1
|
|
|
# -*- coding: utf-8 -*- |
2
|
|
|
# vim:fileencoding=utf-8 |
3
|
|
|
# |
4
|
|
|
# Copyright (c) 2018 Stefan Bender |
5
|
|
|
# |
6
|
|
|
# This file is part of sciapy. |
7
|
|
|
# sciapy is free software: you can redistribute it or modify it |
8
|
|
|
# under the terms of the GNU General Public License as published by |
9
|
|
|
# the Free Software Foundation, version 2. |
10
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
11
|
1 |
|
"""SCIAMACHY level 2 post-processed number densities interface |
12
|
|
|
|
13
|
|
|
Interface classes for the level 2 post-processed retrieval results. |
14
|
|
|
""" |
15
|
|
|
|
16
|
1 |
|
from __future__ import absolute_import, division, print_function |
17
|
|
|
|
18
|
1 |
|
import datetime as dt |
19
|
|
|
|
20
|
1 |
|
import numpy as np |
21
|
1 |
|
try: |
22
|
1 |
|
from netCDF4 import Dataset as netcdf_file |
23
|
1 |
|
fmtargs = {"format": "NETCDF4"} |
24
|
|
|
except ImportError: |
25
|
|
|
try: |
26
|
|
|
from scipy.io.netcdf import netcdf_file |
27
|
|
|
fmtargs = {"version": 1} |
28
|
|
|
except ImportError: |
29
|
|
|
from pupynere import netcdf_file |
30
|
|
|
fmtargs = {"version": 1} |
31
|
|
|
|
32
|
1 |
|
from .density import scia_densities, _UTC |
33
|
1 |
|
from .. import __version__ |
34
|
|
|
|
35
|
1 |
|
__all__ = ["scia_densities_pp", "scia_density_day"] |
36
|
|
|
|
37
|
|
|
|
38
|
1 |
|
class scia_densities_pp(scia_densities): |
39
|
|
|
"""Post-processed SCIAMACHY number densities |
40
|
|
|
|
41
|
|
|
Extends `scia_densities` with additional post-processing |
42
|
|
|
attributes such as (MSIS) temperature and density, local |
43
|
|
|
solar time, solar zenith angle, and geomagnetic latitudes |
44
|
|
|
and longitudes. |
45
|
|
|
|
46
|
|
|
This class only supports writing ascii files but reading to |
47
|
|
|
and writing from netcdf. |
48
|
|
|
|
49
|
|
|
Attributes |
50
|
|
|
---------- |
51
|
|
|
temperature |
52
|
|
|
NRLMSISE-00 temperatures |
53
|
|
|
noem_no |
54
|
|
|
NOEM NO nuimber densities |
55
|
|
|
vmr |
56
|
|
|
NO vmr using the NRLMSISE-00 total air number densities |
57
|
|
|
lst |
58
|
|
|
Apparent local solar times |
59
|
|
|
mst |
60
|
|
|
Mean local solar times |
61
|
|
|
sza |
62
|
|
|
Solar zenith angles |
63
|
|
|
utchour |
64
|
|
|
UTC hours into measurement day |
65
|
|
|
utcdays |
66
|
|
|
Number of days since reference date |
67
|
|
|
gmlats |
68
|
|
|
IGRF-12 geomagentic latitudes |
69
|
|
|
gmlons |
70
|
|
|
IGRF-12 geomagentic longitudes |
71
|
|
|
aacgmgmlats |
72
|
|
|
AACGM geomagentic latitudes |
73
|
|
|
aacgmgmlons |
74
|
|
|
AACGM geomagentic longitudes |
75
|
|
|
|
76
|
|
|
Methods |
77
|
|
|
------- |
78
|
|
|
write_to_textfile |
79
|
|
|
write_to_netcdf |
80
|
|
|
read_from_netcdf |
81
|
|
|
to_xarray |
82
|
|
|
""" |
83
|
1 |
|
def __init__(self, ref_date="2000-01-01", |
84
|
|
|
ver=None, data_ver=None): |
85
|
1 |
|
self.filename = None |
86
|
1 |
|
self.temperature = None |
87
|
1 |
|
self.noem_no = None |
88
|
1 |
|
self.vmr = None |
89
|
1 |
|
self.lst = None |
90
|
1 |
|
self.mst = None |
91
|
1 |
|
self.sza = None |
92
|
1 |
|
self.utchour = None |
93
|
1 |
|
self.utcdays = None |
94
|
1 |
|
self.gmlats = None |
95
|
1 |
|
self.gmlons = None |
96
|
1 |
|
self.aacgmgmlats = None |
97
|
1 |
|
self.aacgmgmlons = None |
98
|
1 |
|
super(scia_densities_pp, self).__init__( |
99
|
|
|
ref_date=ref_date, ver=ver, data_ver=data_ver) |
100
|
|
|
|
101
|
1 |
|
def write_to_textfile(self, filename): |
102
|
|
|
"""Write the variables to ascii table files |
103
|
|
|
|
104
|
|
|
Parameters |
105
|
|
|
---------- |
106
|
|
|
filename: str or file object or io.TextIOBase.buffer |
107
|
|
|
The filename or stream to write the data to. For writing to |
108
|
|
|
stdout in python 3, pass `sys.stdout.buffer`. |
109
|
|
|
""" |
110
|
|
|
if hasattr(filename, 'seek'): |
111
|
|
|
f = filename |
112
|
|
|
else: |
113
|
|
|
f = open(filename, 'w') |
114
|
|
|
|
115
|
|
|
header = "%5s %13s %12s %13s %14s %12s %14s %12s %12s %12s %12s %12s" % ("GP_ID", |
116
|
|
|
"Max_Hoehe[km]", "Hoehe[km]", "Min_Hoehe[km]", |
117
|
|
|
"Max_Breite[°]", "Breite[°]", "Min_Breite[°]", |
118
|
|
|
"Laenge[°]", |
119
|
|
|
"Dichte[cm^-3]", "Fehler Mess[cm^-3]", |
120
|
|
|
"Fehler tot[cm^-3]", "Gesamtdichte[cm^-3]") |
121
|
|
|
if self.apriori is not None: |
122
|
|
|
header = header + " %12s" % ("apriori[cm^-3]",) |
123
|
|
|
if self.temperature is not None: |
124
|
|
|
header = header + " %12s" % ("T[K]",) |
125
|
|
|
if self.noem_no is not None: |
126
|
|
|
header = header + " %12s" % ("NOEM_NO[cm^-3]",) |
127
|
|
|
if self.akdiag is not None: |
128
|
|
|
header = header + " %12s" % ("AKdiag",) |
129
|
|
|
if self.lst is not None: |
130
|
|
|
header = header + " %12s" % ("LST",) |
131
|
|
|
if self.mst is not None: |
132
|
|
|
header = header + " %12s" % ("MST",) |
133
|
|
|
if self.sza is not None: |
134
|
|
|
header = header + " %12s" % ("SZA",) |
135
|
|
|
if self.utchour is not None: |
136
|
|
|
header = header + " %12s" % ("Hour",) |
137
|
|
|
if self.utcdays is not None: |
138
|
|
|
header = header + " %12s" % ("Days",) |
139
|
|
|
if self.gmlats is not None: |
140
|
|
|
header = header + " %12s" % ("GeomagLat",) |
141
|
|
|
if self.gmlons is not None: |
142
|
|
|
header = header + " %12s" % ("GeomagLon",) |
143
|
|
|
if self.aacgmgmlats is not None: |
144
|
|
|
header = header + " %12s" % ("AACGMGeomagLat",) |
145
|
|
|
if self.aacgmgmlons is not None: |
146
|
|
|
header = header + " %12s" % ("AACGMGeomagLon",) |
147
|
|
|
print(header, file=f) |
148
|
|
|
|
149
|
|
|
oformat = "%5i %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E %+1.5E" |
150
|
|
|
oformata = " %+1.5E" |
151
|
|
|
|
152
|
|
|
for i, a in enumerate(self.alts): |
153
|
|
|
for j, b in enumerate(self.lats): |
154
|
|
|
print(oformat % (i * self.nlat + j, |
155
|
|
|
self.alts_max[i], a, self.alts_min[i], |
156
|
|
|
self.lats_max[j], b, self.lats_min[j], self.lons[j], |
157
|
|
|
self.densities[j, i], self.dens_err_meas[j, i], |
158
|
|
|
self.dens_err_tot[j, i], self.dens_tot[j, i]), |
159
|
|
|
end="", file=f) |
160
|
|
|
if self.apriori is not None: |
161
|
|
|
print(" " + oformata % self.apriori[j, i], end="", file=f) |
162
|
|
|
if self.temperature is not None: |
163
|
|
|
print(" " + oformata % self.temperature[j, i], end="", file=f) |
164
|
|
|
if self.noem_no is not None: |
165
|
|
|
print(" " + oformata % self.noem_no[j, i], end="", file=f) |
166
|
|
|
if self.akdiag is not None: |
167
|
|
|
print(" " + oformata % self.akdiag[j, i], end="", file=f) |
168
|
|
|
if self.lst is not None: |
169
|
|
|
print(" " + oformata % self.lst[j], end="", file=f) |
170
|
|
|
if self.mst is not None: |
171
|
|
|
print(" " + oformata % self.mst[j], end="", file=f) |
172
|
|
|
if self.sza is not None: |
173
|
|
|
print(" " + oformata % self.sza[j], end="", file=f) |
174
|
|
|
if self.utchour is not None: |
175
|
|
|
print(" " + oformata % self.utchour[j], end="", file=f) |
176
|
|
|
if self.utcdays is not None: |
177
|
|
|
print(" " + oformata % self.utcdays[j], end="", file=f) |
178
|
|
|
if self.gmlats is not None: |
179
|
|
|
print(" " + oformata % self.gmlats[j], end="", file=f) |
180
|
|
|
if self.gmlons is not None: |
181
|
|
|
print(" " + oformata % self.gmlons[j], end="", file=f) |
182
|
|
|
if self.aacgmgmlats is not None: |
183
|
|
|
print(" " + oformata % self.aacgmgmlats[j], end="", file=f) |
184
|
|
|
if self.aacgmgmlons is not None: |
185
|
|
|
print(" " + oformata % self.aacgmgmlons[j], end="", file=f) |
186
|
|
|
print("", file=f) |
187
|
|
|
|
188
|
1 |
|
def write_to_netcdf(self, filename, close=True): |
189
|
|
|
"""Write variables to netcdf files |
190
|
|
|
|
191
|
|
|
This function has no stream, i.e. file object, support. |
192
|
|
|
|
193
|
|
|
Parameters |
194
|
|
|
---------- |
195
|
|
|
filename: str |
196
|
|
|
The name of the file to write the data to. |
197
|
|
|
""" |
198
|
|
|
# write the base variables first and keep the file open for appending |
199
|
1 |
|
ncf = scia_densities.write_to_netcdf(self, filename, close=False) |
200
|
|
|
|
201
|
1 |
|
if self.temperature is not None: |
202
|
1 |
|
ftemp = ncf.createVariable('temperature', |
203
|
|
|
np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
204
|
1 |
|
ftemp.units = 'K' |
205
|
1 |
|
ftemp.long_name = 'temperature' |
206
|
1 |
|
ftemp.model = 'NRLMSIS-00' |
207
|
1 |
|
ftemp[0, :] = self.temperature |
208
|
|
|
|
209
|
1 |
|
if self.noem_no is not None: |
210
|
1 |
|
fnoem_no = ncf.createVariable('NOEM_density', |
211
|
|
|
np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
212
|
1 |
|
fnoem_no.units = 'cm^{-3}' |
213
|
1 |
|
fnoem_no.long_name = 'NOEM NO number density' |
214
|
1 |
|
fnoem_no[0, :] = self.noem_no |
215
|
|
|
|
216
|
1 |
|
if self.vmr is not None: |
217
|
1 |
|
fvmr = ncf.createVariable('VMR', |
218
|
|
|
np.dtype('float64').char, ('time', 'latitude', 'altitude')) |
219
|
1 |
|
fvmr.units = 'ppb' |
220
|
1 |
|
fvmr.long_name = 'volume mixing ratio' |
221
|
1 |
|
fvmr[0, :] = self.vmr |
222
|
|
|
|
223
|
1 |
|
if self.lst is not None: |
224
|
1 |
|
flst = ncf.createVariable('app_lst', |
225
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
226
|
1 |
|
flst.units = 'hours' |
227
|
1 |
|
flst.long_name = 'apparent local solar time' |
228
|
1 |
|
flst[0, :] = self.lst |
229
|
|
|
|
230
|
1 |
|
if self.mst is not None: |
231
|
1 |
|
fmst = ncf.createVariable('mean_lst', |
232
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
233
|
1 |
|
fmst.units = 'hours' |
234
|
1 |
|
fmst.long_name = 'mean local solar time' |
235
|
1 |
|
fmst[0, :] = self.mst |
236
|
|
|
|
237
|
1 |
|
if self.sza is not None: |
238
|
1 |
|
fsza = ncf.createVariable('mean_sza', |
239
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
240
|
1 |
|
fsza.units = 'degrees' |
241
|
1 |
|
fsza.long_name = 'mean solar zenith angle' |
242
|
1 |
|
fsza[0, :] = self.sza |
243
|
|
|
|
244
|
1 |
|
if self.utchour is not None: |
245
|
1 |
|
futc = ncf.createVariable('utc_hour', |
246
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
247
|
1 |
|
futc.units = 'hours' |
248
|
1 |
|
futc.long_name = 'measurement utc time' |
249
|
1 |
|
futc[0, :] = self.utchour |
250
|
|
|
|
251
|
1 |
|
if self.utcdays is not None: |
252
|
1 |
|
futcd = ncf.createVariable('utc_days', |
253
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
254
|
1 |
|
futcd.long_name = 'measurement day' |
255
|
1 |
|
futcd.units = 'days since {0}'.format(self.date0.isoformat(sep=' ')) |
256
|
1 |
|
futcd[0, :] = self.utcdays |
257
|
|
|
|
258
|
1 |
|
if self.gmlats is not None: |
259
|
1 |
|
fgmlats = ncf.createVariable('gm_lats', |
260
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
261
|
1 |
|
fgmlats.long_name = 'geomagnetic_latitude' |
262
|
1 |
|
fgmlats.model = 'IGRF' |
263
|
1 |
|
fgmlats.units = 'degrees_north' |
264
|
1 |
|
fgmlats[0, :] = self.gmlats |
265
|
|
|
|
266
|
1 |
|
if self.gmlons is not None: |
267
|
1 |
|
fgmlons = ncf.createVariable('gm_lons', |
268
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
269
|
1 |
|
fgmlons.long_name = 'geomagnetic_longitude' |
270
|
1 |
|
fgmlons.model = 'IGRF' |
271
|
1 |
|
fgmlons.units = 'degrees_east' |
272
|
1 |
|
fgmlons[0, :] = self.gmlons |
273
|
|
|
|
274
|
1 |
|
if self.aacgmgmlats is not None: |
275
|
1 |
|
faacgmgmlats = ncf.createVariable('aacgm_gm_lats', |
276
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
277
|
1 |
|
faacgmgmlats.long_name = 'geomagnetic_latitude' |
278
|
1 |
|
faacgmgmlats.model = 'AACGM' |
279
|
1 |
|
faacgmgmlats.units = 'degrees_north' |
280
|
1 |
|
faacgmgmlats[0, :] = self.aacgmgmlats |
281
|
|
|
|
282
|
1 |
|
if self.aacgmgmlons is not None: |
283
|
1 |
|
faacgmgmlons = ncf.createVariable('aacgm_gm_lons', |
284
|
|
|
np.dtype('float64').char, ('time', 'latitude',)) |
285
|
1 |
|
faacgmgmlons.long_name = 'geomagnetic_longitude' |
286
|
1 |
|
faacgmgmlons.model = 'AACGM' |
287
|
1 |
|
faacgmgmlons.units = 'degrees_east' |
288
|
1 |
|
faacgmgmlons[0, :] = self.aacgmgmlons |
289
|
|
|
|
290
|
1 |
|
if close: |
291
|
1 |
|
ncf.close() |
292
|
|
|
else: |
293
|
|
|
return ncf |
294
|
|
|
|
295
|
1 |
|
def read_from_netcdf(self, filename, close=True): |
296
|
|
|
"""Read post-processed level 2 orbit files |
297
|
|
|
|
298
|
|
|
Parameters |
299
|
|
|
---------- |
300
|
|
|
filename: str |
301
|
|
|
The name of the netcdf file. |
302
|
|
|
""" |
303
|
|
|
# read the base variables first and keep the file open for reading |
304
|
1 |
|
ncf = scia_densities.read_from_netcdf(self, filename, close=False) |
305
|
|
|
|
306
|
|
|
# additional data... |
307
|
|
|
# MSIS temperature |
308
|
|
|
try: |
309
|
|
|
self.temperature = ncf.variables['temperature'][:] |
310
|
|
|
except: |
311
|
|
|
pass |
312
|
|
|
# NOEM density |
313
|
|
|
try: |
314
|
|
|
self.noem_no = ncf.variables['NOEM_density'][:] |
315
|
|
|
except: |
316
|
|
|
pass |
317
|
|
|
# calculated vmr |
318
|
|
|
try: |
319
|
|
|
self.vmr = ncf.variables['VMR'][:] |
320
|
|
|
except: |
321
|
|
|
pass |
322
|
|
|
# apparent local solar time |
323
|
|
|
try: |
324
|
|
|
self.lst = ncf.variables['app_lst'][:] |
325
|
|
|
except: |
326
|
|
|
pass |
327
|
|
|
# mean local solar time |
328
|
|
|
try: |
329
|
|
|
self.mst = ncf.variables['mean_lst'][:] |
330
|
|
|
except: |
331
|
|
|
pass |
332
|
|
|
# mean solar zenith angle |
333
|
|
|
try: |
334
|
|
|
self.sza = ncf.variables['mean_sza'][:] |
335
|
|
|
except: |
336
|
|
|
pass |
337
|
|
|
# utc hours |
338
|
|
|
try: |
339
|
|
|
self.utchour = ncf.variables['utc_hour'][:] |
340
|
|
|
except: |
341
|
|
|
pass |
342
|
|
|
# utc days |
343
|
|
|
try: |
344
|
|
|
self.utcdays = ncf.variables['utc_days'][:] |
345
|
|
|
except: |
346
|
|
|
pass |
347
|
|
|
|
348
|
|
|
if close: |
349
|
|
|
ncf.close() |
350
|
|
|
else: |
351
|
|
|
return ncf |
352
|
|
|
|
353
|
1 |
|
def to_xarray(self, dateo, orbit): |
354
|
|
|
"""Convert the data to :class:`xarray.Dataset` |
355
|
|
|
|
356
|
|
|
This is a very simple approach, it dumps the data to a temporary |
357
|
|
|
netcdf file and reads that using :func:`xarray.open_dataset()`. |
358
|
|
|
|
359
|
|
|
Parameters |
360
|
|
|
---------- |
361
|
|
|
dateo: float |
362
|
|
|
The days since the reference date at the equator |
363
|
|
|
crossing of the orbit. Used to set the `time` |
364
|
|
|
dimension of the dataset. |
365
|
|
|
orbit: int |
366
|
|
|
The SCIAMACHY/Envisat orbit number of the retrieved data. |
367
|
|
|
|
368
|
|
|
Returns |
369
|
|
|
------- |
370
|
|
|
dataset: xarray.Dataset |
371
|
|
|
""" |
372
|
1 |
|
import tempfile |
373
|
1 |
|
try: |
374
|
1 |
|
import xarray as xr |
375
|
|
|
except ImportError: |
376
|
|
|
print("Error: xarray not available!") |
377
|
|
|
return None |
378
|
1 |
|
with tempfile.NamedTemporaryFile() as tf: |
379
|
1 |
|
self.write_to_netcdf(tf.name) |
380
|
1 |
|
with xr.open_dataset(tf.name, decode_cf=False) as sdorb: |
381
|
1 |
|
sdorb = sdorb.drop(["alt_min", "alt_max", "lat_min", "lat_max"]) |
382
|
1 |
|
sdorb["time"] = np.array([dateo], dtype=np.float64) |
383
|
1 |
|
sdorb["orbit"] = orbit |
384
|
1 |
|
sdorb.load() |
385
|
1 |
|
return sdorb |
386
|
|
|
|
387
|
|
|
|
388
|
1 |
|
class scia_density_day(object): |
389
|
|
|
"""SCIAMACHY daily number densities combined |
390
|
|
|
|
391
|
|
|
Contains a stacked version of the post-processed orbit data |
392
|
|
|
for multiple orbits on a day. Used to combine the results. |
393
|
|
|
|
394
|
|
|
Parameters |
395
|
|
|
---------- |
396
|
|
|
name: str |
397
|
|
|
Name of the retrieved species, default: "NO". |
398
|
|
|
Used to name the netcdf variables appropriately. |
399
|
|
|
ref_date: str, optional |
400
|
|
|
The reference date on which to base the date calculations on. |
401
|
|
|
Default: "2000-01-01" |
402
|
|
|
|
403
|
|
|
Attributes |
404
|
|
|
---------- |
405
|
|
|
alts |
406
|
|
|
Retrieval grid altitudes |
407
|
|
|
lats |
408
|
|
|
Retrieval grid latitudes |
409
|
|
|
no_dens |
410
|
|
|
Retrieved number densities |
411
|
|
|
no_errs |
412
|
|
|
Measurement uncertainty |
413
|
|
|
no_etot |
414
|
|
|
Total uncertainty |
415
|
|
|
no_rstd |
416
|
|
|
Relative measurement uncertainty |
417
|
|
|
no_akd |
418
|
|
|
Averaging kernel diagonal elements |
419
|
|
|
no_apri |
420
|
|
|
Prior number density |
421
|
|
|
temperature |
422
|
|
|
NRLMSISE-00 temperatures |
423
|
|
|
noem_no |
424
|
|
|
NOEM NO nuimber densities |
425
|
|
|
vmr |
426
|
|
|
NO vmr using the NRLMSISE-00 total air number densities |
427
|
|
|
lst |
428
|
|
|
Apparent local solar times |
429
|
|
|
mst |
430
|
|
|
Mean local solar times |
431
|
|
|
sza |
432
|
|
|
Solar zenith angles |
433
|
|
|
utchour |
434
|
|
|
UTC hours into measurement day |
435
|
|
|
utcdays |
436
|
|
|
Number of days since reference date |
437
|
|
|
gmlats |
438
|
|
|
IGRF-12 geomagentic latitudes |
439
|
|
|
gmlons |
440
|
|
|
IGRF-12 geomagentic longitudes |
441
|
|
|
aacgmgmlats |
442
|
|
|
AACGM geomagentic latitudes |
443
|
|
|
aacgmgmlons |
444
|
|
|
AACGM geomagentic longitudes |
445
|
|
|
""" |
446
|
1 |
|
def __init__(self, name="NO", ref_date="2000-01-01", author="unknown"): |
447
|
1 |
|
self.date0 = (dt.datetime.strptime(ref_date, "%Y-%m-%d") |
448
|
|
|
.replace(tzinfo=_UTC)) |
449
|
1 |
|
self.alts = None |
450
|
1 |
|
self.lats = None |
451
|
1 |
|
self.version = None |
452
|
1 |
|
self.data_version = None |
453
|
1 |
|
self.name = name |
454
|
1 |
|
self.author = author |
455
|
1 |
|
self.date = [] |
456
|
1 |
|
self.time = [] |
457
|
1 |
|
self.orbit = [] |
458
|
1 |
|
self.no_dens = None |
459
|
1 |
|
self.no_errs = None |
460
|
1 |
|
self.no_etot = None |
461
|
1 |
|
self.no_rstd = None |
462
|
1 |
|
self.no_akd = None |
463
|
1 |
|
self.no_apri = None |
464
|
1 |
|
self.no_noem = None |
465
|
1 |
|
self.temperature = None |
466
|
1 |
|
self.tot_dens = None |
467
|
1 |
|
self.no_vmr = None |
468
|
1 |
|
self.lons = None |
469
|
1 |
|
self.lst = None |
470
|
1 |
|
self.mst = None |
471
|
1 |
|
self.sza = None |
472
|
1 |
|
self.utchour = None |
473
|
1 |
|
self.utcdays = None |
474
|
1 |
|
self.gmlats = None |
475
|
1 |
|
self.gmlons = None |
476
|
1 |
|
self.aacgmgmlats = None |
477
|
1 |
|
self.aacgmgmlons = None |
478
|
|
|
|
479
|
1 |
|
def append(self, cdata): |
480
|
|
|
"""Append (stack) the data from one orbit |
481
|
|
|
|
482
|
|
|
Parameters |
483
|
|
|
---------- |
484
|
|
|
cdata: :class:`scia_densities_pp` instance |
485
|
|
|
Post-processed level 2 orbital data. |
486
|
|
|
""" |
487
|
|
|
self.time.extend(cdata.time) |
488
|
|
|
self.date.extend(cdata.date) |
489
|
|
|
self.no_dens = np.ma.dstack((self.no_dens, cdata.no_dens)) |
490
|
|
|
self.no_errs = np.ma.dstack((self.no_errs, cdata.no_errs)) |
491
|
|
|
self.no_etot = np.ma.dstack((self.no_etot, cdata.no_etot)) |
492
|
|
|
self.no_rstd = np.ma.dstack((self.no_rstd, cdata.no_rstd)) |
493
|
|
|
self.no_akd = np.ma.dstack((self.no_akd, cdata.no_akd)) |
494
|
|
|
self.no_apri = np.ma.dstack((self.no_apri, cdata.no_apri)) |
495
|
|
|
self.no_noem = np.ma.dstack((self.no_noem, cdata.no_noem)) |
496
|
|
|
self.tot_dens = np.ma.dstack((self.tot_dens, cdata.tot_dens)) |
497
|
|
|
self.no_vmr = np.ma.dstack((self.no_vmr, cdata.no_vmr)) |
498
|
|
|
self.lons = np.ma.dstack((self.lons, cdata.lons)) |
499
|
|
|
self.lst = np.ma.dstack((self.lst, cdata.lst)) |
500
|
|
|
self.mst = np.ma.dstack((self.mst, cdata.mst)) |
501
|
|
|
self.sza = np.ma.dstack((self.sza, cdata.sza)) |
502
|
|
|
self.utchour = np.ma.dstack((self.utchour, cdata.utchour)) |
503
|
|
|
self.utcdays = np.ma.dstack((self.utcdays, cdata.utcdays)) |
504
|
|
|
self.gmlats = np.ma.dstack((self.gmlats, cdata.gmlats)) |
505
|
|
|
self.gmlons = np.ma.dstack((self.gmlons, cdata.gmlons)) |
506
|
|
|
self.aacgmgmlats = np.ma.dstack((self.aacgmgmlats, cdata.aacgmgmlats)) |
507
|
|
|
self.aacgmgmlons = np.ma.dstack((self.aacgmgmlons, cdata.aacgmgmlons)) |
508
|
|
|
|
509
|
1 |
|
def append_data(self, date, orbit, equtime, scia_dens): |
510
|
|
|
"""Append (stack) the data from one orbit |
511
|
|
|
|
512
|
|
|
Updates the data in place. |
513
|
|
|
|
514
|
|
|
Parameters |
515
|
|
|
---------- |
516
|
|
|
date: float |
517
|
|
|
Days since `ref_date` for the time coordinate |
518
|
|
|
orbit: int |
519
|
|
|
SCIAMACHY/Envisat orbit number |
520
|
|
|
equtime: float |
521
|
|
|
UTC hour into the day at the equator |
522
|
|
|
scia_dens: :class:`scia_densities_pp` instance |
523
|
|
|
The post-processed orbit data set |
524
|
|
|
""" |
525
|
1 |
|
def _vstack_or_new(a, b): |
526
|
|
|
# Check if we 'stack' for the first time (a is None), |
527
|
|
|
# in that case we assign first. |
528
|
1 |
|
if a is None: |
529
|
1 |
|
return b[None] |
530
|
1 |
|
return np.ma.vstack((a, b[None])) |
531
|
|
|
|
532
|
1 |
|
self.version = scia_dens.version |
533
|
1 |
|
self.data_version = scia_dens.data_version |
534
|
1 |
|
self.date.append(date) |
535
|
1 |
|
self.orbit.append(orbit) |
536
|
1 |
|
self.time.append(equtime) |
537
|
1 |
|
_dens = scia_dens.densities |
538
|
1 |
|
_errs = scia_dens.dens_err_meas |
539
|
1 |
|
_etot = scia_dens.dens_err_tot |
540
|
1 |
|
_r_std = np.abs(_errs / _dens) * 100.0 |
541
|
1 |
|
if self.alts is None: |
542
|
|
|
# we need altitudes and latitudes only once |
543
|
1 |
|
self.alts = scia_dens.alts |
544
|
1 |
|
self.lats = scia_dens.lats |
545
|
1 |
|
self.no_dens = _vstack_or_new(self.no_dens, _dens) |
546
|
1 |
|
self.no_errs = _vstack_or_new(self.no_errs, _errs) |
547
|
1 |
|
self.no_etot = _vstack_or_new(self.no_etot, _etot) |
548
|
1 |
|
self.no_rstd = _vstack_or_new(self.no_rstd, _r_std) |
549
|
1 |
|
self.no_akd = _vstack_or_new(self.no_akd, scia_dens.akdiag) |
550
|
1 |
|
self.no_apri = _vstack_or_new(self.no_apri, scia_dens.apriori) |
551
|
1 |
|
self.temperature = _vstack_or_new(self.temperature, scia_dens.temperature) |
552
|
1 |
|
self.no_noem = _vstack_or_new(self.no_noem, scia_dens.noem_no) |
553
|
1 |
|
self.tot_dens = _vstack_or_new(self.tot_dens, scia_dens.dens_tot) |
554
|
1 |
|
self.no_vmr = _vstack_or_new(self.no_vmr, scia_dens.vmr) |
555
|
1 |
|
self.lons = _vstack_or_new(self.lons, scia_dens.lons) |
556
|
1 |
|
self.lst = _vstack_or_new(self.lst, scia_dens.lst) |
557
|
1 |
|
self.mst = _vstack_or_new(self.mst, scia_dens.mst) |
558
|
1 |
|
self.sza = _vstack_or_new(self.sza, scia_dens.sza) |
559
|
1 |
|
self.utchour = _vstack_or_new(self.utchour, scia_dens.utchour) |
560
|
1 |
|
self.utcdays = _vstack_or_new(self.utcdays, scia_dens.utcdays) |
561
|
1 |
|
self.gmlats = _vstack_or_new(self.gmlats, scia_dens.gmlats) |
562
|
1 |
|
self.gmlons = _vstack_or_new(self.gmlons, scia_dens.gmlons) |
563
|
1 |
|
self.aacgmgmlats = _vstack_or_new(self.aacgmgmlats, scia_dens.aacgmgmlats) |
564
|
1 |
|
self.aacgmgmlons = _vstack_or_new(self.aacgmgmlons, scia_dens.aacgmgmlons) |
565
|
|
|
|
566
|
1 |
|
def write_to_netcdf(self, filename): |
567
|
|
|
"""Write variables to netcdf files |
568
|
|
|
|
569
|
|
|
Parameters |
570
|
|
|
---------- |
571
|
|
|
filename: str |
572
|
|
|
The name of the file to write the data to. |
573
|
|
|
""" |
574
|
|
|
_var_dicts = { |
575
|
|
|
"2.1": { |
576
|
|
|
"dens_tot": { |
577
|
|
|
"name": "TOT_DENS", |
578
|
|
|
"long_name": "total number density (NRLMSIS-00)", |
579
|
|
|
"model": None, |
580
|
|
|
}, |
581
|
|
|
"temperature": { |
582
|
|
|
"name": "temperature", |
583
|
|
|
"long_name": "temperature", |
584
|
|
|
"model": "NRLMSIS-00", |
585
|
|
|
}, |
586
|
|
|
}, |
587
|
|
|
"2.2": { |
588
|
|
|
"dens_tot": { |
589
|
|
|
"name": "MSIS_Dens", |
590
|
|
|
"long_name": "MSIS total number density", |
591
|
|
|
"model": "NRLMSIS-00", |
592
|
|
|
}, |
593
|
|
|
"temperature": { |
594
|
|
|
"name": "MSIS_Temp", |
595
|
|
|
"long_name": "MSIS temperature", |
596
|
|
|
"model": "NRLMSIS-00", |
597
|
|
|
}, |
598
|
|
|
}, |
599
|
|
|
} |
600
|
|
|
|
601
|
|
|
ncf = netcdf_file(filename, 'w', **fmtargs) |
602
|
|
|
o = np.asarray(self.orbit) |
603
|
|
|
d = np.asarray(self.date) |
604
|
|
|
t = np.asarray(self.time) |
605
|
|
|
|
606
|
|
|
if self.version is not None: |
607
|
|
|
ncf.version = self.version |
608
|
|
|
if self.data_version is not None: |
609
|
|
|
ncf.L2_data_version = self.data_version |
610
|
|
|
ncf.software = "sciapy {0}".format(__version__) |
611
|
|
|
ncf.creation_time = dt.datetime.utcnow().strftime("%a %b %d %Y %H:%M:%S +00:00 (UTC)") |
612
|
|
|
ncf.author = self.author |
613
|
|
|
|
614
|
|
|
ncf.createDimension('time', None) |
615
|
|
|
ncf.createDimension('altitude', self.alts.size) |
616
|
|
|
ncf.createDimension('latitude', self.lats.size) |
617
|
|
|
forbit = ncf.createVariable('orbit', np.dtype('int32').char, ('time',)) |
618
|
|
|
forbit.axis = 'T' |
619
|
|
|
forbit.calendar = 'standard' |
620
|
|
|
forbit.long_name = 'orbit' |
621
|
|
|
forbit.standard_name = 'orbit' |
622
|
|
|
forbit.units = 'orbit number' |
623
|
|
|
# the time coordinate is actually called "date" here |
624
|
|
|
ftime = ncf.createVariable('time', 'f8', ('time',)) |
625
|
|
|
ftime.axis = 'T' |
626
|
|
|
ftime.calendar = 'standard' |
627
|
|
|
ftime.long_name = 'equatorial crossing time' |
628
|
|
|
ftime.standard_name = 'time' |
629
|
|
|
ftime.units = 'days since {0}'.format(self.date0.isoformat(sep=' ')) |
630
|
|
|
#ftime.units = 'days since {0}'.format(self.date0.strftime('%Y-%m-%d %H:%M:%S%z (%Z)')) |
631
|
|
|
#fdate = ncf.createVariable('date', np.dtype('float64').char, ('time',)) |
632
|
|
|
#fdate.axis = 'T' |
633
|
|
|
#fdate.calendar = 'standard' |
634
|
|
|
#fdate.long_name = 'date' |
635
|
|
|
#fdate.standard_name = 'date' |
636
|
|
|
#fdate.units = 'days since 1950-01-01 00:00:00' |
637
|
|
|
falts = ncf.createVariable('altitude', 'f8', ('altitude',)) |
638
|
|
|
falts.axis = 'Z' |
639
|
|
|
falts.long_name = 'altitude' |
640
|
|
|
falts.standard_name = 'altitude' |
641
|
|
|
falts.units = 'km' |
642
|
|
|
falts.positive = 'up' |
643
|
|
|
flats = ncf.createVariable('latitude', 'f8', ('latitude',)) |
644
|
|
|
flats.axis = 'Y' |
645
|
|
|
flats.long_name = 'latitude' |
646
|
|
|
flats.standard_name = 'latitude' |
647
|
|
|
flats.units = 'degrees_north' |
648
|
|
|
flons = ncf.createVariable('longitude', 'f8', ('time', 'latitude',)) |
649
|
|
|
flons.long_name = 'longitude' |
650
|
|
|
flons.standard_name = 'longitude' |
651
|
|
|
flons.units = 'degrees_east' |
652
|
|
|
fdens = ncf.createVariable('%s_DENS' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
653
|
|
|
fdens.units = 'cm^{-3}' |
654
|
|
|
fdens.long_name = '%s number density' % self.name |
655
|
|
|
ferrs = ncf.createVariable('%s_ERR' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
656
|
|
|
ferrs.units = 'cm^{-3}' |
657
|
|
|
ferrs.long_name = '%s density measurement error' % self.name |
658
|
|
|
fetot = ncf.createVariable('%s_ETOT' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
659
|
|
|
fetot.units = 'cm^{-3}' |
660
|
|
|
fetot.long_name = '%s density total error' % self.name |
661
|
|
|
frstd = ncf.createVariable('%s_RSTD' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
662
|
|
|
frstd.units = '%' |
663
|
|
|
frstd.long_name = '%s relative standard deviation' % self.name |
664
|
|
|
fakd = ncf.createVariable('%s_AKDIAG' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
665
|
|
|
fakd.units = '1' |
666
|
|
|
fakd.long_name = '%s averaging kernel diagonal element' % self.name |
667
|
|
|
fapri = ncf.createVariable('%s_APRIORI' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
668
|
|
|
fapri.units = 'cm^{-3}' |
669
|
|
|
fapri.long_name = '%s apriori density' % self.name |
670
|
|
|
ftemp = ncf.createVariable(_var_dicts[self.version]["temperature"]["name"], |
671
|
|
|
'f8', ('time', 'latitude', 'altitude')) |
672
|
|
|
ftemp.long_name = _var_dicts[self.version]["temperature"]["long_name"] |
673
|
|
|
ftemp.model = 'NRLMSIS-00' |
674
|
|
|
ftemp.units = 'K' |
675
|
|
|
fdens_tot = ncf.createVariable(_var_dicts[self.version]["dens_tot"]["name"], |
676
|
|
|
'f8', ('time', 'latitude', 'altitude')) |
677
|
|
|
fdens_tot.long_name = _var_dicts[self.version]["dens_tot"]["long_name"] |
678
|
|
|
fdens_tot.units = 'cm^{-3}' |
679
|
|
|
if _var_dicts[self.version]["dens_tot"]["model"] is not None: |
680
|
|
|
fdens_tot.model = _var_dicts[self.version]["dens_tot"]["model"] |
681
|
|
|
fnoem = ncf.createVariable('%s_NOEM' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
682
|
|
|
fnoem.units = 'cm^{-3}' |
683
|
|
|
fnoem.long_name = 'NOEM %s number density' % self.name |
684
|
|
|
fvmr = ncf.createVariable('%s_VMR' % self.name, 'f8', ('time', 'latitude', 'altitude')) |
685
|
|
|
fvmr.units = 'ppb' |
686
|
|
|
fvmr.long_name = '%s volume mixing ratio' % self.name |
687
|
|
|
flst = ncf.createVariable('app_LST', 'f8', ('time', 'latitude')) |
688
|
|
|
flst.units = 'hours' |
689
|
|
|
flst.long_name = 'apparent local solar time' |
690
|
|
|
fmst = ncf.createVariable('mean_LST', 'f8', ('time', 'latitude')) |
691
|
|
|
fmst.units = 'hours' |
692
|
|
|
fmst.long_name = 'mean local solar time' |
693
|
|
|
fsza = ncf.createVariable('mean_SZA', 'f8', ('time', 'latitude')) |
694
|
|
|
fsza.units = 'degrees' |
695
|
|
|
fsza.long_name = 'solar zenith angle at mean altitude' |
696
|
|
|
futc = ncf.createVariable('UTC', 'f8', ('time', 'latitude')) |
697
|
|
|
futc.units = 'hours' |
698
|
|
|
futc.long_name = 'measurement utc time' |
699
|
|
|
futcd = ncf.createVariable('utc_days', 'f8', ('time', 'latitude')) |
700
|
|
|
futcd.long_name = 'measurement utc day' |
701
|
|
|
futcd.units = 'days since {0}'.format(self.date0.isoformat(sep=' ')) |
702
|
|
|
|
703
|
|
|
fgmlats = ncf.createVariable('gm_lats', 'f8', ('time', 'latitude',)) |
704
|
|
|
fgmlats.long_name = 'geomagnetic_latitude' |
705
|
|
|
fgmlats.model = 'IGRF' |
706
|
|
|
fgmlats.units = 'degrees_north' |
707
|
|
|
|
708
|
|
|
fgmlons = ncf.createVariable('gm_lons', 'f8', ('time', 'latitude',)) |
709
|
|
|
fgmlons.long_name = 'geomagnetic_longitude' |
710
|
|
|
fgmlons.model = 'IGRF' |
711
|
|
|
fgmlons.units = 'degrees_east' |
712
|
|
|
|
713
|
|
|
faacgmgmlats = ncf.createVariable('aacgm_gm_lats', 'f8', ('time', 'latitude',)) |
714
|
|
|
faacgmgmlats.long_name = 'geomagnetic_latitude' |
715
|
|
|
faacgmgmlats.model = 'AACGM' |
716
|
|
|
faacgmgmlats.units = 'degrees_north' |
717
|
|
|
|
718
|
|
|
faacgmgmlons = ncf.createVariable('aacgm_gm_lons', 'f8', ('time', 'latitude',)) |
719
|
|
|
faacgmgmlons.long_name = 'geomagnetic_longitude' |
720
|
|
|
faacgmgmlons.model = 'AACGM' |
721
|
|
|
faacgmgmlons.units = 'degrees_east' |
722
|
|
|
|
723
|
|
|
forbit[:] = o |
724
|
|
|
ftime[:] = d |
725
|
|
|
falts[:] = self.alts |
726
|
|
|
flats[:] = self.lats |
727
|
|
|
flons[:] = self.lons |
728
|
|
|
fdens[:] = np.ma.atleast_3d(self.no_dens[:]) |
729
|
|
|
ferrs[:] = np.ma.atleast_3d(self.no_errs[:]) |
730
|
|
|
fetot[:] = np.ma.atleast_3d(self.no_etot[:]) |
731
|
|
|
frstd[:] = np.ma.atleast_3d(self.no_rstd[:]) |
732
|
|
|
fakd[:] = np.ma.atleast_3d(self.no_akd[:]) |
733
|
|
|
fapri[:] = np.ma.atleast_3d(self.no_apri[:]) |
734
|
|
|
ftemp[:] = np.ma.atleast_3d(self.temperature[:]) |
735
|
|
|
fnoem[:] = np.ma.atleast_3d(self.no_noem[:]) |
736
|
|
|
fdens_tot[:] = np.ma.atleast_3d(self.tot_dens[:]) |
737
|
|
|
fvmr[:] = np.ma.atleast_3d(self.no_vmr[:]) |
738
|
|
|
flst[:] = np.ma.atleast_2d(self.lst[:]) |
739
|
|
|
fmst[:] = np.ma.atleast_2d(self.mst[:]) |
740
|
|
|
fsza[:] = np.ma.atleast_2d(self.sza[:]) |
741
|
|
|
futc[:] = np.ma.atleast_2d(self.utchour[:]) |
742
|
|
|
futcd[:] = np.ma.atleast_2d(self.utcdays[:]) |
743
|
|
|
fgmlats[:] = np.ma.atleast_2d(self.gmlats[:]) |
744
|
|
|
fgmlons[:] = np.ma.atleast_2d(self.gmlons[:]) |
745
|
|
|
faacgmgmlats[:] = np.ma.atleast_2d(self.aacgmgmlats[:]) |
746
|
|
|
faacgmgmlons[:] = np.ma.atleast_2d(self.aacgmgmlons[:]) |
747
|
|
|
ncf.close() |
748
|
|
|
|
749
|
1 |
|
def to_xarray(self): |
750
|
|
|
"""Convert the combined orbit data to :class:`xarray.Dataset` |
751
|
|
|
|
752
|
|
|
Exports the data using the same data variables as |
753
|
|
|
when writing to netcdf. |
754
|
|
|
|
755
|
|
|
Returns |
756
|
|
|
------- |
757
|
|
|
dataset: xarray.Dataset |
758
|
|
|
""" |
759
|
1 |
|
try: |
760
|
1 |
|
import xarray as xr |
761
|
|
|
except ImportError: |
762
|
|
|
print("Error: xarray not available!") |
763
|
|
|
return None |
764
|
1 |
|
o = np.asarray(self.orbit) |
765
|
1 |
|
d = np.asarray(self.date) |
766
|
|
|
|
767
|
1 |
|
xr_dens = xr.DataArray(self.no_dens, coords=[d, self.lats, self.alts], |
768
|
|
|
dims=["time", "latitude", "altitude"], |
769
|
|
|
attrs={"units": "cm^{-3}", |
770
|
|
|
"long_name": "{0} number density".format(self.name)}, |
771
|
|
|
name="{0}_DENS".format(self.name)) |
772
|
|
|
|
773
|
1 |
|
xr_errs = xr.DataArray(self.no_errs, coords=[d, self.lats, self.alts], |
774
|
|
|
dims=["time", "latitude", "altitude"], |
775
|
|
|
attrs={"units": "cm^{-3}", |
776
|
|
|
"long_name": "{0} density measurement error".format(self.name)}, |
777
|
|
|
name="{0}_ERR".format(self.name)) |
778
|
|
|
|
779
|
1 |
|
xr_etot = xr.DataArray(self.no_etot, coords=[d, self.lats, self.alts], |
780
|
|
|
dims=["time", "latitude", "altitude"], |
781
|
|
|
attrs={"units": "cm^{-3}", |
782
|
|
|
"long_name": "{0} density total error".format(self.name)}, |
783
|
|
|
name="{0}_ETOT".format(self.name)) |
784
|
|
|
|
785
|
1 |
|
xr_rstd = xr.DataArray(self.no_rstd, coords=[d, self.lats, self.alts], |
786
|
|
|
dims=["time", "latitude", "altitude"], |
787
|
|
|
attrs=dict(units='%', |
788
|
|
|
long_name='{0} relative standard deviation'.format(self.name)), |
789
|
|
|
name="{0}_RSTD".format(self.name)) |
790
|
|
|
|
791
|
1 |
|
xr_akd = xr.DataArray(self.no_akd, coords=[d, self.lats, self.alts], |
792
|
|
|
dims=["time", "latitude", "altitude"], |
793
|
|
|
attrs=dict(units='1', |
794
|
|
|
long_name='{0} averaging kernel diagonal element'.format(self.name)), |
795
|
|
|
name="{0}_AKDIAG".format(self.name)) |
796
|
|
|
|
797
|
1 |
|
xr_apri = xr.DataArray(self.no_apri, coords=[d, self.lats, self.alts], |
798
|
|
|
dims=["time", "latitude", "altitude"], |
799
|
|
|
attrs=dict(units='cm^{-3}', long_name='{0} apriori density'.format(self.name)), |
800
|
|
|
name="{0}_APRIORI".format(self.name)) |
801
|
|
|
|
802
|
1 |
|
xr_noem = xr.DataArray(self.no_noem, coords=[d, self.lats, self.alts], |
803
|
|
|
dims=["time", "latitude", "altitude"], |
804
|
|
|
attrs=dict(units='cm^{-3}', long_name='NOEM {0} number density'.format(self.name)), |
805
|
|
|
name="{0}_NOEM".format(self.name)) |
806
|
|
|
|
807
|
1 |
|
xr_vmr = xr.DataArray(self.no_vmr, coords=[d, self.lats, self.alts], |
808
|
|
|
dims=["time", "latitude", "altitude"], |
809
|
|
|
attrs=dict(units='ppb', long_name='{0} volume mixing ratio'.format(self.name)), |
810
|
|
|
name="{0}_VMR".format(self.name)) |
811
|
|
|
|
812
|
1 |
|
xr_dtot = xr.DataArray(self.tot_dens, coords=[d, self.lats, self.alts], |
813
|
|
|
dims=["time", "latitude", "altitude"], |
814
|
|
|
attrs=dict(units='cm^{-3}', long_name='MSIS total number density', |
815
|
|
|
model='NRLMSIS-00'), |
816
|
|
|
name="MSIS_Dens") |
817
|
|
|
|
818
|
1 |
|
xr_temp = xr.DataArray(self.temperature, coords=[d, self.lats, self.alts], |
819
|
|
|
dims=["time", "latitude", "altitude"], |
820
|
|
|
attrs=dict(units='K', long_name='MSIS temperature', |
821
|
|
|
model="NRLMSIS-00"), |
822
|
|
|
name="MSIS_Temp") |
823
|
|
|
|
824
|
1 |
|
xr_lons = xr.DataArray(self.lons, coords=[d, self.lats], |
825
|
|
|
dims=["time", "latitude"], |
826
|
|
|
attrs=dict(long_name='longitude', standard_name='longitude', |
827
|
|
|
units='degrees_east'), |
828
|
|
|
name='longitude') |
829
|
|
|
|
830
|
1 |
|
xr_lst = xr.DataArray(self.lst, coords=[d, self.lats], |
831
|
|
|
dims=["time", "latitude"], |
832
|
|
|
attrs=dict(units='hours', long_name='apparent local solar time'), |
833
|
|
|
name="app_LST") |
834
|
|
|
|
835
|
1 |
|
xr_mst = xr.DataArray(self.mst, coords=[d, self.lats], |
836
|
|
|
dims=["time", "latitude"], |
837
|
|
|
attrs=dict(units='hours', long_name='mean local solar time'), |
838
|
|
|
name="mean_LST") |
839
|
|
|
|
840
|
1 |
|
xr_sza = xr.DataArray(self.sza, coords=[d, self.lats], |
841
|
|
|
dims=["time", "latitude"], |
842
|
|
|
attrs=dict(units='degrees', |
843
|
|
|
long_name='solar zenith angle at mean altitude'), |
844
|
|
|
name="mean_SZA") |
845
|
|
|
|
846
|
1 |
|
xr_utch = xr.DataArray(self.utchour, coords=[d, self.lats], |
847
|
|
|
dims=["time", "latitude"], |
848
|
|
|
attrs=dict(units='hours', |
849
|
|
|
long_name='measurement utc time'), |
850
|
|
|
name="UTC") |
851
|
|
|
|
852
|
1 |
|
xr_utcd = xr.DataArray(self.utcdays, coords=[d, self.lats], |
853
|
|
|
dims=["time", "latitude"], |
854
|
|
|
attrs=dict(units='days since {0}'.format(self.date0.isoformat(sep=' ')), |
855
|
|
|
long_name='measurement utc day'), |
856
|
|
|
name="utc_days") |
857
|
|
|
|
858
|
1 |
|
xr_gmlats = xr.DataArray(self.gmlats, coords=[d, self.lats], |
859
|
|
|
dims=["time", "latitude"], |
860
|
|
|
attrs=dict(long_name='geomagnetic_latitude', |
861
|
|
|
model='IGRF', units='degrees_north'), |
862
|
|
|
name="gm_lats") |
863
|
|
|
|
864
|
1 |
|
xr_gmlons = xr.DataArray(self.gmlons, coords=[d, self.lats], |
865
|
|
|
dims=["time", "latitude"], |
866
|
|
|
attrs=dict(long_name='geomagnetic_longitude', |
867
|
|
|
model='IGRF', units='degrees_east'), |
868
|
|
|
name="gm_lons") |
869
|
|
|
|
870
|
1 |
|
xr_aacgmgmlats = xr.DataArray(self.aacgmgmlats, coords=[d, self.lats], |
871
|
|
|
dims=["time", "latitude"], |
872
|
|
|
attrs=dict(long_name='geomagnetic_latitude', |
873
|
|
|
model='AACGM', units='degrees_north'), |
874
|
|
|
name="aacgm_gm_lats") |
875
|
|
|
|
876
|
1 |
|
xr_aacgmgmlons = xr.DataArray(self.aacgmgmlons, coords=[d, self.lats], |
877
|
|
|
dims=["time", "latitude"], |
878
|
|
|
attrs=dict(long_name='geomagnetic_longitude', |
879
|
|
|
model='AACGM', units='degrees_east'), |
880
|
|
|
name="aacgm_gm_lons") |
881
|
|
|
|
882
|
1 |
|
xr_orbit = xr.DataArray(o, coords=[d], dims=["time"], |
883
|
|
|
attrs=dict(axis='T', calendar='standard', long_name='orbit', |
884
|
|
|
standard_name='orbit', units='orbit number'), |
885
|
|
|
name="orbit") |
886
|
|
|
|
887
|
1 |
|
xr_ds = xr.Dataset({da.name: da for da in |
888
|
|
|
[xr_dens, xr_errs, xr_etot, xr_rstd, xr_akd, xr_apri, xr_noem, |
889
|
|
|
xr_vmr, xr_dtot, xr_temp, xr_lons, xr_lst, xr_mst, xr_sza, |
890
|
|
|
xr_utch, xr_utcd, xr_gmlats, xr_gmlons, xr_aacgmgmlats, |
891
|
|
|
xr_aacgmgmlons, xr_orbit]}) |
892
|
|
|
|
893
|
1 |
|
xr_ds["time"].attrs = dict(axis='T', calendar='standard', |
894
|
|
|
long_name='equatorial crossing time', |
895
|
|
|
standard_name='time', |
896
|
|
|
units='days since {0}'.format(self.date0.isoformat(sep=' '))) |
897
|
|
|
|
898
|
1 |
|
xr_ds["altitude"].attrs = dict(axis='Z', long_name='altitude', |
899
|
|
|
standard_name='altitude', units='km', positive='up') |
900
|
|
|
|
901
|
1 |
|
xr_ds["latitude"].attrs = dict(axis='Y', long_name='latitude', |
902
|
|
|
standard_name='latitude', units='degrees_north') |
903
|
|
|
|
904
|
1 |
|
if self.version is not None: |
905
|
1 |
|
xr_ds.attrs["version"] = self.version |
906
|
1 |
|
if self.data_version is not None: |
907
|
1 |
|
xr_ds.attrs["L2_data_version"] = self.data_version |
908
|
1 |
|
xr_ds.attrs["software"] = "sciapy {0}".format(__version__) |
909
|
1 |
|
xr_ds.attrs["creation_time"] = dt.datetime.utcnow().strftime("%a %b %d %Y %H:%M:%S +00:00 (UTC)") |
910
|
1 |
|
xr_ds.attrs["author"] = self.author |
911
|
|
|
|
912
|
|
|
return xr_ds |
913
|
|
|
|