|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
# vim:fileencoding=utf-8 |
|
3
|
|
|
# |
|
4
|
|
|
# Copyright (c) 2017-2019 Stefan Bender |
|
5
|
|
|
# |
|
6
|
|
|
# This module is part of sciapy. |
|
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
|
8
|
|
|
# it under the terms of the GNU General Public License as published |
|
9
|
|
|
# by the Free Software Foundation, version 2. |
|
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
|
11
|
1 |
|
"""SCIAMACHY MCMC statistic tools |
|
12
|
|
|
|
|
13
|
|
|
Statistical functions for MCMC sampled parameters. |
|
14
|
|
|
""" |
|
15
|
|
|
|
|
16
|
1 |
|
import logging |
|
17
|
|
|
|
|
18
|
1 |
|
import numpy as np |
|
19
|
|
|
|
|
20
|
1 |
|
__all__ = ["mcmc_statistics"] |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
1 |
|
def _log_prob(resid, var): |
|
24
|
|
|
return -0.5 * (np.log(2 * np.pi * var) + resid**2 / var) |
|
25
|
|
|
|
|
26
|
|
|
|
|
27
|
1 |
View Code Duplication |
def mcmc_statistics(model, times, data, errs, |
|
|
|
|
|
|
28
|
|
|
train_times, train_data, train_errs, |
|
29
|
|
|
samples, lnp, |
|
30
|
|
|
median=False): |
|
31
|
|
|
"""Statistics for the (GP) model against the provided data |
|
32
|
|
|
|
|
33
|
|
|
Statistical information about the model and the sampled parameter |
|
34
|
|
|
distributions with respect to the provided data and its variance. |
|
35
|
|
|
|
|
36
|
|
|
Sends the calculated values to the logger, includes the mean |
|
37
|
|
|
standardized log loss as described in R&W, 2006, section 2.5, (2.34), |
|
38
|
|
|
and some slightly adapted $\\chi^2_{\\text{red}}$ and $R^2$ scores. |
|
39
|
|
|
|
|
40
|
|
|
Parameters |
|
41
|
|
|
---------- |
|
42
|
|
|
model : `celerite.GP`, `george.GP` or `CeleriteModelSet` instance |
|
43
|
|
|
The model instance whose parameter distribution was drawn. |
|
44
|
|
|
times : (M,) array_like |
|
45
|
|
|
The test coordinates to predict or evaluate the model on. |
|
46
|
|
|
data : (M,) array_like |
|
47
|
|
|
The test data to test the model against. |
|
48
|
|
|
errs : (M,) array_like |
|
49
|
|
|
The errors (variances) of the test data. |
|
50
|
|
|
train_times : (N,) array_like |
|
51
|
|
|
The coordinates on which the model was trained. |
|
52
|
|
|
train_data : (N,) array_like |
|
53
|
|
|
The data on which the model was trained. |
|
54
|
|
|
train_errs : (N,) array_like |
|
55
|
|
|
The errors (variances) of the training data. |
|
56
|
|
|
samples : (K, L) array_like |
|
57
|
|
|
The `K` MCMC samples of the `L` parameter distributions. |
|
58
|
|
|
lnp : (K,) array_like |
|
59
|
|
|
The posterior log probabilities of the `K` MCMC samples. |
|
60
|
|
|
median : bool, optional |
|
61
|
|
|
Whether to use the median of the sampled distributions or |
|
62
|
|
|
the maximum posterior sample (the default) to evaluate the |
|
63
|
|
|
statistics. |
|
64
|
|
|
|
|
65
|
|
|
Returns |
|
66
|
|
|
------- |
|
67
|
|
|
nothing |
|
68
|
|
|
""" |
|
69
|
|
|
ndat = len(times) |
|
70
|
|
|
ndim = len(model.get_parameter_vector()) |
|
71
|
|
|
mdim = len(model.mean.get_parameter_vector()) |
|
72
|
|
|
samples_max_lp = np.max(lnp) |
|
73
|
|
|
if median: |
|
74
|
|
|
sample_pos = np.nanmedian(samples, axis=0) |
|
75
|
|
|
else: |
|
76
|
|
|
sample_pos = samples[np.argmax(lnp)] |
|
77
|
|
|
model.set_parameter_vector(sample_pos) |
|
78
|
|
|
# calculate the GP predicted values and covariance |
|
79
|
|
|
gppred, gpcov = model.predict(train_data, t=times, return_cov=True) |
|
80
|
|
|
# the predictive covariance should include the data variance |
|
81
|
|
|
gpcov[np.diag_indices_from(gpcov)] += errs**2 |
|
82
|
|
|
# residuals |
|
83
|
|
|
resid_mod = model.mean.get_value(times) - data # GP mean model |
|
84
|
|
|
resid_gp = gppred - data # GP prediction |
|
85
|
|
|
resid_triv = np.nanmean(train_data) - data # trivial model |
|
86
|
|
|
_const = ndat * np.log(2.0 * np.pi) |
|
87
|
|
|
test_logpred = -0.5 * (resid_gp.dot(np.linalg.solve(gpcov, resid_gp)) |
|
88
|
|
|
+ np.trace(np.log(gpcov)) |
|
89
|
|
|
+ _const) |
|
90
|
|
|
# MSLL -- mean standardized log loss |
|
91
|
|
|
# as described in R&W, 2006, section 2.5, (2.34) |
|
92
|
|
|
var_mod = np.nanvar(resid_mod, ddof=mdim) # mean model variance |
|
93
|
|
|
var_gp = np.nanvar(resid_gp, ddof=ndim) # gp model variance |
|
94
|
|
|
var_triv = np.nanvar(train_data, ddof=1) # trivial model variance |
|
95
|
|
|
logpred_mod = _log_prob(resid_mod, var_mod) |
|
96
|
|
|
logpred_gp = _log_prob(resid_gp, var_gp) |
|
97
|
|
|
logpred_triv = _log_prob(resid_triv, var_triv) |
|
98
|
|
|
logging.info("MSLL mean: %s", np.nanmean(-logpred_mod + logpred_triv)) |
|
99
|
|
|
logging.info("MSLL gp: %s", np.nanmean(-logpred_gp + logpred_triv)) |
|
100
|
|
|
# predictive variances |
|
101
|
|
|
logpred_mod = _log_prob(resid_mod, var_mod + errs**2) |
|
102
|
|
|
logpred_gp = _log_prob(resid_gp, var_gp + errs**2) |
|
103
|
|
|
logpred_triv = _log_prob(resid_triv, var_triv + errs**2) |
|
104
|
|
|
logging.info("pred MSLL mean: %s", np.nanmean(-logpred_mod + logpred_triv)) |
|
105
|
|
|
logging.info("pred MSLL gp: %s", np.nanmean(-logpred_gp + logpred_triv)) |
|
106
|
|
|
# cost values |
|
107
|
|
|
cost_mod = np.sum(resid_mod**2) |
|
108
|
|
|
cost_triv = np.sum(resid_triv**2) |
|
109
|
|
|
cost_gp = np.sum(resid_gp**2) |
|
110
|
|
|
# chi^2 (variance corrected costs) |
|
111
|
|
|
chisq_mod_ye = np.sum((resid_mod / errs)**2) |
|
112
|
|
|
chisq_triv = np.sum((resid_triv / errs)**2) |
|
113
|
|
|
chisq_gpcov = resid_mod.dot(np.linalg.solve(gpcov, resid_mod)) |
|
114
|
|
|
# adjust for degrees of freedom |
|
115
|
|
|
cost_gp_dof = cost_gp / (ndat - ndim) |
|
116
|
|
|
cost_mod_dof = cost_mod / (ndat - mdim) |
|
117
|
|
|
cost_triv_dof = cost_triv / (ndat - 1) |
|
118
|
|
|
# reduced chi^2 |
|
119
|
|
|
chisq_red_mod_ye = chisq_mod_ye / (ndat - mdim) |
|
120
|
|
|
chisq_red_triv = chisq_triv / (ndat - 1) |
|
121
|
|
|
chisq_red_gpcov = chisq_gpcov / (ndat - ndim) |
|
122
|
|
|
# "generalized" R^2 |
|
123
|
|
|
logp_triv1 = np.sum(_log_prob(resid_triv, errs**2)) |
|
124
|
|
|
logp_triv2 = np.sum(_log_prob(resid_triv, var_triv)) |
|
125
|
|
|
logp_triv3 = np.sum(_log_prob(resid_triv, var_triv + errs**2)) |
|
126
|
|
|
log_lambda1 = test_logpred - logp_triv1 |
|
127
|
|
|
log_lambda2 = test_logpred - logp_triv2 |
|
128
|
|
|
log_lambda3 = test_logpred - logp_triv3 |
|
129
|
|
|
gen_rsq1a = 1 - np.exp(-2 * log_lambda1 / ndat) |
|
130
|
|
|
gen_rsq1b = 1 - np.exp(-2 * log_lambda1 / (ndat - ndim)) |
|
131
|
|
|
gen_rsq2a = 1 - np.exp(-2 * log_lambda2 / ndat) |
|
132
|
|
|
gen_rsq2b = 1 - np.exp(-2 * log_lambda2 / (ndat - ndim)) |
|
133
|
|
|
gen_rsq3a = 1 - np.exp(-2 * log_lambda3 / ndat) |
|
134
|
|
|
gen_rsq3b = 1 - np.exp(-2 * log_lambda3 / (ndat - ndim)) |
|
135
|
|
|
# sent to the logger |
|
136
|
|
|
logging.info("train max logpost: %s", samples_max_lp) |
|
137
|
|
|
logging.info("test log_pred: %s", test_logpred) |
|
138
|
|
|
logging.info("1a cost mean model: %s, dof adj: %s", cost_mod, cost_mod_dof) |
|
139
|
|
|
logging.debug("1c cost gp predict: %s, dof adj: %s", cost_gp, cost_gp_dof) |
|
140
|
|
|
logging.debug("1b cost triv model: %s, dof adj: %s", cost_triv, cost_triv_dof) |
|
141
|
|
|
logging.info("1d var resid mean model: %s, gp model: %s, triv: %s", |
|
142
|
|
|
var_mod, var_gp, var_triv) |
|
143
|
|
|
logging.info("2a adjR2 mean model: %s, adjR2 gp predict: %s", |
|
144
|
|
|
1 - cost_mod_dof / cost_triv_dof, 1 - cost_gp_dof / cost_triv_dof) |
|
145
|
|
|
logging.info("2b red chi^2 mod: %s / triv: %s = %s", |
|
146
|
|
|
chisq_red_mod_ye, chisq_red_triv, chisq_red_mod_ye / chisq_red_triv) |
|
147
|
|
|
logging.info("2c red chi^2 mod (gp cov): %s / triv: %s = %s", |
|
148
|
|
|
chisq_red_gpcov, chisq_red_triv, chisq_red_gpcov / chisq_red_triv) |
|
149
|
|
|
logging.info("3a stand. red chi^2: %s", chisq_red_gpcov / chisq_red_triv) |
|
150
|
|
|
logging.info("3b 1 - stand. red chi^2: %s", |
|
151
|
|
|
1 - chisq_red_gpcov / chisq_red_triv) |
|
152
|
|
|
logging.info("5a generalized R^2: 1a: %s, 1b: %s", |
|
153
|
|
|
gen_rsq1a, gen_rsq1b) |
|
154
|
|
|
logging.info("5b generalized R^2: 2a: %s, 2b: %s", |
|
155
|
|
|
gen_rsq2a, gen_rsq2b) |
|
156
|
|
|
logging.info("5c generalized R^2: 3a: %s, 3b: %s", |
|
157
|
|
|
gen_rsq3a, gen_rsq3b) |
|
158
|
|
|
try: |
|
159
|
|
|
# celerite |
|
160
|
|
|
logdet = model.solver.log_determinant() |
|
161
|
|
|
except TypeError: |
|
162
|
|
|
# george |
|
163
|
|
|
logdet = model.solver.log_determinant |
|
164
|
|
|
logging.debug("5 logdet: %s, const 2: %s", logdet, _const) |
|
165
|
|
|
|