1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2017-2018 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This module is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
8
|
|
|
# it under the terms of the GNU General Public License as published |
9
|
|
|
# by the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
1 |
|
"""SCIAMACHY data regression command line interface |
12
|
|
|
|
13
|
|
|
Command line main program for regression analysis of SCIAMACHY |
14
|
|
|
daily zonal mean time series (NO for now). |
15
|
|
|
""" |
16
|
|
|
|
17
|
1 |
|
import ctypes |
18
|
1 |
|
import logging |
19
|
1 |
|
from os import path |
20
|
|
|
|
21
|
1 |
|
import numpy as np |
22
|
1 |
|
import scipy.optimize as op |
23
|
1 |
|
from scipy.interpolate import interp1d |
24
|
|
|
|
25
|
1 |
|
import george |
26
|
1 |
|
import celerite |
27
|
|
|
|
28
|
1 |
|
import matplotlib as mpl |
29
|
|
|
# switch off X11 rendering |
30
|
1 |
|
mpl.use("Agg") |
31
|
|
|
|
32
|
1 |
|
from .load_data import load_solar_gm_table, load_scia_dzm |
33
|
1 |
|
from .models_cel import trace_gas_model |
34
|
1 |
|
from .mcmc import mcmc_sample_model |
35
|
1 |
|
from .statistics import mcmc_statistics |
36
|
|
|
|
37
|
1 |
|
from ._gpkernels import (george_solvers, |
38
|
|
|
setup_george_kernel, setup_celerite_terms) |
39
|
1 |
|
from ._plot import (plot_single_sample_and_residuals, |
40
|
|
|
plot_residual, plot_random_samples) |
41
|
1 |
|
from ._options import parser |
42
|
|
|
|
43
|
|
|
|
44
|
1 |
|
def save_samples_netcdf(filename, model, alt, lat, samples, |
45
|
|
|
scale=1e-6, |
46
|
|
|
lnpost=None, compressed=False): |
47
|
1 |
|
from xarray import Dataset |
48
|
1 |
|
smpl_ds = Dataset(dict([(pname, (["lat", "alt", "sample"], |
49
|
|
|
samples[..., i].reshape(1, 1, -1))) |
50
|
|
|
for i, pname in enumerate(model.get_parameter_names())] |
51
|
|
|
# + [("lpost", (["lat", "alt", "sample"], lnp.reshape(1, 1, -1)))] |
52
|
|
|
), |
53
|
|
|
coords={"lat": [lat], "alt": [alt]}) |
54
|
|
|
|
55
|
1 |
|
for modn in model.mean.models: |
56
|
1 |
|
modl = model.mean.models[modn] |
57
|
1 |
|
if hasattr(modl, "mean"): |
58
|
1 |
|
smpl_ds.attrs[modn + ":mean"] = modl.mean |
59
|
|
|
|
60
|
1 |
|
units = {"kernel": { |
61
|
|
|
"log": "log(10$^{{{0:.0f}}}$ cm$^{{-3}}$)" |
62
|
|
|
.format(-np.log10(scale))}, |
63
|
|
|
"mean": { |
64
|
|
|
"log": "log(10$^{{{0:.0f}}}$ cm$^{{-3}}$)" |
65
|
|
|
.format(-np.log10(scale)), |
66
|
|
|
"cos": "10$^{{{0:.0f}}}$ cm$^{{-3}}$".format(-np.log10(scale)), |
67
|
|
|
"sin": "10$^{{{0:.0f}}}$ cm$^{{-3}}$".format(-np.log10(scale)), |
68
|
|
|
"val": "10$^{{{0:.0f}}}$ cm$^{{-3}}$".format(-np.log10(scale)), |
69
|
|
|
"amp": "10$^{{{0:.0f}}}$ cm$^{{-3}}$".format(-np.log10(scale)), |
70
|
|
|
"tau": "d"}} |
71
|
1 |
|
for pname in smpl_ds.data_vars: |
72
|
1 |
|
_pp = pname.split(':') |
73
|
1 |
|
for _n, _u in units.get(_pp[0], {}).items(): |
74
|
1 |
|
if _pp[-1].startswith(_n): |
75
|
1 |
|
logging.debug("units for %s: %s", pname, _u) |
76
|
1 |
|
smpl_ds[pname].attrs["units"] = _u |
77
|
|
|
|
78
|
1 |
|
smpl_ds["alt"].attrs = {"long_name": "altitude", "units": "km"} |
79
|
1 |
|
smpl_ds["lat"].attrs = {"long_name": "latitude", "units": "degrees_north"} |
80
|
|
|
|
81
|
1 |
|
_encoding = None |
82
|
1 |
|
if compressed: |
83
|
1 |
|
_encoding = {var: {"zlib": True, "complevel": 1} |
84
|
|
|
for var in smpl_ds.data_vars} |
85
|
1 |
|
try: |
86
|
1 |
|
smpl_ds.to_netcdf(filename, encoding=_encoding) |
87
|
|
|
except ValueError: |
88
|
|
|
smpl_ds.to_netcdf(filename) |
89
|
1 |
|
smpl_ds.close() |
90
|
|
|
|
91
|
|
|
|
92
|
1 |
|
def _train_test_split(times, data, errs, train_frac, |
93
|
|
|
test_frac, randomize): |
94
|
|
|
# split the data into training and test subsets according to the |
95
|
|
|
# fraction given (default is 1, i.e. no splitting) |
96
|
1 |
|
ndata = len(times) |
97
|
1 |
|
train_size = int(ndata * train_frac) |
98
|
1 |
|
test_size = min(ndata - train_size, int(ndata * test_frac)) |
99
|
|
|
# randomize if requested |
100
|
1 |
|
if randomize: |
101
|
|
|
permut_idx = np.random.permutation(np.arange(ndata)) |
102
|
|
|
else: |
103
|
1 |
|
permut_idx = np.arange(ndata) |
104
|
1 |
|
train_idx = np.sort(permut_idx[:train_size]) |
105
|
1 |
|
test_idx = np.sort(permut_idx[train_size:train_size + test_size]) |
106
|
1 |
|
times_train = times[train_idx] |
107
|
1 |
|
data_train = data[train_idx] |
108
|
1 |
|
errs_train = errs[train_idx] |
109
|
1 |
|
if test_size > 0: |
110
|
|
|
times_test = times[test_idx] |
111
|
|
|
data_test = data[test_idx] |
112
|
|
|
errs_test = errs[test_idx] |
113
|
|
|
else: |
114
|
1 |
|
times_test = times |
115
|
1 |
|
data_test = data |
116
|
1 |
|
errs_test = errs |
117
|
1 |
|
logging.info("using %s of %s samples for training.", len(times_train), ndata) |
118
|
1 |
|
logging.info("using %s of %s samples for testing.", len(times_test), ndata) |
119
|
1 |
|
return (times_train, data_train, errs_train, |
120
|
|
|
times_test, data_test, errs_test) |
121
|
|
|
|
122
|
|
|
|
123
|
1 |
|
def _r_sun_earth(time, tfmt="jyear"): |
124
|
|
|
"""First order approximation of the Sun-Earth distance |
125
|
|
|
|
126
|
|
|
The Sun-to-Earth distance can be used to (un-)normalize proxies |
127
|
|
|
to the actual distance to the Sun instead of 1 AU. |
128
|
|
|
|
129
|
|
|
Parameters |
130
|
|
|
---------- |
131
|
|
|
time : float |
132
|
|
|
Time value in the units given by 'tfmt'. |
133
|
|
|
tfmt : str, optional |
134
|
|
|
The units of 'time' as supported by the |
135
|
|
|
astropy.time time formats. Default: 'jyear'. |
136
|
|
|
|
137
|
|
|
Returns |
138
|
|
|
------- |
139
|
|
|
dist : float |
140
|
|
|
The Sun-Earth distance at the given day of year in AU. |
141
|
|
|
""" |
142
|
|
|
from astropy.time import Time |
143
|
|
|
tdoy = Time(time, format=tfmt) |
144
|
|
|
tdoy.format = "yday" |
145
|
|
|
doy = int(tdoy.value.split(':')[1]) |
146
|
|
|
return 1 - 0.01672 * np.cos(2 * np.pi / 365.256363 * (doy - 4)) |
147
|
|
|
|
148
|
|
|
|
149
|
1 |
|
def main(): |
150
|
1 |
|
logging.basicConfig(level=logging.WARNING, |
151
|
|
|
format="[%(levelname)-8s] (%(asctime)s) " |
152
|
|
|
"%(filename)s:%(lineno)d %(message)s", |
153
|
|
|
datefmt="%Y-%m-%d %H:%M:%S %z") |
154
|
|
|
|
155
|
1 |
|
args = parser.parse_args() |
156
|
|
|
|
157
|
1 |
|
logging.info("command line arguments: %s", args) |
158
|
1 |
|
if args.quiet: |
159
|
1 |
|
logging.getLogger().setLevel(logging.ERROR) |
160
|
|
|
elif args.verbose: |
161
|
|
|
logging.getLogger().setLevel(logging.INFO) |
162
|
|
|
else: |
163
|
|
|
logging.getLogger().setLevel(args.loglevel) |
164
|
|
|
|
165
|
1 |
|
from numpy.distutils.system_info import get_info |
166
|
1 |
|
try: |
167
|
1 |
|
ob_lib_dirs = get_info("openblas")["library_dirs"] |
168
|
1 |
|
except KeyError: |
169
|
1 |
|
ob_lib_dirs = [] |
170
|
1 |
|
for oblas_path in ob_lib_dirs: |
171
|
|
|
oblas_name = "{0}/libopenblas.so".format(oblas_path) |
172
|
|
|
logging.info("Trying %s", oblas_name) |
173
|
|
|
try: |
174
|
|
|
oblas_lib = ctypes.cdll.LoadLibrary(oblas_name) |
175
|
|
|
oblas_cores = oblas_lib.openblas_get_num_threads() |
176
|
|
|
oblas_lib.openblas_set_num_threads(args.openblas_threads) |
177
|
|
|
logging.info("Using %s/%s Openblas thread(s).", |
178
|
|
|
oblas_lib.openblas_get_num_threads(), oblas_cores) |
179
|
|
|
except: |
180
|
|
|
logging.info("Setting number of openblas threads failed.") |
181
|
|
|
|
182
|
1 |
|
if args.random_seed is not None: |
183
|
1 |
|
np.random.seed(args.random_seed) |
184
|
|
|
|
185
|
1 |
|
if args.proxies: |
186
|
1 |
|
proxies = args.proxies.split(',') |
187
|
1 |
|
proxy_dict = dict(_p.split(':') for _p in proxies) |
188
|
|
|
else: |
189
|
|
|
proxy_dict = {} |
190
|
1 |
|
lag_dict = {pn: 0 for pn in proxy_dict.keys()} |
191
|
|
|
|
192
|
|
|
# Post-processing of arguments... |
193
|
|
|
# List of proxy lag fits from csv |
194
|
1 |
|
fit_lags = args.fit_lags.split(',') |
195
|
|
|
# List of proxy lifetime fits from csv |
196
|
1 |
|
fit_lifetimes = args.fit_lifetimes.split(',') |
197
|
1 |
|
fit_annlifetimes = args.fit_annlifetimes.split(',') |
198
|
|
|
# List of proxy lag times from csv |
199
|
1 |
|
lag_dict.update(dict(_ls.split(':') for _ls in args.lag_times.split(','))) |
200
|
|
|
# List of cycles (frequencies in 1/year) from argument list (csv) |
201
|
1 |
|
try: |
202
|
1 |
|
freqs = list(map(float, args.freqs.split(','))) |
203
|
1 |
|
except ValueError: |
204
|
1 |
|
freqs = [] |
205
|
1 |
|
args.freqs = freqs |
206
|
|
|
# List of initial parameter values |
207
|
1 |
|
initial = None |
208
|
1 |
|
if args.initial is not None: |
209
|
|
|
try: |
210
|
|
|
initial = list(map(float, args.initial.split(','))) |
211
|
|
|
except ValueError: |
212
|
|
|
pass |
213
|
|
|
# List of GP kernels from argument list (csv) |
214
|
1 |
|
kernls = args.kernels.split(',') |
215
|
|
|
|
216
|
1 |
|
lat = args.latitude |
217
|
1 |
|
alt = args.altitude |
218
|
1 |
|
logging.info("location: %.0f°N %.0f km", lat, alt) |
219
|
|
|
|
220
|
1 |
|
no_ys, no_dens, no_errs, no_szas = load_scia_dzm(args.file, alt, lat, |
221
|
|
|
tfmt=args.time_format, |
222
|
|
|
scale=args.scale, |
223
|
|
|
#subsample_factor=args.random_subsample, |
224
|
|
|
#subsample_method="random", |
225
|
|
|
akd_threshold=args.akd_threshold, |
226
|
|
|
cnt_threshold=args.cnt_threshold, |
227
|
|
|
center=args.center_data, |
228
|
|
|
season=args.season, |
229
|
|
|
SPEs=args.exclude_spe) |
230
|
|
|
|
231
|
1 |
|
(no_ys_train, no_dens_train, no_errs_train, |
232
|
|
|
no_ys_test, no_dens_test, no_errs_test) = _train_test_split( |
233
|
|
|
no_ys, no_dens, no_errs, args.train_fraction, |
234
|
|
|
args.test_fraction, args.random_train_test) |
235
|
|
|
|
236
|
1 |
|
sza_intp = interp1d(no_ys, no_szas, bounds_error=False) |
237
|
|
|
|
238
|
1 |
|
max_amp = 1e10 * args.scale |
239
|
1 |
|
max_days = 100 |
240
|
|
|
|
241
|
1 |
|
proxy_config = {} |
242
|
1 |
|
for pn, pf in proxy_dict.items(): |
243
|
1 |
|
pt, pp = load_solar_gm_table(path.expanduser(pf), |
244
|
|
|
cols=[0, 1], names=["time", pn], tfmt=args.time_format) |
245
|
1 |
|
pv = pp[pn] |
246
|
|
|
# use log of proxy values if desired |
247
|
1 |
|
if pn in args.log_proxies.split(','): |
248
|
|
|
pv = np.log(pv) |
249
|
|
|
# normalize to sun--earth distance squared |
250
|
1 |
|
if pn in args.norm_proxies_distSEsq.split(','): |
251
|
|
|
rad_sun_earth = np.vectorize(_r_sun_earth)(pt, tfmt=args.time_format) |
252
|
|
|
pv /= rad_sun_earth**2 |
253
|
|
|
# normalize by cos(SZA) |
254
|
1 |
|
if pn in args.norm_proxies_SZA.split(',') and sza_intp is not None: |
255
|
|
|
pv *= np.cos(np.radians(sza_intp(pt))) |
256
|
1 |
|
proxy_config.update({pn: |
257
|
|
|
dict(times=pt, values=pv, |
258
|
|
|
center=pn in args.center_proxies.split(','), |
259
|
|
|
positive=pn in args.positive_proxies.split(','), |
260
|
|
|
lag=float(lag_dict[pn]), |
261
|
|
|
max_amp=max_amp, max_days=max_days, |
262
|
|
|
sza_intp=sza_intp if args.use_sza else None, |
263
|
|
|
)} |
264
|
|
|
) |
265
|
|
|
|
266
|
1 |
|
model = trace_gas_model(constant=args.fit_offset, |
267
|
|
|
proxy_config=proxy_config, **vars(args)) |
268
|
|
|
|
269
|
1 |
|
logging.debug("model dict: %s", model.get_parameter_dict()) |
270
|
1 |
|
model.freeze_all_parameters() |
271
|
|
|
# thaw parameters according to requested fits |
272
|
1 |
|
for pn in proxy_dict.keys(): |
273
|
1 |
|
model.thaw_parameter("{0}:amp".format(pn)) |
274
|
1 |
|
if pn in fit_lags: |
275
|
|
|
model.thaw_parameter("{0}:lag".format(pn)) |
276
|
1 |
|
if pn in fit_lifetimes: |
277
|
1 |
|
model.set_parameter("{0}:tau0".format(pn), 1e-3) |
278
|
1 |
|
model.thaw_parameter("{0}:tau0".format(pn)) |
279
|
1 |
|
if pn in fit_annlifetimes: |
280
|
1 |
|
model.thaw_parameter("{0}:taucos1".format(pn)) |
281
|
1 |
|
model.thaw_parameter("{0}:tausin1".format(pn)) |
282
|
|
|
else: |
283
|
1 |
|
model.set_parameter("{0}:ltscan".format(pn), 0) |
284
|
1 |
|
for freq in freqs: |
285
|
1 |
|
if not args.fit_phase: |
286
|
1 |
|
model.thaw_parameter("f{0:.0f}:cos".format(freq)) |
287
|
1 |
|
model.thaw_parameter("f{0:.0f}:sin".format(freq)) |
288
|
|
|
else: |
289
|
|
|
model.thaw_parameter("f{0:.0f}:amp".format(freq)) |
290
|
|
|
model.thaw_parameter("f{0:.0f}:phase".format(freq)) |
291
|
1 |
|
if args.fit_offset: |
292
|
|
|
#model.set_parameter("offset:value", -100.) |
293
|
|
|
#model.set_parameter("offset:value", 0) |
294
|
1 |
|
model.thaw_parameter("offset:value") |
295
|
|
|
|
296
|
1 |
|
if initial is not None: |
297
|
|
|
model.set_parameter_vector(initial) |
298
|
|
|
# model.thaw_parameter("GM:ltscan") |
299
|
1 |
|
logging.debug("params: %s", model.get_parameter_dict()) |
300
|
1 |
|
logging.debug("param names: %s", model.get_parameter_names()) |
301
|
1 |
|
logging.debug("param vector: %s", model.get_parameter_vector()) |
302
|
1 |
|
logging.debug("param bounds: %s", model.get_parameter_bounds()) |
303
|
|
|
#logging.debug("model value: %s", model.get_value(no_ys)) |
304
|
|
|
#logging.debug("default log likelihood: %s", model.log_likelihood(model.vector)) |
305
|
|
|
|
306
|
|
|
# setup the Gaussian Process kernel |
307
|
1 |
|
kernel_base = (1e7 * args.scale)**2 |
308
|
1 |
|
ksub = args.name_suffix |
309
|
|
|
|
310
|
1 |
|
solver = "basic" |
311
|
1 |
|
skwargs = {} |
312
|
1 |
|
if args.HODLR_Solver: |
313
|
1 |
|
solver = "HODLR" |
314
|
|
|
#skwargs = {"tol": 1e-3} |
315
|
|
|
|
316
|
1 |
|
if args.george: |
317
|
1 |
|
gpname, kernel = setup_george_kernel(kernls, |
318
|
|
|
kernel_base=kernel_base, fit_bias=args.fit_bias) |
319
|
1 |
|
gpmodel = george.GP(kernel, mean=model, |
320
|
|
|
white_noise=1.e-25, fit_white_noise=args.fit_white, |
321
|
|
|
solver=george_solvers[solver], **skwargs) |
322
|
|
|
# the george interface does not allow setting the bounds in |
323
|
|
|
# the kernel initialization so we prepare simple default bounds |
324
|
1 |
|
kernel_bounds = [(-0.3 * max_amp, 0.3 * max_amp)] * args.fit_white + [ |
325
|
|
|
(-0.3 * max_amp, 0.3 * max_amp) |
326
|
|
|
for _ in gpmodel.kernel.get_parameter_names() |
327
|
|
|
] |
328
|
1 |
|
bounds = gpmodel.mean.get_parameter_bounds() + kernel_bounds |
329
|
|
|
else: |
330
|
1 |
|
gpname, cel_terms = setup_celerite_terms(kernls, |
331
|
|
|
fit_bias=args.fit_bias, fit_white=args.fit_white) |
332
|
1 |
|
gpmodel = celerite.GP(cel_terms, mean=model, |
333
|
|
|
fit_white_noise=args.fit_white, |
334
|
|
|
fit_mean=True) |
335
|
1 |
|
bounds = gpmodel.get_parameter_bounds() |
336
|
1 |
|
gpmodel.compute(no_ys_train, no_errs_train) |
337
|
1 |
|
logging.debug("gpmodel params: %s", gpmodel.get_parameter_dict()) |
338
|
1 |
|
logging.debug("gpmodel bounds: %s", bounds) |
339
|
1 |
|
logging.debug("initial log likelihood: %s", gpmodel.log_likelihood(no_dens_train)) |
340
|
1 |
|
if isinstance(gpmodel, celerite.GP): |
341
|
1 |
|
logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
342
|
1 |
|
model_name = "_".join(gpmodel.mean.get_parameter_names()).replace(':', '') |
343
|
1 |
|
gpmodel_name = model_name + gpname |
344
|
1 |
|
logging.info("GP model name: %s", gpmodel_name) |
345
|
|
|
|
346
|
1 |
|
pre_opt = False |
347
|
1 |
|
if args.optimize > 0: |
348
|
1 |
|
def gpmodel_mean(x, *p): |
349
|
1 |
|
gpmodel.set_parameter_vector(p) |
350
|
1 |
|
return gpmodel.mean.get_value(x) |
351
|
|
|
|
352
|
1 |
|
def gpmodel_res(x, *p): |
353
|
|
|
gpmodel.set_parameter_vector(p) |
354
|
|
|
return (gpmodel.mean.get_value(x) - no_dens_train) / no_errs_train |
355
|
|
|
|
356
|
1 |
|
def lpost(p, y, gp): |
357
|
1 |
|
gp.set_parameter_vector(p) |
358
|
1 |
|
return gp.log_likelihood(y, quiet=True) + gp.log_prior() |
359
|
|
|
|
360
|
1 |
|
def nlpost(p, y, gp): |
361
|
1 |
|
lp = lpost(p, y, gp) |
|
|
|
|
362
|
1 |
|
return -lp if np.isfinite(lp) else 1e25 |
363
|
|
|
|
364
|
1 |
|
def grad_nlpost(p, y, gp): |
365
|
1 |
|
gp.set_parameter_vector(p) |
366
|
1 |
|
grad_ll = gp.grad_log_likelihood(y) |
367
|
1 |
|
if isinstance(grad_ll, tuple): |
368
|
|
|
# celerite |
369
|
1 |
|
return -grad_ll[1] |
370
|
|
|
# george |
371
|
1 |
|
return -grad_ll |
372
|
|
|
|
373
|
1 |
|
jacobian = grad_nlpost if gpmodel.kernel.vector_size else None |
374
|
1 |
|
if args.optimize == 1: |
375
|
1 |
|
resop_gp = op.minimize( |
376
|
|
|
nlpost, |
377
|
|
|
gpmodel.get_parameter_vector(), |
378
|
|
|
args=(no_dens_train, gpmodel), |
379
|
|
|
bounds=bounds, |
380
|
|
|
# method="l-bfgs-b", options=dict(disp=True, maxcor=100, eps=1e-9, ftol=2e-15, gtol=1e-8)) |
381
|
|
|
method="l-bfgs-b", jac=jacobian) |
382
|
|
|
# method="tnc", options=dict(disp=True, maxiter=500, xtol=1e-12)) |
383
|
|
|
# method="nelder-mead", options=dict(disp=True, maxfev=100000, fatol=1.49012e-8, xatol=1.49012e-8)) |
384
|
|
|
# method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08)) |
385
|
1 |
|
elif args.optimize == 2: |
386
|
1 |
|
resop_gp = op.differential_evolution( |
387
|
|
|
nlpost, |
388
|
|
|
bounds=bounds, |
389
|
|
|
args=(no_dens_train, gpmodel), |
390
|
|
|
popsize=2 * args.walkers, tol=0.01) |
391
|
1 |
|
elif args.optimize == 3: |
392
|
1 |
|
resop_bh = op.basinhopping( |
393
|
|
|
nlpost, |
394
|
|
|
gpmodel.get_parameter_vector(), |
395
|
|
|
niter=200, |
396
|
|
|
minimizer_kwargs=dict( |
397
|
|
|
args=(no_dens_train, gpmodel), |
398
|
|
|
bounds=bounds, |
399
|
|
|
# method="tnc")) |
400
|
|
|
# method="l-bfgs-b", options=dict(maxcor=100))) |
401
|
|
|
method="l-bfgs-b", jac=jacobian)) |
402
|
|
|
# method="Nelder-Mead")) |
403
|
|
|
# method="BFGS")) |
404
|
|
|
# method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08))) |
405
|
1 |
|
logging.debug("optimization result: %s", resop_bh) |
406
|
1 |
|
resop_gp = resop_bh.lowest_optimization_result |
407
|
1 |
|
elif args.optimize == 4: |
408
|
1 |
|
resop, cov_gp = op.curve_fit( |
409
|
|
|
gpmodel_mean, |
410
|
|
|
no_ys_train, no_dens_train, gpmodel.get_parameter_vector(), |
411
|
|
|
bounds=tuple(np.array(bounds).T), |
412
|
|
|
# method='lm', |
413
|
|
|
# absolute_sigma=True, |
414
|
|
|
sigma=no_errs_train) |
415
|
1 |
|
resop_gp = op.OptimizeResult(dict( |
416
|
|
|
x=resop, |
417
|
|
|
success=True, |
418
|
|
|
message="Curve fit successful.", |
419
|
|
|
)) |
420
|
1 |
|
logging.debug("curve fit %s, std %s:", resop, np.sqrt(np.diag(cov_gp))) |
421
|
|
|
else: |
422
|
|
|
logging.warn("unsupported optimization method: %s", args.optimize) |
423
|
|
|
resop_gp = op.OptimizeResult(dict( |
424
|
|
|
x=gpmodel.get_parameter_vector(), |
425
|
|
|
success=False, |
426
|
|
|
message="unsupported optimization method: {0}".format(args.optimize), |
427
|
|
|
)) |
428
|
1 |
|
logging.info("%s", resop_gp.message) |
429
|
1 |
|
logging.debug("optimization result: %s", resop_gp) |
430
|
1 |
|
logging.info("gpmodel dict: %s", gpmodel.get_parameter_dict()) |
431
|
1 |
|
logging.info("log posterior trained: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
432
|
1 |
|
gpmodel.compute(no_ys_test, no_errs_test) |
433
|
1 |
|
logging.info("log posterior test: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
434
|
1 |
|
gpmodel.compute(no_ys, no_errs) |
435
|
1 |
|
logging.info("log posterior all: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
436
|
|
|
# cross check to make sure that the gpmodel parameter vector is really |
437
|
|
|
# set to the fitted parameters |
438
|
1 |
|
logging.info("opt. model vector: %s", resop_gp.x) |
439
|
1 |
|
gpmodel.compute(no_ys_train, no_errs_train) |
440
|
1 |
|
logging.debug("opt. log posterior trained 1: %s", lpost(resop_gp.x, no_dens_train, gpmodel)) |
441
|
1 |
|
gpmodel.compute(no_ys_test, no_errs_test) |
442
|
1 |
|
logging.debug("opt. log posterior test 1: %s", lpost(resop_gp.x, no_dens_test, gpmodel)) |
443
|
1 |
|
gpmodel.compute(no_ys, no_errs) |
444
|
1 |
|
logging.debug("opt. log posterior all 1: %s", lpost(resop_gp.x, no_dens, gpmodel)) |
445
|
1 |
|
logging.debug("opt. model vector: %s", gpmodel.get_parameter_vector()) |
446
|
1 |
|
gpmodel.compute(no_ys_train, no_errs_train) |
447
|
1 |
|
logging.debug("opt. log posterior trained 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
448
|
1 |
|
gpmodel.compute(no_ys_test, no_errs_test) |
449
|
1 |
|
logging.debug("opt. log posterior test 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
450
|
1 |
|
gpmodel.compute(no_ys, no_errs) |
451
|
1 |
|
logging.debug("opt. log posterior all 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
452
|
1 |
|
pre_opt = resop_gp.success |
453
|
1 |
|
try: |
454
|
1 |
|
logging.info("GM lt: %s", gpmodel.get_parameter("mean:GM:tau0")) |
455
|
|
|
except ValueError: |
456
|
|
|
pass |
457
|
1 |
|
logging.info("(GP) model: %s", gpmodel.kernel) |
458
|
1 |
|
if isinstance(gpmodel, celerite.GP): |
459
|
1 |
|
logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
460
|
|
|
|
461
|
1 |
|
bestfit = gpmodel.get_parameter_vector() |
462
|
1 |
|
filename_base = path.join( |
463
|
|
|
args.output_path, |
464
|
|
|
"NO_regress_fit_{0}_{1:.0f}_{2:.0f}_{{0}}_{3}" |
465
|
|
|
.format(gpmodel_name, lat * 10, alt, ksub), |
466
|
|
|
) |
467
|
|
|
|
468
|
1 |
|
if args.mcmc: |
469
|
1 |
|
gpmodel.compute(no_ys_train, no_errs_train) |
470
|
1 |
|
samples, lnp = mcmc_sample_model(gpmodel, |
471
|
|
|
no_dens_train, |
472
|
|
|
beta=1.0, |
473
|
|
|
nwalkers=args.walkers, nburnin=args.burn_in, |
474
|
|
|
nprod=args.production, nthreads=args.threads, |
475
|
|
|
show_progress=args.progress, |
476
|
|
|
optimized=pre_opt, bounds=bounds, return_logpost=True) |
477
|
|
|
|
478
|
1 |
|
if args.train_fraction < 1. or args.test_fraction < 1.: |
479
|
|
|
logging.info("Statistics for the test samples") |
480
|
|
|
mcmc_statistics(gpmodel, |
481
|
|
|
no_ys_test, no_dens_test, no_errs_test, |
482
|
|
|
no_ys_train, no_dens_train, no_errs_train, |
483
|
|
|
samples, lnp, |
484
|
|
|
) |
485
|
1 |
|
logging.info("Statistics for all samples") |
486
|
1 |
|
mcmc_statistics(gpmodel, |
487
|
|
|
no_ys, no_dens, no_errs, |
488
|
|
|
no_ys_train, no_dens_train, no_errs_train, |
489
|
|
|
samples, lnp, |
490
|
|
|
) |
491
|
|
|
|
492
|
1 |
|
sampl_percs = np.percentile(samples, [2.5, 50, 97.5], axis=0) |
493
|
1 |
|
if args.plot_corner: |
494
|
1 |
|
import corner |
495
|
|
|
# Corner plot of the sampled parameters |
496
|
1 |
|
fig = corner.corner(samples, |
497
|
|
|
quantiles=[0.025, 0.5, 0.975], |
498
|
|
|
show_titles=True, |
499
|
|
|
labels=gpmodel.get_parameter_names(), |
500
|
|
|
truths=bestfit, |
501
|
|
|
hist_args=dict(normed=True)) |
502
|
1 |
|
fig.savefig(filename_base.format("corner") + ".pdf", transparent=True) |
503
|
|
|
|
504
|
1 |
|
if args.save_samples: |
505
|
1 |
|
if args.samples_format in ["npz"]: |
506
|
|
|
# save the samples compressed to save space. |
507
|
|
|
np.savez_compressed(filename_base.format("sampls") + ".npz", |
508
|
|
|
samples=samples) |
509
|
1 |
|
if args.samples_format in ["nc", "netcdf4"]: |
510
|
1 |
|
save_samples_netcdf(filename_base.format("sampls") + ".nc", |
511
|
|
|
gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
512
|
1 |
|
if args.samples_format in ["h5", "hdf5"]: |
513
|
|
|
save_samples_netcdf(filename_base.format("sampls") + ".h5", |
514
|
|
|
gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
515
|
|
|
# MCMC finished here |
516
|
|
|
|
517
|
|
|
# set the model times and errors to use the full data set for plotting |
518
|
1 |
|
gpmodel.compute(no_ys, no_errs) |
519
|
1 |
|
if args.save_model: |
520
|
|
|
try: |
521
|
|
|
# python 2 |
522
|
|
|
import cPickle as pickle |
523
|
|
|
except ImportError: |
524
|
|
|
# python 3 |
525
|
|
|
import pickle |
526
|
|
|
# pickle and save the model |
527
|
|
|
with open(filename_base.format("model") + ".pkl", "wb") as f: |
528
|
|
|
pickle.dump((gpmodel), f, -1) |
529
|
|
|
|
530
|
1 |
|
if args.plot_samples and args.mcmc: |
531
|
1 |
|
plot_random_samples(gpmodel, no_ys, no_dens, no_errs, |
532
|
|
|
samples, args.scale, |
|
|
|
|
533
|
|
|
filename_base.format("sampls") + ".pdf", |
534
|
|
|
size=4, extra_years=[4, 2]) |
535
|
|
|
|
536
|
1 |
|
if args.plot_median: |
537
|
1 |
|
plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
538
|
|
|
sampl_percs[1], |
|
|
|
|
539
|
|
|
filename_base.format("median") + ".pdf") |
540
|
1 |
|
if args.plot_residuals: |
541
|
1 |
|
plot_residual(gpmodel, no_ys, no_dens, no_errs, |
542
|
|
|
sampl_percs[1], args.scale, |
543
|
|
|
filename_base.format("medres") + ".pdf") |
544
|
1 |
|
if args.plot_maxlnp: |
545
|
1 |
|
plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
546
|
|
|
samples[np.argmax(lnp)], |
|
|
|
|
547
|
|
|
filename_base.format("maxlnp") + ".pdf") |
548
|
1 |
|
if args.plot_maxlnpres: |
549
|
1 |
|
plot_residual(gpmodel, no_ys, no_dens, no_errs, |
550
|
|
|
samples[np.argmax(lnp)], args.scale, |
551
|
|
|
filename_base.format("mlpres") + ".pdf") |
552
|
|
|
|
553
|
1 |
|
labels = gpmodel.get_parameter_names() |
554
|
1 |
|
logging.info("param percentiles [2.5, 50, 97.5]:") |
555
|
1 |
|
for pc, label in zip(sampl_percs.T, labels): |
556
|
1 |
|
median = pc[1] |
557
|
1 |
|
pc_minus = median - pc[0] |
558
|
1 |
|
pc_plus = pc[2] - median |
559
|
1 |
|
logging.debug("%s: %s", label, pc) |
560
|
1 |
|
logging.info("%s: %.6f (- %.6f) (+ %.6f)", label, |
561
|
|
|
median, pc_minus, pc_plus) |
562
|
|
|
|
563
|
1 |
|
logging.info("Finished successfully.") |
564
|
|
|
|
565
|
|
|
|
566
|
1 |
|
if __name__ == "__main__": |
567
|
|
|
main() |
568
|
|
|
|