tied to the NO retrieval for now. |
||
| 90 | |||
| 91 | Parameters |
||
| 92 | ---------- |
||
| 93 | ref_date: str, optional |
||
| 94 | The reference date on which to base the date calculations on. |
||
| 95 | Default: "2000-01-01" |
||
| 96 | ver: str, optional |
||
| 97 | Explicit density version, used for exporting the data. |
||
| 98 | Not used if set to `None`. |
||
| 99 | Default: `None` |
||
| 100 | data_ver: str, optional |
||
| 101 | Level 2 data version to use, as "ver" used for exporting. |
||
| 102 | Not used if set to `None`. |
||
| 103 | Default: `None` |
||
| 104 | |||
| 105 | Attributes |
||
| 106 | ---------- |
||
| 107 | version |
||
| 108 | file version string |
||
| 109 | data_version |
||
| 110 | level 2 data version |
||
| 111 | date0 |
||
| 112 | reference date |
||
| 113 | nalt |
||
| 114 | number of altitudes in the orbit |
||
| 115 | nlat |
||
| 116 | number of latitudes in the orbit |
||
| 117 | nlon |
||
| 118 | number of longitudes in the orbit, if longitudes are available |
||
| 119 | orbit |
||
| 120 | SCIAMACHY/Envisat orbit number |
||
| 121 | date |
||
| 122 | number of days of the orbit counting from the reference date |
||
| 123 | date0 |
||
| 124 | alts_min |
||
| 125 | alts |
||
| 126 | alts_max |
||
| 127 | the altitude bins: minimum, central, and maximum altitude |
||
| 128 | lats_min |
||
| 129 | lats |
||
| 130 | lats_max |
||
| 131 | the latitude bins: minimum, central, and maximum latitude |
||
| 132 | lons: |
||
| 133 | the central longitude of the bins, only used if available |
||
| 134 | |||
| 135 | densities |
||
| 136 | NO number densities in the bins, (nlat, nalt) array_like |
||
| 137 | dens_err_meas |
||
| 138 | NO number densities measurement uncertainty, |
||
| 139 | (nlat, nalt) array_like |
||
| 140 | dens_err_tot |
||
| 141 | NO number densities total uncertainty, (nlat, nalt) array_like |
||
| 142 | dens_tot |
||
| 143 | total number densities calculated and interpolated NRLMSIS-00 |
||
| 144 | values, (nlat, nalt) array_like |
||
| 145 | |||
| 146 | apriori |
||
| 147 | prior NO number densities, (nlat, nalt) array_like if available, |
||
| 148 | otherwise `None` |
||
| 149 | akdiag |
||
| 150 | diagonal element of the averaging kernel matrix at the retrieval |
||
| 151 | grid point. (nlat, nalt) array_like if available otherwise `None` |
||
| 152 | |||
| 153 | Methods |
||
| 154 | ------- |
||
| 155 | read_from_textfile |
||
| 156 | read_from_netcdf |
||
| 157 | read_from_file |
||
| 158 | write_to_textfile |
||
| 159 | write_to_netcdf |
||
| 160 | |||
| 161 | Note |
||
| 162 | ---- |
||
| 163 | The variables are empty when initialized, use one of the |
||
| 164 | read_from_...() methods to fill with actual data. |
||
| 165 | """ |
||
| 166 | 1 | def __init__(self, author="unknown", ref_date="2000-01-01", ver=None, data_ver=None): |
|
| 167 | 1 | self.author = author |
|
| 168 | 1 | self.version = ver |
|
| 169 | 1 | self.data_version = data_ver |
|
| 170 | 1 | self.date0 = dt.datetime.strptime(ref_date, "%Y-%m-%d").replace(tzinfo=_UTC) |
|
| 171 | 1 | self.nalt = 0 |
|
| 172 | 1 | self.nlat = 0 |
|
| 173 | 1 | self.nlon = 0 |
|
| 174 | 1 | self.orbit = -1 |
|
| 175 | 1 | self.date = -1 |
|
| 176 | 1 | self.alts_min = np.array([]) |
|
| 177 | 1 | self.alts = np.array([]) |
|
| 178 | 1 | self.alts_max = np.array([]) |
|
| 179 | 1 | self.lats_min = np.array([]) |
|
| 180 | 1 | self.lats = np.array([]) |
|
| 181 | 1 | self.lats_max = np.array([]) |
|
| 182 | 1 | self.lons = np.array([]) |
|
| 183 | 1 | self.akdiag = None |
|
| 184 | 1 | self.apriori = None |
|
| 185 | |||
| 186 | 1 | def read_from_textfile(self, filename): |
|
| 187 | """Read NO densities from ascii table file |
||
| 188 | |||
| 189 | Parameters |
||
| 190 | ---------- |
||
| 191 | filename: str, file object or io.TextIOBase.buffer |
||
| 192 | The filename or stream to read the data from. For example |
||
| 193 | to read from stdin in python 3, pass `sys.stdin.buffer`. |
||
| 194 | """ |
||
| 195 | 1 | def _unsrt_unique(a): |
|
| 196 | 1 | return a[np.sort(np.unique(a, return_index=True)[1])] |
|
| 197 | |||
| 198 | 1 | if hasattr(filename, 'seek'): |
|
| 199 | f = filename |
||
| 200 | else: |
||
| 201 | 1 | f = open(filename, 'rb') |
|
| 202 | # example filename:000NO_orbit_41467_20100203_Dichten.txt |
||
| 203 | 1 | fn_fields = os.path.basename(filename).split('_') |
|
| 204 | 1 | self.orbit = int(fn_fields[2]) |
|
| 205 | 1 | self.date = (dt.datetime.strptime(fn_fields[3], "%Y%m%d") |
|
| 206 | .replace(tzinfo=_UTC) - self.date0).days |
||
| 207 | 1 | if self.data_version is None: |
|
| 208 | # try some heuristics to find the level 2 data version |
||
| 209 | 1 | _dir = os.path.dirname(filename) |
|
| 210 | 1 | _m = re.search(".*[_-]v([0-9]+[.].*)", _dir) |
|
| 211 | 1 | if _m: |
|
| 212 | 1 | self.data_version = _m.group(1) |
|
| 213 | else: |
||
| 214 | 1 | self.data_version = "unknown" |
|
| 215 | 1 | data = f.readline().split() |
|
| 216 | 1 | mydtype = _meas_dtypes[len(data) - 13] |
|
| 217 | 1 | marr = np.genfromtxt(f, dtype=mydtype) |
|
| 218 | 1 | f.close() |
|
| 219 | |||
| 220 | # unique altitudes |
||
| 221 | 1 | self.alts_min = _unsrt_unique(marr['alt_min']) |
|
| 222 | 1 | self.alts = _unsrt_unique(marr['alt']) |
|
| 223 | 1 | self.alts_max = _unsrt_unique(marr['alt_max']) |
|
| 224 | |||
| 225 | # unique latitudes |
||
| 226 | 1 | self.lats_min = _unsrt_unique(marr['lat_min']) |
|
| 227 | 1 | self.lats = _unsrt_unique(marr['lat']) |
|
| 228 | 1 | self.lats_max = _unsrt_unique(marr['lat_max']) |
|
| 229 | |||
| 230 | # unique longitudes if available |
||
| 231 | 1 | try: |
|
| 232 | 1 | self.lons = _unsrt_unique(marr['longitude']) |
|
| 233 | 1 | self.nlon = len(self.lons) |
|
| 234 | 1 | except ValueError: |
|
| 235 | 1 | pass |
|
| 236 | |||
| 237 | 1 | self.nalt = len(self.alts) |
|
| 238 | 1 | self.nlat = len(self.lats) |
|
| 239 | |||
| 240 | # reorder by latitude first, then altitude |
||
| 241 | 1 | self.densities = marr['density'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
| 242 | 1 | self.dens_err_meas = marr['dens_err_meas'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
| 243 | 1 | self.dens_err_tot = marr['dens_err_tot'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
| 244 | 1 | self.dens_tot = marr['dens_tot'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
| 245 | |||
| 246 | # apriori if available |
||
| 247 | 1 | try: |
|
| 248 | 1 | self.apriori = marr['apriori'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
| 249 | 1 | except ValueError: |
|
| 250 | 1 | pass |
|
| 251 | # akdiag if available |
||
| 252 | 1 | try: |
|
| 253 | 1 | self.akdiag = marr['akdiag'].flatten().reshape(self.nalt, self.nlat).transpose() |
|
| 254 | 1 | except ValueError: |
|
| 255 | 1 | pass |
|
| 256 | |||
| 257 | 1 | def write_to_textfile(self, filename): |
|
| 258 | """Write NO densities to ascii table files |
||
| 259 | |||
| 260 | Parameters |
||
| 261 | ---------- |
||
| 262 | filename: str or file object or io.TextIOBase.buffer |
||
| 263 | The filename or stream to write the data to. For writing to |
||
| 264 | stdout in python 3, pass `sys.stdout.buffer`. |
||
| 265 | """ |
||
| 266 | 1 | if hasattr(filename, 'seek'): |
|
| 267 | f = filename |
||
| 268 | else: |
||
| 269 | 1 | f = open(filename, 'w') |
|
| 270 | |||
| 271 | 1 | header = "%5s %13s %12s %13s %13s %12s %13s %13s %12s %12s %12s" % ("GP_ID", |
|
| 272 | "Max_Hoehe[km]", "Hoehe[km]", "Min_Hoehe[km]", |
||
| 273 | "Max_Breite[°]", "Breite[°]", "Min_Breite[°]", |
||
| 274 | "Dichte[cm^-3]", "Fehler Mess[cm^-3]", |
||
| 275 | "Fehler tot[cm^-3]", "Gesamtdichte[cm^-3]") |
||
| 276 | 1 | if self.nlon > 0: |
|
| 277 | 1 | header = header[:87] + " %13s" % ("Laenge[°]",) + header[87:] |
|
| 278 | 1 | if self.apriori is not None: |
|
| 279 | 1 | header = header + " %12s" % ("apriori[cm^-3]",) |
|
| 280 | 1 | if self.akdiag is not None: |
|
| 281 | 1 | header = header + " %12s" % ("AKdiag",) |
|
| 282 | 1 | print(header, file=f) |
|
| 283 | |||
| 284 | 1 | oformat = "%5i %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E" |
|
| 285 | 1 | if self.nlon > 0: |
|
| 286 | 1 | oformat = oformat[:49] + " %+1.5E" + oformat[49:] |
|
| 287 | 1 | oformata = " %+1.5E" |
|
| 288 | |||
| 289 | 1 | for i, a in enumerate(self.alts): |
|
| 290 | 1 | for j, b in enumerate(self.lats): |
|
| 291 | 1 | line_list = [i * self.nlat + j, |
|
| 292 | self.alts_max[i], a, self.alts_min[i], |
||
| 293 | self.lats_max[j], b, self.lats_min[j], |
||
| 294 | self.densities[j, i], self.dens_err_meas[j, i], |
||
| 295 | self.dens_err_tot[j, i], self.dens_tot[j, i]] |
||
| 296 | 1 | if self.nlon > 0: |
|
| 297 | 1 | line_list.insert(7, self.lons[j]) |
|
| 298 | 1 | print(oformat % tuple(line_list), |
|
| 299 | end="", file=f) |
||
| 300 | 1 | if self.apriori is not None: |
|
| 301 | 1 | print(" " + oformata % self.apriori[j, i], end="", file=f) |
|
| 302 | 1 | if self.akdiag is not None: |
|
| 303 | 1 | print(" " + oformata % self.akdiag[j, i], end="", file=f) |
|
| 304 | 1 | print("", file=f) |
|
| 305 | |||
| 306 | 1 | def write_to_netcdf(self, filename, close=True): |
|
| 307 | """Write NO densities to netcdf files |
||
| 308 | |||
| 309 | This function has no stream, i.e. file object, support. |
||
| 310 | |||
| 311 | Parameters |
||
| 312 | ---------- |
||
| 313 | filename: str |
||
| 314 | The name of the file to write the data to. |
||
| 315 | close: bool, optional |
||
| 316 | Whether or not to close the file after writing. |
||
| 317 | Setting to `False` enables appending further data |
||
| 318 | to the same file. |
||
| 319 | Default: True |
||
| 320 | |||
| 321 | Returns |
||
| 322 | ------- |
||
| 323 | Nothing if `close` is True. If `close` is False, returns either an |
||
| 324 | `netCDF4.Dataset`, |
||
| 325 | `scipy.io.netcdf.netcdf_file` or |
||
| 326 | `pupynere.netcdf_file` instance depending on availability. |
||
| 327 | """ |
||
| 328 | 1 | alts_min_out = np.asarray(self.alts_min).reshape(self.nalt) |
|
| 329 | 1 | alts_out = np.asarray(self.alts).reshape(self.nalt) |
|
| 330 | 1 | alts_max_out = np.asarray(self.alts_max).reshape(self.nalt) |
|
| 331 | |||
| 332 | 1 | lats_min_out = np.asarray(self.lats_min).reshape(self.nlat) |
|
| 333 | 1 | lats_out = np.asarray(self.lats).reshape(self.nlat) |
|
| 334 | 1 | lats_max_out = np.asarray(self.lats_max).reshape(self.nlat) |
|
| 335 | |||
| 336 | 1 | ncf = netcdf_file(filename, 'w', **fmtargs) |
|
| 337 | |||
| 338 | 1 | if self.version is not None: |
|
| 339 | 1 | ncf.version = self.version |
|
| 340 | 1 | if self.data_version is not None: |
|
| 341 | 1 | ncf.L2_data_version = self.data_version |
|
| 342 | #ncf.creation_time = dt.datetime.utcnow().replace(tzinfo=_UTC).strftime("%a %b %d %Y %H:%M:%S %z (%Z)") |
||
| 343 | 1 | ncf.creation_time = dt.datetime.utcnow().strftime("%a %b %d %Y %H:%M:%S +00:00 (UTC)") |
|
| 344 | 1 | ncf.author = self.author |
|
| 345 | |||
| 346 | # create netcdf file |
||
| 347 | 1 | ncf.createDimension('time', None) |
|
| 348 | 1 | ncf.createDimension('altitude', self.nalt) |
|
| 349 | 1 | ncf.createDimension('latitude', self.nlat) |
|
| 350 | |||
| 351 | 1 | forbit = ncf.createVariable('orbit', np.dtype('int32').char, ('time',)) |
|
| 352 | 1 | ftime = ncf.createVariable('time', np.dtype('int32').char, ('time',)) |
|
| 353 | |||
| 354 | 1 | falts_min = ncf.createVariable('alt_min', np.dtype('float64').char, ('altitude',)) |
|
| 355 | 1 | falts = ncf.createVariable('altitude', np.dtype('float64').char, ('altitude',)) |
|
| 356 | 1 | falts_max = ncf.createVariable('alt_max', np.dtype('float64').char, ('altitude',)) |
|
| 357 | 1 | flats_min = ncf.createVariable('lat_min', np.dtype('float64').char, ('latitude',)) |
|
| 358 | 1 | flats = ncf.createVariable('latitude', np.dtype('float64').char, ('latitude',)) |
|
| 359 | 1 | flats_max = ncf.createVariable('lat_max', np.dtype('float64').char, ('latitude',)) |
|
| 360 | |||
| 361 | 1 | falts_min.units = 'km' |
|
| 362 | 1 | falts_min.positive = 'up' |
|
| 363 | 1 | falts.units = 'km' |
|
| 364 | 1 | falts.positive = 'up' |
|
| 365 | 1 | falts_max.units = 'km' |
|
| 366 | 1 | falts_max.positive = 'up' |
|
| 367 | 1 | flats_min.units = 'degrees_north' |
|
| 368 | 1 | flats.units = 'degrees_north' |
|
| 369 | 1 | flats_max.units = 'degrees_north' |
|
| 370 | |||
| 371 | 1 | forbit.units = '1' |
|
| 372 | 1 | forbit.long_name = 'SCIAMACHY/Envisat orbit number' |
|
| 373 | 1 | ftime.units = 'days since {0}'.format(self.date0.isoformat(sep=' ')) |
|
| 374 | 1 | ftime.standard_name = 'time' |
|
| 375 | |||
| 376 | 1 | fdens = ncf.createVariable('density', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
| 377 | 1 | fdens.units = 'cm^{-3}' |
|
| 378 | 1 | fdens.standard_name = 'number_concentration_of_nitrogen_monoxide_molecules_in_air' |
|
| 379 | 1 | fdens_err_meas = ncf.createVariable('error_meas', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
| 380 | 1 | fdens_err_meas.units = 'cm^{-3}' |
|
| 381 | 1 | fdens_err_meas.long_name = 'NO number density measurement error' |
|
| 382 | 1 | fdens_err_tot = ncf.createVariable('error_tot', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
| 383 | 1 | fdens_err_tot.units = 'cm^{-3}' |
|
| 384 | 1 | fdens_err_tot.long_name = 'NO number density total error' |
|
| 385 | 1 | fdens_tot = ncf.createVariable('density_air', np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
|
| 386 | 1 | fdens_tot.units = 'cm^{-3}' |
|
| 387 | 1 | fdens_tot.long_name = 'approximate overall number concentration of air molecules (NRLMSIS-00)' |
|
| 388 | |||
| 389 | 1 | ftime[:] = [self.date] |
|
| 390 | 1 | forbit[:] = [self.orbit] |
|
| 391 | |||
| 392 | 1 | falts_min[:] = alts_min_out |
|
| 393 | 1 | falts[:] = alts_out |
|
| 394 | 1 | falts_max[:] = alts_max_out |
|
| 395 | 1 | flats_min[:] = lats_min_out |
|
| 396 | 1 | flats[:] = lats_out |
|
| 397 | 1 | flats_max[:] = lats_max_out |
|
| 398 | # reorder by latitude first, then altitude |
||
| 399 | 1 | fdens[0, :] = self.densities |
|
| 400 | # reorder by latitude first, then altitude |
||
| 401 | 1 | fdens_err_meas[0, :] = self.dens_err_meas |
|
| 402 | 1 | fdens_err_tot[0, :] = self.dens_err_tot |
|
| 403 | 1 | fdens_tot[0, :] = self.dens_tot |
|
| 404 | |||
| 405 | # longitudes if they are available |
||
| 406 | 1 | if self.nlon > 0: |
|
| 407 | 1 | lons_out = np.asarray(self.lons).reshape(self.nlon) |
|
| 408 | 1 | flons = ncf.createVariable('longitude', np.dtype('float64').char, ('time', 'latitude',)) |
|
| 409 | 1 | flons.units = 'degrees_east' |
|
| 410 | 1 | flons[0, :] = lons_out |
|
| 411 | |||
| 412 | 1 | if self.apriori is not None: |
|
| 413 | 1 | fapriori = ncf.createVariable('apriori', |
|
| 414 | np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
||
| 415 | 1 | fapriori.units = 'cm^{-3}' |
|
| 416 | 1 | fapriori.long_name = 'apriori NO number density' |
|
| 417 | 1 | fapriori[0, :] = self.apriori |
|
| 418 | |||
| 419 | 1 | if self.akdiag is not None: |
|
| 420 | 1 | fakdiag = ncf.createVariable('akm_diagonal', |
|
| 421 | np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
||
| 422 | 1 | fakdiag.units = '1' |
|
| 423 | 1 | fakdiag.long_name = 'averaging kernel matrix diagonal element' |
|
| 424 | 1 | fakdiag[0, :] = self.akdiag |
|
| 425 | 1 | if close: |
|
| 426 | 1 | ncf.close() |
|
| 427 | else: |
||
| 428 | 1 | return ncf |
|
| 429 | |||
| 430 | 1 | def read_from_netcdf(self, filename, close=True): |
|
| 431 | """Read NO densities from netcdf files |
||
| 432 | |||
| 433 | This function has no stream, i.e. file object support. |
||
| 434 | |||
| 435 | Parameters |
||
| 436 | ---------- |
||
| 437 | filename: str |
||
| 438 | The filename to read the data from. |
||
| 439 | close: bool, optional |
||
| 440 | Whether or not to close the file after reading. |
||
| 441 | Setting to `False` enables reading further data |
||
| 442 | from the same file. |
||
| 443 | Default: True |
||
| 444 | |||
| 445 | Returns |
||
| 446 | ------- |
||
| 447 | Nothing if `close` is True. If `close` is False, returns either an |
||
| 448 | `netCDF4.Dataset`, |
||
| 449 | `scipy.io.netcdf.netcdf_file` or |
||
| 450 | `pupynere.netcdf_file` instance depending on availability. |
||
| 451 | """ |
||
| 452 | 1 | def _try_decode(s): |
|
| 453 | 1 | if hasattr(s, "decode"): |
|
| 454 | return s.decode() |
||
| 455 | 1 | return s |
|
| 456 | 1 | ncf = netcdf_file(filename, 'r') |
|
| 457 | |||
| 458 | 1 | try: |
|
| 459 | 1 | self.author = _try_decode(ncf.author) |
|
| 460 | except AttributeError: |
||
| 461 | pass |
||
| 462 | 1 | try: |
|
| 463 | 1 | self.version = _try_decode(ncf.version) |
|
| 464 | 1 | except AttributeError: |
|
| 465 | 1 | pass |
|
| 466 | 1 | try: |
|
| 467 | 1 | self.data_version = _try_decode(ncf.L2_data_version) |
|
| 468 | except AttributeError: |
||
| 469 | pass |
||
| 470 | |||
| 471 | 1 | self.alts_min = ncf.variables['alt_min'][:].copy() |
|
| 472 | 1 | self.alts = ncf.variables['altitude'][:].copy() |
|
| 473 | 1 | self.alts_max = ncf.variables['alt_max'][:].copy() |
|
| 474 | 1 | self.lats_min = ncf.variables['lat_min'][:].copy() |
|
| 475 | 1 | self.lats = ncf.variables['latitude'][:].copy() |
|
| 476 | 1 | self.lats_max = ncf.variables['lat_max'][:].copy() |
|
| 477 | |||
| 478 | 1 | self.nalt = len(self.alts) |
|
| 479 | 1 | self.nlat = len(self.lats) |
|
| 480 | |||
| 481 | 1 | self.date = ncf.variables['time'][:].copy() |
|
| 482 | 1 | self.orbit = ncf.variables['orbit'][:].copy() |
|
| 483 | |||
| 484 | 1 | self.densities = ncf.variables['density'][:].copy() |
|
| 485 | 1 | self.dens_err_meas = ncf.variables['error_meas'][:].copy() |
|
| 486 | 1 | self.dens_err_tot = ncf.variables['error_tot'][:].copy() |
|
| 487 | 1 | self.dens_tot = ncf.variables['density_air'][:].copy() |
|
| 488 | |||
| 489 | # longitudes if they are available |
||
| 490 | 1 | try: |
|
| 491 | 1 | self.lons = ncf.variables['longitude'][:].copy() |
|
| 492 | 1 | self.nlon = self.lons.shape[1] |
|
| 493 | 1 | except KeyError: |
|
| 494 | 1 | pass |
|
| 495 | |||
| 496 | # apriori |
||
| 497 | 1 | try: |
|
| 498 | 1 | self.apriori = ncf.variables['apriori'][:].copy() |
|
| 499 | 1 | except KeyError: |
|
| 500 | 1 | pass |
|
| 501 | |||
| 502 | # akm diagonal elements |
||
| 503 | 1 | try: |
|
| 504 | 1 | self.akdiag = ncf.variables['akm_diagonal'][:].copy() |
|
| 505 | 1 | except KeyError: |
|
| 506 | 1 | pass |
|
| 507 | |||
| 508 | 1 | if close: |
|
| 509 | 1 | ncf.close() |
|
| 510 | else: |
||
| 511 | return ncf |
||
| 512 | |||
| 513 | 1 | def read_from_file(self, filename): |
|
| 514 | """Wrapper to read NO desnities from files |
||
| 515 | |||
| 516 | Simple wrapper to delegate reading the data from either netcdf |
||
| 517 | or ascii files. Poor man's logic: simply try netcdf first, and |
||
| 518 | if that fails, read as ascii. |
||
| 519 | |||
| 520 | Parameters |
||
| 521 | ---------- |
||
| 522 | filename: str |
||
| 523 | The filename to read the data from. |
||
| 524 | """ |
||
| 525 | 1 | try: |
|
| 526 | # try netcdf first |
||
| 527 | 1 | self.read_from_netcdf(filename) |
|
| 528 | 1 | except (IOError, OSError, TypeError): |
|
| 529 | # fall back to text file as a last resort |
||
| 530 | 1 | self.read_from_textfile(filename) |
|
| 531 | |||
| 532 | |||
| 533 | 1 | View Code Duplication | def main(*args): |
| 534 | argc = len(sys.argv) |
||
| 535 | if argc < 2: |
||
| 536 | print("Not enough arguments, Usage:\n" |
||
| 537 | "{0} [input] output [< input]".format(sys.argv[0])) |
||
| 538 | sys.exit(1) |
||
| 539 | elif argc < 3: |
||
| 540 | try: |
||
| 541 | infile = sys.stdin.buffer # Python 3 |
||
| 542 | except AttributeError: |
||
| 543 | infile = sys.stdin |
||
| 544 | outfile = sys.argv[1] |
||
| 545 | else: |
||
| 546 | infile = sys.argv[1] |
||
| 547 | outfile = sys.argv[2] |
||
| 548 | sdl = scia_densities() |
||
| 549 | sdl.read_from_file(infile) |
||
| 550 | sdl.write_to_netcdf(outfile) |
||
| 551 | |||
| 552 | |||
| 553 | 1 | if __name__ == "__main__": |
|
| 554 | sys.exit(main()) |
||
| 555 |