Conditions | 54 |
Total Lines | 404 |
Code Lines | 309 |
Lines | 0 |
Ratio | 0 % |
Tests | 186 |
CRAP Score | 64.754 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like sciapy.regress.__main__.main() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
150 | 1 | def main(): |
|
151 | 1 | logging.basicConfig(level=logging.WARNING, |
|
152 | format="[%(levelname)-8s] (%(asctime)s) " |
||
153 | "%(filename)s:%(lineno)d %(message)s", |
||
154 | datefmt="%Y-%m-%d %H:%M:%S %z") |
||
155 | |||
156 | 1 | args = parser.parse_args() |
|
157 | |||
158 | 1 | logging.info("command line arguments: %s", args) |
|
159 | 1 | if args.quiet: |
|
160 | 1 | logging.getLogger().setLevel(logging.ERROR) |
|
161 | elif args.verbose: |
||
162 | logging.getLogger().setLevel(logging.INFO) |
||
163 | else: |
||
164 | logging.getLogger().setLevel(args.loglevel) |
||
165 | |||
166 | 1 | if args.openblas_threads is not None: |
|
167 | # Sets OpenMP/Openblas number of threads if set, |
||
168 | # else uses the environment's and library's defaults |
||
169 | environ["OMP_NUM_THREADS"] = str(args.openblas_threads) |
||
170 | environ["OPENBLAS_NUM_THREADS"] = str(args.openblas_threads) |
||
171 | |||
172 | 1 | if args.random_seed is not None: |
|
173 | 1 | np.random.seed(args.random_seed) |
|
174 | |||
175 | 1 | if args.proxies: |
|
176 | 1 | proxies = args.proxies.split(',') |
|
177 | 1 | proxy_dict = dict(_p.split(':') for _p in proxies) |
|
178 | else: |
||
179 | proxy_dict = {} |
||
180 | 1 | lag_dict = {pn: 0 for pn in proxy_dict.keys()} |
|
181 | |||
182 | # Post-processing of arguments... |
||
183 | # List of proxy lag fits from csv |
||
184 | 1 | fit_lags = args.fit_lags.split(',') |
|
185 | # List of proxy lifetime fits from csv |
||
186 | 1 | fit_lifetimes = args.fit_lifetimes.split(',') |
|
187 | 1 | fit_annlifetimes = args.fit_annlifetimes.split(',') |
|
188 | # List of proxy lag times from csv |
||
189 | 1 | lag_dict.update(dict(_ls.split(':') for _ls in args.lag_times.split(','))) |
|
190 | # List of cycles (frequencies in 1/year) from argument list (csv) |
||
191 | 1 | try: |
|
192 | 1 | freqs = list(map(float, args.freqs.split(','))) |
|
193 | 1 | except ValueError: |
|
194 | 1 | freqs = [] |
|
195 | 1 | args.freqs = freqs |
|
196 | # List of initial parameter values |
||
197 | 1 | initial = None |
|
198 | 1 | if args.initial is not None: |
|
199 | try: |
||
200 | initial = list(map(float, args.initial.split(','))) |
||
201 | except ValueError: |
||
202 | pass |
||
203 | # List of GP kernels from argument list (csv) |
||
204 | 1 | kernls = args.kernels.split(',') |
|
205 | |||
206 | 1 | lat = args.latitude |
|
207 | 1 | alt = args.altitude |
|
208 | 1 | logging.info("location: %.0f°N %.0f km", lat, alt) |
|
209 | |||
210 | 1 | no_ys, no_dens, no_errs, no_szas = load_scia_dzm(args.file, alt, lat, |
|
211 | tfmt=args.time_format, |
||
212 | scale=args.scale, |
||
213 | #subsample_factor=args.random_subsample, |
||
214 | #subsample_method="random", |
||
215 | akd_threshold=args.akd_threshold, |
||
216 | cnt_threshold=args.cnt_threshold, |
||
217 | center=args.center_data, |
||
218 | season=args.season, |
||
219 | SPEs=args.exclude_spe) |
||
220 | |||
221 | 1 | (no_ys_train, no_dens_train, no_errs_train, |
|
222 | no_ys_test, no_dens_test, no_errs_test) = _train_test_split( |
||
223 | no_ys, no_dens, no_errs, args.train_fraction, |
||
224 | args.test_fraction, args.random_train_test) |
||
225 | |||
226 | 1 | sza_intp = interp1d(no_ys, no_szas, bounds_error=False) |
|
227 | |||
228 | 1 | max_amp = 1e10 * args.scale |
|
229 | 1 | max_days = 100 |
|
230 | |||
231 | 1 | proxy_config = {} |
|
232 | 1 | for pn, pf in proxy_dict.items(): |
|
233 | 1 | pt, pp = load_solar_gm_table(path.expanduser(pf), |
|
234 | cols=[0, 1], names=["time", pn], tfmt=args.time_format) |
||
235 | 1 | pv = pp[pn] |
|
236 | # use log of proxy values if desired |
||
237 | 1 | if pn in args.log_proxies.split(','): |
|
238 | pv = np.log(pv) |
||
239 | # normalize to sun--earth distance squared |
||
240 | 1 | if pn in args.norm_proxies_distSEsq.split(','): |
|
241 | rad_sun_earth = np.vectorize(_r_sun_earth)(pt, tfmt=args.time_format) |
||
242 | pv /= rad_sun_earth**2 |
||
243 | # normalize by cos(SZA) |
||
244 | 1 | if pn in args.norm_proxies_SZA.split(',') and sza_intp is not None: |
|
245 | pv *= np.cos(np.radians(sza_intp(pt))) |
||
246 | 1 | proxy_config.update({pn: |
|
247 | dict(times=pt, values=pv, |
||
248 | center=pn in args.center_proxies.split(','), |
||
249 | positive=pn in args.positive_proxies.split(','), |
||
250 | lag=float(lag_dict[pn]), |
||
251 | max_amp=max_amp, max_days=max_days, |
||
252 | sza_intp=sza_intp if args.use_sza else None, |
||
253 | )} |
||
254 | ) |
||
255 | |||
256 | 1 | model = trace_gas_model(constant=args.fit_offset, |
|
257 | proxy_config=proxy_config, **vars(args)) |
||
258 | |||
259 | 1 | logging.debug("model dict: %s", model.get_parameter_dict()) |
|
260 | 1 | model.freeze_all_parameters() |
|
261 | # thaw parameters according to requested fits |
||
262 | 1 | for pn in proxy_dict.keys(): |
|
263 | 1 | model.thaw_parameter("{0}:amp".format(pn)) |
|
264 | 1 | if pn in fit_lags: |
|
265 | model.thaw_parameter("{0}:lag".format(pn)) |
||
266 | 1 | if pn in fit_lifetimes: |
|
267 | 1 | model.set_parameter("{0}:tau0".format(pn), 1e-3) |
|
268 | 1 | model.thaw_parameter("{0}:tau0".format(pn)) |
|
269 | 1 | if pn in fit_annlifetimes: |
|
270 | 1 | model.thaw_parameter("{0}:taucos1".format(pn)) |
|
271 | 1 | model.thaw_parameter("{0}:tausin1".format(pn)) |
|
272 | else: |
||
273 | 1 | model.set_parameter("{0}:ltscan".format(pn), 0) |
|
274 | 1 | for freq in freqs: |
|
275 | 1 | if not args.fit_phase: |
|
276 | 1 | model.thaw_parameter("f{0:.0f}:cos".format(freq)) |
|
277 | 1 | model.thaw_parameter("f{0:.0f}:sin".format(freq)) |
|
278 | else: |
||
279 | model.thaw_parameter("f{0:.0f}:amp".format(freq)) |
||
280 | model.thaw_parameter("f{0:.0f}:phase".format(freq)) |
||
281 | 1 | if args.fit_offset: |
|
282 | #model.set_parameter("offset:value", -100.) |
||
283 | #model.set_parameter("offset:value", 0) |
||
284 | 1 | model.thaw_parameter("offset:value") |
|
285 | |||
286 | 1 | if initial is not None: |
|
287 | model.set_parameter_vector(initial) |
||
288 | # model.thaw_parameter("GM:ltscan") |
||
289 | 1 | logging.debug("params: %s", model.get_parameter_dict()) |
|
290 | 1 | logging.debug("param names: %s", model.get_parameter_names()) |
|
291 | 1 | logging.debug("param vector: %s", model.get_parameter_vector()) |
|
292 | 1 | logging.debug("param bounds: %s", model.get_parameter_bounds()) |
|
293 | #logging.debug("model value: %s", model.get_value(no_ys)) |
||
294 | #logging.debug("default log likelihood: %s", model.log_likelihood(model.vector)) |
||
295 | |||
296 | # setup the Gaussian Process kernel |
||
297 | 1 | kernel_base = (1e7 * args.scale)**2 |
|
298 | 1 | ksub = args.name_suffix |
|
299 | |||
300 | 1 | solver = "basic" |
|
301 | 1 | skwargs = {} |
|
302 | 1 | if args.HODLR_Solver: |
|
303 | 1 | solver = "HODLR" |
|
304 | #skwargs = {"tol": 1e-3} |
||
305 | |||
306 | 1 | if args.george: |
|
307 | 1 | gpname, kernel = setup_george_kernel(kernls, |
|
308 | kernel_base=kernel_base, fit_bias=args.fit_bias) |
||
309 | 1 | gpmodel = george.GP(kernel, mean=model, |
|
310 | white_noise=1.e-25, fit_white_noise=args.fit_white, |
||
311 | solver=george_solvers[solver], **skwargs) |
||
312 | # the george interface does not allow setting the bounds in |
||
313 | # the kernel initialization so we prepare simple default bounds |
||
314 | 1 | kernel_bounds = [(-0.3 * max_amp, 0.3 * max_amp)] * args.fit_white + [ |
|
315 | (-0.3 * max_amp, 0.3 * max_amp) |
||
316 | for _ in gpmodel.kernel.get_parameter_names() |
||
317 | ] |
||
318 | 1 | bounds = gpmodel.mean.get_parameter_bounds() + kernel_bounds |
|
319 | else: |
||
320 | 1 | gpname, cel_terms = setup_celerite_terms(kernls, |
|
321 | fit_bias=args.fit_bias, fit_white=args.fit_white) |
||
322 | 1 | gpmodel = celerite.GP(cel_terms, mean=model, |
|
323 | fit_white_noise=args.fit_white, |
||
324 | fit_mean=True) |
||
325 | 1 | bounds = gpmodel.get_parameter_bounds() |
|
326 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
327 | 1 | logging.debug("gpmodel params: %s", gpmodel.get_parameter_dict()) |
|
328 | 1 | logging.debug("gpmodel bounds: %s", bounds) |
|
329 | 1 | logging.debug("initial log likelihood: %s", gpmodel.log_likelihood(no_dens_train)) |
|
330 | 1 | if isinstance(gpmodel, celerite.GP): |
|
331 | 1 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
|
332 | 1 | model_name = "_".join(gpmodel.mean.get_parameter_names()).replace(':', '') |
|
333 | 1 | gpmodel_name = model_name + gpname |
|
334 | 1 | logging.info("GP model name: %s", gpmodel_name) |
|
335 | |||
336 | 1 | pre_opt = False |
|
337 | 1 | if args.optimize > 0: |
|
338 | 1 | def gpmodel_mean(x, *p): |
|
339 | 1 | gpmodel.set_parameter_vector(p) |
|
340 | 1 | return gpmodel.mean.get_value(x) |
|
341 | |||
342 | 1 | def gpmodel_res(x, *p): |
|
343 | gpmodel.set_parameter_vector(p) |
||
344 | return (gpmodel.mean.get_value(x) - no_dens_train) / no_errs_train |
||
345 | |||
346 | 1 | def lpost(p, y, gp): |
|
347 | 1 | gp.set_parameter_vector(p) |
|
348 | 1 | return gp.log_likelihood(y, quiet=True) + gp.log_prior() |
|
349 | |||
350 | 1 | def nlpost(p, y, gp): |
|
351 | 1 | lp = lpost(p, y, gp) |
|
|
|||
352 | 1 | return -lp if np.isfinite(lp) else 1e25 |
|
353 | |||
354 | 1 | def grad_nlpost(p, y, gp): |
|
355 | 1 | gp.set_parameter_vector(p) |
|
356 | 1 | grad_ll = gp.grad_log_likelihood(y) |
|
357 | 1 | if isinstance(grad_ll, tuple): |
|
358 | # celerite |
||
359 | 1 | return -grad_ll[1] |
|
360 | # george |
||
361 | 1 | return -grad_ll |
|
362 | |||
363 | 1 | jacobian = grad_nlpost if gpmodel.kernel.vector_size else None |
|
364 | 1 | if args.optimize == 1: |
|
365 | 1 | resop_gp = op.minimize( |
|
366 | nlpost, |
||
367 | gpmodel.get_parameter_vector(), |
||
368 | args=(no_dens_train, gpmodel), |
||
369 | bounds=bounds, |
||
370 | # method="l-bfgs-b", options=dict(disp=True, maxcor=100, eps=1e-9, ftol=2e-15, gtol=1e-8)) |
||
371 | method="l-bfgs-b", jac=jacobian) |
||
372 | # method="tnc", options=dict(disp=True, maxiter=500, xtol=1e-12)) |
||
373 | # method="nelder-mead", options=dict(disp=True, maxfev=100000, fatol=1.49012e-8, xatol=1.49012e-8)) |
||
374 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08)) |
||
375 | 1 | elif args.optimize == 2: |
|
376 | 1 | resop_gp = op.differential_evolution( |
|
377 | nlpost, |
||
378 | bounds=bounds, |
||
379 | args=(no_dens_train, gpmodel), |
||
380 | popsize=2 * args.walkers, tol=0.01) |
||
381 | 1 | elif args.optimize == 3: |
|
382 | 1 | resop_bh = op.basinhopping( |
|
383 | nlpost, |
||
384 | gpmodel.get_parameter_vector(), |
||
385 | niter=200, |
||
386 | minimizer_kwargs=dict( |
||
387 | args=(no_dens_train, gpmodel), |
||
388 | bounds=bounds, |
||
389 | # method="tnc")) |
||
390 | # method="l-bfgs-b", options=dict(maxcor=100))) |
||
391 | method="l-bfgs-b", jac=jacobian)) |
||
392 | # method="Nelder-Mead")) |
||
393 | # method="BFGS")) |
||
394 | # method="Powell", options=dict(ftol=1.49012e-08, xtol=1.49012e-08))) |
||
395 | 1 | logging.debug("optimization result: %s", resop_bh) |
|
396 | 1 | resop_gp = resop_bh.lowest_optimization_result |
|
397 | 1 | elif args.optimize == 4: |
|
398 | 1 | resop, cov_gp = op.curve_fit( |
|
399 | gpmodel_mean, |
||
400 | no_ys_train, no_dens_train, gpmodel.get_parameter_vector(), |
||
401 | bounds=tuple(np.array(bounds).T), |
||
402 | # method='lm', |
||
403 | # absolute_sigma=True, |
||
404 | sigma=no_errs_train) |
||
405 | 1 | resop_gp = op.OptimizeResult(dict( |
|
406 | x=resop, |
||
407 | success=True, |
||
408 | message="Curve fit successful.", |
||
409 | )) |
||
410 | 1 | logging.debug("curve fit %s, std %s:", resop, np.sqrt(np.diag(cov_gp))) |
|
411 | else: |
||
412 | logging.warn("unsupported optimization method: %s", args.optimize) |
||
413 | resop_gp = op.OptimizeResult(dict( |
||
414 | x=gpmodel.get_parameter_vector(), |
||
415 | success=False, |
||
416 | message="unsupported optimization method: {0}".format(args.optimize), |
||
417 | )) |
||
418 | 1 | logging.info("%s", resop_gp.message) |
|
419 | 1 | logging.debug("optimization result: %s", resop_gp) |
|
420 | 1 | logging.info("gpmodel dict: %s", gpmodel.get_parameter_dict()) |
|
421 | 1 | logging.info("log posterior trained: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
|
422 | 1 | gpmodel.compute(no_ys_test, no_errs_test) |
|
423 | 1 | logging.info("log posterior test: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
|
424 | 1 | gpmodel.compute(no_ys, no_errs) |
|
425 | 1 | logging.info("log posterior all: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
|
426 | # cross check to make sure that the gpmodel parameter vector is really |
||
427 | # set to the fitted parameters |
||
428 | 1 | logging.info("opt. model vector: %s", resop_gp.x) |
|
429 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
430 | 1 | logging.debug("opt. log posterior trained 1: %s", lpost(resop_gp.x, no_dens_train, gpmodel)) |
|
431 | 1 | gpmodel.compute(no_ys_test, no_errs_test) |
|
432 | 1 | logging.debug("opt. log posterior test 1: %s", lpost(resop_gp.x, no_dens_test, gpmodel)) |
|
433 | 1 | gpmodel.compute(no_ys, no_errs) |
|
434 | 1 | logging.debug("opt. log posterior all 1: %s", lpost(resop_gp.x, no_dens, gpmodel)) |
|
435 | 1 | logging.debug("opt. model vector: %s", gpmodel.get_parameter_vector()) |
|
436 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
437 | 1 | logging.debug("opt. log posterior trained 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_train, gpmodel)) |
|
438 | 1 | gpmodel.compute(no_ys_test, no_errs_test) |
|
439 | 1 | logging.debug("opt. log posterior test 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens_test, gpmodel)) |
|
440 | 1 | gpmodel.compute(no_ys, no_errs) |
|
441 | 1 | logging.debug("opt. log posterior all 2: %s", lpost(gpmodel.get_parameter_vector(), no_dens, gpmodel)) |
|
442 | 1 | pre_opt = resop_gp.success |
|
443 | 1 | try: |
|
444 | 1 | logging.info("GM lt: %s", gpmodel.get_parameter("mean:GM:tau0")) |
|
445 | except ValueError: |
||
446 | pass |
||
447 | 1 | logging.info("(GP) model: %s", gpmodel.kernel) |
|
448 | 1 | if isinstance(gpmodel, celerite.GP): |
|
449 | 1 | logging.info("(GP) jitter: %s", gpmodel.kernel.jitter) |
|
450 | |||
451 | 1 | bestfit = gpmodel.get_parameter_vector() |
|
452 | 1 | filename_base = path.join( |
|
453 | args.output_path, |
||
454 | "NO_regress_fit_{0}_{1:.0f}_{2:.0f}_{{0}}_{3}" |
||
455 | .format(gpmodel_name, lat * 10, alt, ksub), |
||
456 | ) |
||
457 | |||
458 | 1 | if args.mcmc: |
|
459 | 1 | gpmodel.compute(no_ys_train, no_errs_train) |
|
460 | 1 | samples, lnp = mcmc_sample_model(gpmodel, |
|
461 | no_dens_train, |
||
462 | beta=1.0, |
||
463 | nwalkers=args.walkers, nburnin=args.burn_in, |
||
464 | nprod=args.production, nthreads=args.threads, |
||
465 | show_progress=args.progress, |
||
466 | optimized=pre_opt, bounds=bounds, return_logpost=True) |
||
467 | |||
468 | 1 | if args.train_fraction < 1. or args.test_fraction < 1.: |
|
469 | logging.info("Statistics for the test samples") |
||
470 | mcmc_statistics(gpmodel, |
||
471 | no_ys_test, no_dens_test, no_errs_test, |
||
472 | no_ys_train, no_dens_train, no_errs_train, |
||
473 | samples, lnp, |
||
474 | ) |
||
475 | 1 | logging.info("Statistics for all samples") |
|
476 | 1 | mcmc_statistics(gpmodel, |
|
477 | no_ys, no_dens, no_errs, |
||
478 | no_ys_train, no_dens_train, no_errs_train, |
||
479 | samples, lnp, |
||
480 | ) |
||
481 | |||
482 | 1 | sampl_percs = np.percentile(samples, [2.5, 50, 97.5], axis=0) |
|
483 | 1 | if args.plot_corner: |
|
484 | 1 | import corner |
|
485 | # Corner plot of the sampled parameters |
||
486 | 1 | fig = corner.corner(samples, |
|
487 | quantiles=[0.025, 0.5, 0.975], |
||
488 | show_titles=True, |
||
489 | labels=gpmodel.get_parameter_names(), |
||
490 | truths=bestfit, |
||
491 | hist_args=dict(normed=True)) |
||
492 | 1 | fig.savefig(filename_base.format("corner") + ".pdf", transparent=True) |
|
493 | |||
494 | 1 | if args.save_samples: |
|
495 | 1 | if args.samples_format in ["npz"]: |
|
496 | # save the samples compressed to save space. |
||
497 | np.savez_compressed(filename_base.format("sampls") + ".npz", |
||
498 | samples=samples) |
||
499 | 1 | if args.samples_format in ["nc", "netcdf4"]: |
|
500 | 1 | save_samples_netcdf(filename_base.format("sampls") + ".nc", |
|
501 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
502 | 1 | if args.samples_format in ["h5", "hdf5"]: |
|
503 | save_samples_netcdf(filename_base.format("sampls") + ".h5", |
||
504 | gpmodel, alt, lat, samples, scale=args.scale, compressed=True) |
||
505 | # MCMC finished here |
||
506 | |||
507 | # set the model times and errors to use the full data set for plotting |
||
508 | 1 | gpmodel.compute(no_ys, no_errs) |
|
509 | 1 | if args.save_model: |
|
510 | try: |
||
511 | # python 2 |
||
512 | import cPickle as pickle |
||
513 | except ImportError: |
||
514 | # python 3 |
||
515 | import pickle |
||
516 | # pickle and save the model |
||
517 | with open(filename_base.format("model") + ".pkl", "wb") as f: |
||
518 | pickle.dump((gpmodel), f, -1) |
||
519 | |||
520 | 1 | if args.plot_samples and args.mcmc: |
|
521 | 1 | plot_random_samples(gpmodel, no_ys, no_dens, no_errs, |
|
522 | samples, args.scale, |
||
523 | filename_base.format("sampls") + ".pdf", |
||
524 | size=4, extra_years=[4, 2]) |
||
525 | |||
526 | 1 | if args.plot_median: |
|
527 | 1 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
|
528 | sampl_percs[1], |
||
529 | filename_base.format("median") + ".pdf") |
||
530 | 1 | if args.plot_residuals: |
|
531 | 1 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
|
532 | sampl_percs[1], args.scale, |
||
533 | filename_base.format("medres") + ".pdf") |
||
534 | 1 | if args.plot_maxlnp: |
|
535 | 1 | plot_single_sample_and_residuals(gpmodel, no_ys, no_dens, no_errs, |
|
536 | samples[np.argmax(lnp)], |
||
537 | filename_base.format("maxlnp") + ".pdf") |
||
538 | 1 | if args.plot_maxlnpres: |
|
539 | 1 | plot_residual(gpmodel, no_ys, no_dens, no_errs, |
|
540 | samples[np.argmax(lnp)], args.scale, |
||
541 | filename_base.format("mlpres") + ".pdf") |
||
542 | |||
543 | 1 | labels = gpmodel.get_parameter_names() |
|
544 | 1 | logging.info("param percentiles [2.5, 50, 97.5]:") |
|
545 | 1 | for pc, label in zip(sampl_percs.T, labels): |
|
546 | 1 | median = pc[1] |
|
547 | 1 | pc_minus = median - pc[0] |
|
548 | 1 | pc_plus = pc[2] - median |
|
549 | 1 | logging.debug("%s: %s", label, pc) |
|
550 | 1 | logging.info("%s: %.6f (- %.6f) (+ %.6f)", label, |
|
551 | median, pc_minus, pc_plus) |
||
552 | |||
553 | 1 | logging.info("Finished successfully.") |
|
554 | |||
558 |