| Conditions | 15 |
| Total Lines | 76 |
| Code Lines | 50 |
| Lines | 0 |
| Ratio | 0 % |
| Tests | 44 |
| CRAP Score | 15.13 |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like sciapy.level1c.scia_limb_mpl.read_from_mpl_binary() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # -*- coding: utf-8 -*- |
||
| 38 | 1 | def read_from_mpl_binary(self, filename): |
|
| 39 | """SCIAMACHY level 1c limb scan binary import |
||
| 40 | |||
| 41 | Parameters |
||
| 42 | ---------- |
||
| 43 | filename : str |
||
| 44 | The binary filename to read the data from. |
||
| 45 | |||
| 46 | Returns |
||
| 47 | ------- |
||
| 48 | nothing |
||
| 49 | """ |
||
| 50 | 1 | if hasattr(filename, 'seek'): |
|
| 51 | f = filename |
||
| 52 | else: |
||
| 53 | 1 | f = open(filename, 'rb') |
|
| 54 | 1 | hlen = 100 |
|
| 55 | # the first bytes of the first 100 header bytes are |
||
| 56 | # the number of header lines that follow |
||
| 57 | 1 | nline = "" |
|
| 58 | 1 | j = 0 |
|
| 59 | 1 | flag = 0 |
|
| 60 | 1 | while j < hlen: |
|
| 61 | 1 | char = bytes(f.read(1)) |
|
| 62 | 1 | if char == b'\n': |
|
| 63 | # we have a usual text file, abort binary reading. |
||
| 64 | raise ValueError |
||
| 65 | 1 | j += 1 |
|
| 66 | 1 | if char and char != b'\x00' and flag == 0: |
|
| 67 | 1 | nline += char.decode() |
|
| 68 | else: |
||
| 69 | 1 | flag = 1 |
|
| 70 | |||
| 71 | 1 | self.textheader_length = int(''.join(nline)) |
|
| 72 | |||
| 73 | 1 | h_list = [] |
|
| 74 | 1 | for _ in range(self.textheader_length): |
|
| 75 | 1 | line = "" |
|
| 76 | 1 | j = 0 |
|
| 77 | 1 | flag = 0 |
|
| 78 | 1 | while j < hlen: |
|
| 79 | 1 | char = bytes(f.read(1)) |
|
| 80 | 1 | j += 1 |
|
| 81 | 1 | if char and char != b'\x00' and flag == 0: |
|
| 82 | 1 | line += char.decode() |
|
| 83 | else: |
||
| 84 | 1 | flag = 1 |
|
| 85 | 1 | h_list.append(line.rstrip()) |
|
| 86 | |||
| 87 | 1 | self.textheader = '\n'.join(h_list) |
|
| 88 | 1 | self.parse_textheader() |
|
| 89 | |||
| 90 | # global data |
||
| 91 | 1 | self.nalt = np.frombuffer(f.read(4), dtype=_int_type)[0] |
|
| 92 | 1 | self.npix = np.frombuffer(f.read(4), dtype=_int_type)[0] |
|
| 93 | 1 | self.orbit_state = np.frombuffer(f.read(4 * 5), dtype=_int_type) |
|
| 94 | 1 | (self.orbit, self.state_in_orbit, self.state_id, |
|
| 95 | self.profiles_per_state, self.profile_in_state) = self.orbit_state |
||
| 96 | 1 | self.date = np.frombuffer(f.read(4 * 6), dtype=_int_type) |
|
| 97 | 1 | self.cent_lat_lon = np.frombuffer(f.read(4 * 10), dtype=_float_type) |
|
| 98 | 1 | if self.textheader_length > 29: |
|
| 99 | 1 | self.orbit_phase = np.frombuffer(f.read(4), dtype=_float_type)[0] |
|
| 100 | |||
| 101 | 1 | self.wls = np.frombuffer(f.read(4 * self.npix), dtype=_float_type) |
|
| 102 | |||
| 103 | 1 | if self._limb_data_dtype is None: |
|
| 104 | 1 | self._limb_data_dtype = _limb_data_dtype[:] |
|
| 105 | 1 | if self.textheader_length < 28: |
|
| 106 | self._limb_data_dtype.remove(("sub_sat_lat", _float_type)) |
||
| 107 | self._limb_data_dtype.remove(("sub_sat_lon", _float_type)) |
||
| 108 | |||
| 109 | 1 | self._limb_data_dtype.append(("rad", _float_type, (self.npix))) |
|
| 110 | 1 | self._limb_data_dtype.append(("err", _float_type, (self.npix))) |
|
| 111 | |||
| 112 | 1 | self.limb_data = np.fromfile(f, dtype=np.dtype(self._limb_data_dtype), |
|
| 113 | count=self.nalt).view(type=np.recarray) |
||
| 114 | |||
| 155 |