1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2018-2022 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This module is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
8
|
|
|
# it under the terms of the GNU General Public License as published |
9
|
|
|
# by the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
|
|
"""SCIAMACHY regression module tests |
12
|
|
|
""" |
13
|
|
|
import numpy as np |
14
|
|
|
|
15
|
|
|
import pytest |
16
|
|
|
|
17
|
|
|
try: |
18
|
|
|
import pymc3 as pm |
19
|
|
|
except ImportError: |
20
|
|
|
pytest.skip("Theano/PyMC3 packages not installed", allow_module_level=True) |
21
|
|
|
|
22
|
|
|
try: |
23
|
|
|
from sciapy.regress.models_theano import ( |
24
|
|
|
HarmonicModelCosineSine, |
25
|
|
|
HarmonicModelAmpPhase, |
26
|
|
|
LifetimeModel, |
27
|
|
|
ProxyModel, |
28
|
|
|
) |
29
|
|
|
except ImportError: |
30
|
|
|
pytest.skip("Theano/PyMC3 interface not installed", allow_module_level=True) |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
@pytest.fixture(scope="module") |
34
|
|
|
def xx(): |
35
|
|
|
# modified Julian days, 2 years from 2000-01-01 |
36
|
|
|
_xs = 51544.5 + np.arange(0., 2 * 365. + 1, 1.) |
37
|
|
|
return np.ascontiguousarray(_xs, dtype=np.float64) |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
def ys(xs, c, s): |
41
|
|
|
_ys = c * np.cos(2 * np.pi * xs) + s * np.sin(2 * np.pi * xs) |
42
|
|
|
return np.ascontiguousarray(_ys, dtype=np.float64) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
@pytest.mark.parametrize( |
46
|
|
|
"c, s", |
47
|
|
|
[ |
48
|
|
|
(0.5, 2.0), |
49
|
|
|
(1.0, 0.5), |
50
|
|
|
(1.0, 1.0), |
51
|
|
|
] |
52
|
|
|
) |
53
|
|
|
def test_harmonics_theano(xx, c, s): |
54
|
|
|
# Initialize random number generator |
55
|
|
|
np.random.seed(93457) |
56
|
|
|
# convert to fractional years |
57
|
|
|
xs = 1859 + (xx - 44.25) / 365.25 |
58
|
|
|
yp = ys(xs, c, s) |
59
|
|
|
yp += 0.5 * np.random.randn(xs.shape[0]) |
60
|
|
|
|
61
|
|
|
with pm.Model() as model1: |
62
|
|
|
cos = pm.Normal("cos", mu=0.0, sigma=4.0) |
63
|
|
|
sin = pm.Normal("sin", mu=0.0, sigma=4.0) |
64
|
|
|
harm1 = HarmonicModelCosineSine(1., cos, sin) |
65
|
|
|
wave1 = harm1.get_value(xs) |
66
|
|
|
# add amplitude and phase for comparison |
67
|
|
|
pm.Deterministic("amp", harm1.get_amplitude()) |
68
|
|
|
pm.Deterministic("phase", harm1.get_phase()) |
69
|
|
|
pm.Normal("obs", mu=wave1, observed=yp) |
70
|
|
|
trace1 = pm.sample(tune=400, draws=400, chains=2, return_inferencedata=True) |
71
|
|
|
|
72
|
|
|
with pm.Model() as model2: |
73
|
|
|
amp2 = pm.HalfNormal("amp", sigma=4.0) |
74
|
|
|
phase2 = pm.Normal("phase", mu=0.0, sigma=4.0) |
75
|
|
|
harm2 = HarmonicModelAmpPhase(1., amp2, phase2) |
76
|
|
|
wave2 = harm2.get_value(xs) |
77
|
|
|
pm.Normal("obs", mu=wave2, observed=yp) |
78
|
|
|
trace2 = pm.sample(tune=400, draws=400, chains=2, return_inferencedata=True) |
79
|
|
|
|
80
|
|
|
np.testing.assert_allclose( |
81
|
|
|
trace1.posterior.median(dim=("chain", "draw"))[["cos", "sin"]].to_array(), |
82
|
|
|
(c, s), |
83
|
|
|
atol=2e-2, |
84
|
|
|
) |
85
|
|
|
np.testing.assert_allclose( |
86
|
|
|
trace1.posterior.median(dim=("chain", "draw"))[["amp", "phase"]].to_array(), |
87
|
|
|
trace2.posterior.median(dim=("chain", "draw"))[["amp", "phase"]].to_array(), |
88
|
|
|
atol=6e-3, |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
def _test_data(xs, values, f, c, s): |
93
|
|
|
amp = 3. |
94
|
|
|
lag = 2. |
95
|
|
|
tau0 = 1. |
96
|
|
|
harm0 = HarmonicModelCosineSine(f, c, s) |
97
|
|
|
tau_lt0 = LifetimeModel(harm0, lower=0.) |
98
|
|
|
proxy0 = ProxyModel( |
99
|
|
|
xs, values, |
100
|
|
|
amp=amp, |
101
|
|
|
lag=lag, |
102
|
|
|
tau0=tau0, |
103
|
|
|
tau_harm=tau_lt0, |
104
|
|
|
tau_scan=10, |
105
|
|
|
days_per_time_unit=f * 365.25, |
106
|
|
|
) |
107
|
|
|
return proxy0.get_value(xs).eval() |
108
|
|
|
|
109
|
|
|
|
110
|
|
|
def _yy(x, c, s): |
111
|
|
|
_ys = np.zeros_like(x) |
112
|
|
|
_ys[10::20] = 10. |
113
|
|
|
return np.ascontiguousarray(_ys, dtype=np.float64) |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
@pytest.mark.long |
117
|
|
|
@pytest.mark.parametrize( |
118
|
|
|
"f", |
119
|
|
|
[1., 1. / 365.25] |
120
|
|
|
) |
121
|
|
|
def test_proxy_theano(xx, f, c=3.0, s=1.0): |
122
|
|
|
# Initialize random number generator |
123
|
|
|
np.random.seed(93457) |
124
|
|
|
|
125
|
|
|
dx = 1. / (f * 365.25) |
126
|
|
|
if f < 1.: |
127
|
|
|
xs = xx * dx |
128
|
|
|
else: |
129
|
|
|
# convert to fractional years |
130
|
|
|
xs = 1859 + (xx - 44.25) * dx |
131
|
|
|
# proxy "values" |
132
|
|
|
values = _yy(xs, c, s) |
133
|
|
|
|
134
|
|
|
yp = _test_data(xs, values, f, c, s) |
135
|
|
|
yp += 0.5 * np.random.randn(xs.shape[0]) |
136
|
|
|
|
137
|
|
|
# using "name" prefixes all variables with <name>_ |
138
|
|
|
with pm.Model(name="proxy") as model: |
139
|
|
|
# amplitude |
140
|
|
|
pamp = pm.Normal("amp", mu=0.0, sigma=4.0) |
141
|
|
|
# lag |
142
|
|
|
plag = pm.Lognormal("lag", mu=0.0, sigma=4.0, testval=1.0) |
143
|
|
|
# lifetime |
144
|
|
|
ptau0 = pm.Lognormal("tau0", mu=0.0, sigma=4.0, testval=1.0) |
145
|
|
|
cos1 = pm.Normal("tau_cos1", mu=0.0, sigma=10.0) |
146
|
|
|
sin1 = pm.Normal("tau_sin1", mu=0.0, sigma=10.0) |
147
|
|
|
harm1 = HarmonicModelCosineSine(f, cos1, sin1) |
148
|
|
|
tau1 = LifetimeModel(harm1, lower=0) |
149
|
|
|
|
150
|
|
|
proxy = ProxyModel( |
151
|
|
|
xs, values, |
152
|
|
|
amp=pamp, |
153
|
|
|
lag=plag, |
154
|
|
|
tau0=ptau0, |
155
|
|
|
tau_harm=tau1, |
156
|
|
|
tau_scan=10, |
157
|
|
|
days_per_time_unit=f * 365.25, |
158
|
|
|
) |
159
|
|
|
prox1 = proxy.get_value(xs) |
160
|
|
|
# Include "jitter" |
161
|
|
|
log_jitter = pm.Normal("log_jitter", mu=0.0, sigma=4.0) |
162
|
|
|
pm.Normal("obs", mu=prox1, sigma=pm.math.exp(log_jitter), observed=yp) |
163
|
|
|
|
164
|
|
|
maxlp0 = pm.find_MAP() |
165
|
|
|
trace = pm.sample( |
166
|
|
|
chains=2, |
167
|
|
|
draws=400, |
168
|
|
|
tune=400, |
169
|
|
|
random_seed=[286923464, 464329682], |
170
|
|
|
return_inferencedata=True, |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
medians = trace.posterior.median(dim=("chain", "draw")) |
174
|
|
|
var_names = [ |
175
|
|
|
model.name_for(n) |
176
|
|
|
for n in [ |
177
|
|
|
"amp", "lag", "tau0", "tau_cos1", "tau_sin1", "log_jitter", |
178
|
|
|
] |
179
|
|
|
] |
180
|
|
|
np.testing.assert_allclose( |
181
|
|
|
medians[var_names].to_array(), |
182
|
|
|
(3., 2., 1., c, s, np.log(0.5)), |
183
|
|
|
atol=3e-2, rtol=1e-2, |
184
|
|
|
) |
185
|
|
|
|