1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2018 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This module is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify |
8
|
|
|
# it under the terms of the GNU General Public License as published |
9
|
|
|
# by the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
|
|
"""SCIAMACHY regression module data loading tests |
12
|
|
|
""" |
13
|
|
|
from datetime import datetime |
14
|
|
|
from pkg_resources import resource_filename |
15
|
|
|
|
16
|
|
|
from astropy.time import Time |
17
|
|
|
import numpy as np |
18
|
|
|
from pytest import mark, raises |
19
|
|
|
try: |
20
|
|
|
import netCDF4 |
21
|
|
|
NC_EXT = ".nc" |
22
|
|
|
except ImportError: |
23
|
|
|
NC_EXT = ".nc3" |
24
|
|
|
|
25
|
|
|
import sciapy.regress |
26
|
|
|
|
27
|
|
|
DZM_FILE = resource_filename(__name__, "sciaNO_20100203_v6.2.1_geogra30" + NC_EXT) |
28
|
|
|
|
29
|
|
|
AEdata = [ |
30
|
|
|
("2000-01-01", "jyear", 1999.9986311, 507.208333), |
31
|
|
|
("2000-01-01", "jd", 2451544.5, 507.208333), |
32
|
|
|
("2000-01-01", "mjd", 51544.0, 507.208333), |
33
|
|
|
("2007-07-01", "jyear", 2007.4948665, 83.208333), |
34
|
|
|
("2007-07-01", "jd", 2454282.5, 83.208333), |
35
|
|
|
("2007-07-01", "mjd", 54282.0, 83.208333), |
36
|
|
|
] |
37
|
|
|
Lyadata = [ |
38
|
|
|
("2000-01-01", "jyear", 1999.9986311, 4.59), |
39
|
|
|
("2000-01-01", "jd", 2451544.5, 4.59), |
40
|
|
|
("2000-01-01", "mjd", 51544.0, 4.59), |
41
|
|
|
("2007-07-01", "jyear", 2007.4948665, 3.74), |
42
|
|
|
("2007-07-01", "jd", 2454282.5, 3.74), |
43
|
|
|
("2007-07-01", "mjd", 54282.0, 3.74), |
44
|
|
|
] |
45
|
|
|
|
46
|
|
|
|
47
|
|
|
def test_load_proxyAEfiles(): |
48
|
|
|
AEfile = resource_filename("sciapy", |
49
|
|
|
"data/indices/AE_Kyoto_1980-2018_daily2_shift12h.dat") |
50
|
|
|
pAEt, pAEv = sciapy.regress.load_solar_gm_table(AEfile, |
51
|
|
|
cols=[0, 1], names=["time", "AE"], tfmt="jyear") |
52
|
|
|
pAEt2, pAEv2 = sciapy.regress.load_data.load_dailymeanAE() |
53
|
|
|
np.testing.assert_allclose(pAEt, pAEt2) |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def test_load_proxyLyafiles(): |
57
|
|
|
Lyafile = resource_filename("sciapy", |
58
|
|
|
"data/indices/lisird_lya3_1980-2021.dat") |
59
|
|
|
pLyat, pLyav = sciapy.regress.load_solar_gm_table(Lyafile, |
60
|
|
|
cols=[0, 1], names=["time", "Lya"], tfmt="jyear") |
61
|
|
|
pLyat2, pLyav2 = sciapy.regress.load_data.load_dailymeanLya() |
62
|
|
|
np.testing.assert_allclose(pLyat, pLyat2) |
63
|
|
|
|
64
|
|
|
|
65
|
|
|
@mark.parametrize("date, tfmt, texp, vexp", AEdata) |
66
|
|
|
def test_load_proxyAEvalues(date, tfmt, texp, vexp): |
67
|
|
|
pAEt, pAEv = sciapy.regress.load_data.load_dailymeanAE(tfmt=tfmt) |
68
|
|
|
idx = list(Time(pAEt, format=tfmt).iso).index(date + " 00:00:00.000") |
69
|
|
|
np.testing.assert_allclose(pAEt[idx], texp) |
70
|
|
|
np.testing.assert_allclose(pAEv["AE"][idx], vexp) |
71
|
|
|
|
72
|
|
|
|
73
|
|
|
@mark.parametrize("date, tfmt, texp, vexp", Lyadata) |
74
|
|
|
def test_load_proxyLyavalues(date, tfmt, texp, vexp): |
75
|
|
|
pLyat, pLyav = sciapy.regress.load_data.load_dailymeanLya(tfmt=tfmt) |
76
|
|
|
idx = list(Time(pLyat, format=tfmt).iso).index(date + " 00:00:00.000") |
77
|
|
|
np.testing.assert_allclose(pLyat[idx], texp) |
78
|
|
|
np.testing.assert_allclose(pLyav["Lya"][idx], vexp) |
79
|
|
|
|
80
|
|
|
|
81
|
|
|
def test_load_dzm_normal(): |
82
|
|
|
data = sciapy.regress.load_scia_dzm(DZM_FILE, 70., -75.) |
83
|
|
|
np.testing.assert_allclose(data[0], np.array([2010.09184335])) |
84
|
|
|
np.testing.assert_allclose(data[1], np.array([25992364.81988303])) |
85
|
|
|
np.testing.assert_allclose(data[2], np.array([2722294.10593951])) |
86
|
|
|
np.testing.assert_allclose(data[3], np.array([65.5642548])) |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def test_load_dzm_center(): |
90
|
|
|
data = sciapy.regress.load_scia_dzm(DZM_FILE, 70., -45., center=True) |
91
|
|
|
np.testing.assert_allclose(data[0], np.array([2010.09184335])) |
92
|
|
|
np.testing.assert_allclose(data[1], np.array([-9293324.84946741])) |
93
|
|
|
np.testing.assert_allclose(data[2], np.array([2337592.1464543])) |
94
|
|
|
np.testing.assert_allclose(data[3], np.array([46.02054338])) |
95
|
|
|
|
96
|
|
|
|
97
|
|
|
def test_load_dzm_spe(): |
98
|
|
|
data = sciapy.regress.load_scia_dzm(DZM_FILE, 70., 15., SPEs=True) |
99
|
|
|
np.testing.assert_allclose(data[0], np.array([2010.09184335])) |
100
|
|
|
np.testing.assert_allclose(data[1], np.array([10184144.7669378])) |
101
|
|
|
np.testing.assert_allclose(data[2], np.array([2633165.7502271])) |
102
|
|
|
np.testing.assert_allclose(data[3], np.array([45.41338086])) |
103
|
|
|
|
104
|
|
|
|
105
|
|
|
def test_load_dzm_summerSH(): |
106
|
|
|
data = sciapy.regress.load_scia_dzm(DZM_FILE, 70., 45., season="summerSH") |
107
|
|
|
np.testing.assert_allclose(data[0], np.array([2010.09184335])) |
108
|
|
|
np.testing.assert_allclose(data[1], np.array([24484783.29918655])) |
109
|
|
|
np.testing.assert_allclose(data[2], np.array([2814284.4588219])) |
110
|
|
|
np.testing.assert_allclose(data[3], np.array([65.04123748])) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def test_load_dzm_summerNH(): |
114
|
|
|
data = sciapy.regress.load_scia_dzm(DZM_FILE, 70., 75., season="summerNH") |
115
|
|
|
np.testing.assert_equal(data[0], np.array([])) |
116
|
|
|
np.testing.assert_equal(data[1], np.array([])) |
117
|
|
|
np.testing.assert_equal(data[2], np.array([])) |
118
|
|
|
np.testing.assert_equal(data[3], np.array([])) |
119
|
|
|
|