1
|
|
|
# Copyright (c) 2020 Stefan Bender |
2
|
|
|
# |
3
|
|
|
# This module is part of pyspaceweather. |
4
|
|
|
# pyspaceweather is free software: you can redistribute it or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published |
6
|
|
|
# by the Free Software Foundation, version 2. |
7
|
|
|
# See accompanying COPYING.GPLv2 file or http://www.gnu.org/licenses/gpl-2.0.html. |
8
|
|
|
"""Python interface for space weather indices |
9
|
|
|
|
10
|
|
|
""" |
11
|
|
|
import os |
12
|
|
|
from pkg_resources import resource_filename |
13
|
|
|
import requests |
14
|
|
|
import logging |
15
|
|
|
from warnings import warn |
16
|
|
|
|
17
|
|
|
import numpy as np |
18
|
|
|
import pandas as pd |
19
|
|
|
|
20
|
|
|
__all__ = [ |
21
|
|
|
"sw_daily", "ap_kp_3h", "read_sw", |
22
|
|
|
"get_file_age", "update_data", |
23
|
|
|
"SW_PATH_ALL", "SW_PATH_5Y", |
24
|
|
|
] |
25
|
|
|
|
26
|
|
|
DL_URL_ALL = "https://celestrak.com/SpaceData/SW-All.txt" |
27
|
|
|
DL_URL_5Y = "https://celestrak.com/SpaceData/SW-Last5Years.txt" |
28
|
|
|
SW_FILE_ALL = os.path.basename(DL_URL_ALL) |
29
|
|
|
SW_FILE_5Y = os.path.basename(DL_URL_5Y) |
30
|
|
|
SW_PATH_ALL = resource_filename(__name__, os.path.join("data", SW_FILE_ALL)) |
31
|
|
|
SW_PATH_5Y = resource_filename(__name__, os.path.join("data", SW_FILE_5Y)) |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def _dl_file(swpath, url=DL_URL_ALL): |
35
|
|
|
with requests.get(url, stream=True) as r: |
36
|
|
|
with open(swpath, 'wb') as fd: |
37
|
|
|
for chunk in r.iter_content(chunk_size=1024): |
38
|
|
|
fd.write(chunk) |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
def get_file_age(swpath, relative=True): |
42
|
|
|
"""Age of the downloaded data file |
43
|
|
|
|
44
|
|
|
Retrieves the last update time of the given file or full path. |
45
|
|
|
|
46
|
|
|
Parameters |
47
|
|
|
---------- |
48
|
|
|
swpath: str |
49
|
|
|
Filename to check, absolute path or relative to the current dir. |
50
|
|
|
relative: bool, optional, default True |
51
|
|
|
Return the file's age (True) or the last update time (False). |
52
|
|
|
|
53
|
|
|
Returns |
54
|
|
|
------- |
55
|
|
|
upd: pd.Timestamp or pd.Timedelta |
56
|
|
|
The last updated time or the file age, depending on the setting |
57
|
|
|
of `relative` above. |
58
|
|
|
""" |
59
|
|
|
for line in open(swpath): |
60
|
|
|
if line.startswith("UPDATED"): |
61
|
|
|
# closes the file automatically |
62
|
|
|
break |
63
|
|
|
upd = pd.to_datetime(line.lstrip("UPDATED"), utc=True) |
|
|
|
|
64
|
|
|
if relative: |
65
|
|
|
return pd.Timestamp.utcnow() - upd |
66
|
|
|
return upd |
67
|
|
|
|
68
|
|
|
|
69
|
|
|
def update_data( |
70
|
|
|
min_age="3h", |
71
|
|
|
swpath_all=SW_PATH_ALL, swpath_5y=SW_PATH_5Y, |
72
|
|
|
url_all=DL_URL_ALL, url_5y=DL_URL_5Y, |
73
|
|
|
): |
74
|
|
|
"""Update the local space weather index data |
75
|
|
|
|
76
|
|
|
Updates the local space weather index data from the website |
77
|
|
|
<https://celestrak.com/SpaceData/>, given that the 5-year file is older |
78
|
|
|
than `min_age`, or the combined (large) file is older than four years. |
79
|
|
|
If the data is missing for some reason, a download will be attempted nonetheless. |
80
|
|
|
|
81
|
|
|
All arguments are optional and changing them from the defaults should not |
82
|
|
|
be required neither should it be necessary nor is it recommended. |
83
|
|
|
|
84
|
|
|
Parameters |
85
|
|
|
---------- |
86
|
|
|
min_age: str, optional, default "3h" |
87
|
|
|
The time after which a new download will be attempted. |
88
|
|
|
The online data is updated every 3 hours, thus setting this value to |
89
|
|
|
a shorter time is not needed and not recommended. |
90
|
|
|
swpath_all: str, optional, default depending on package install location |
91
|
|
|
Filename for the large combined index file including the |
92
|
|
|
historic data, absolute path or relative to the current dir. |
93
|
|
|
swpath_5y: str, optional, default depending on package install location |
94
|
|
|
Filename for the 5-year index file, absolute path or relative to the current dir. |
95
|
|
|
url_all: str, optional, default `sw.DL_URL_ALL` |
96
|
|
|
The url of the "historic" data file. |
97
|
|
|
url_5y: str, optional, default `sw.DL_URL_5Y` |
98
|
|
|
The url of the data file of containing the indices of the last 5 years. |
99
|
|
|
|
100
|
|
|
Returns |
101
|
|
|
------- |
102
|
|
|
Nothing. |
103
|
|
|
""" |
104
|
|
|
def _update_file(swpath, url, min_age): |
105
|
|
|
if not os.path.exists(swpath): |
106
|
|
|
logging.info("{0} not found, downloading.".format(swpath)) |
107
|
|
|
_dl_file(swpath, url) |
108
|
|
|
return |
109
|
|
|
if get_file_age(swpath) < pd.Timedelta(min_age): |
110
|
|
|
logging.info("not updating '{0}'.".format(swpath)) |
111
|
|
|
return |
112
|
|
|
logging.info("updating '{0}'.".format(swpath)) |
113
|
|
|
_dl_file(swpath, url) |
114
|
|
|
|
115
|
|
|
# Update the large file after four years |
116
|
|
|
# to have some overlap with the 5-year data |
117
|
|
|
# 1460 = 4 * 365 |
118
|
|
|
_update_file(swpath_all, url_all, "1460days") |
119
|
|
|
# Don't re-download before `min_age` has passed (3h) |
120
|
|
|
_update_file(swpath_5y, url_5y, min_age) |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def read_sw(swpath): |
124
|
|
|
"""Read and parse space weather index data file |
125
|
|
|
|
126
|
|
|
Reads the given file and parses it according to the space weather data format. |
127
|
|
|
|
128
|
|
|
Parameters |
129
|
|
|
---------- |
130
|
|
|
swpath: str |
131
|
|
|
File to parse, absolute path or relative to the current dir. |
132
|
|
|
|
133
|
|
|
Returns |
134
|
|
|
------- |
135
|
|
|
sw_df: pd.Dataframe |
136
|
|
|
The parsed space weather data (daily values). |
137
|
|
|
""" |
138
|
|
|
kpns = ["Kp{0}".format(i) for i in range(0, 23, 3)] + ["Kpsum"] |
139
|
|
|
sw = np.genfromtxt( |
140
|
|
|
swpath, |
141
|
|
|
skip_header=3, |
142
|
|
|
# yy mm dd br rd kp kp kp kp kp kp kp kp Kp ap ap ap ap ap ap ap ap Ap cp c9 is f1 q f2 f3 f4 f5 f6 |
143
|
|
|
delimiter=[4, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 6, 2, 6, 6, 6, 6, 6], |
144
|
|
|
dtype= "i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,f8,i4,i4,f8,i4,f8,f8,f8,f8,f8", |
145
|
|
|
names=[ |
146
|
|
|
"year", "month", "day", "bsrn", "rotd", |
147
|
|
|
"Kp0", "Kp3", "Kp6", "Kp9", "Kp12", "Kp15", "Kp18", "Kp21", "Kpsum", |
148
|
|
|
"Ap0", "Ap3", "Ap6", "Ap9", "Ap12", "Ap15", "Ap18", "Ap21", "Apavg", |
149
|
|
|
"Cp", "C9", "isn", "f107_adj", "Q", "f107_81ctr_adj", "f107_81lst_adj", |
150
|
|
|
"f107_obs", "f107_81ctr_obs", "f107_81lst_obs" |
151
|
|
|
] |
152
|
|
|
)[2:-1] |
153
|
|
|
sw = sw[sw["year"] != -1] |
154
|
|
|
ts = pd.to_datetime([ |
155
|
|
|
"{0:04d}-{1:02d}-{2:02d}".format(yy, mm, dd) |
156
|
|
|
for yy, mm, dd in sw[["year", "month", "day"]] |
157
|
|
|
]) |
158
|
|
|
sw_df = pd.DataFrame(sw, index=ts) |
159
|
|
|
sw_df[kpns] = 0.1 * sw_df[kpns] |
160
|
|
|
return sw_df |
161
|
|
|
|
162
|
|
|
|
163
|
|
|
# Common arguments for the public daily and 3h interfaces |
164
|
|
|
_SW_COMMON_PARAMS = """ |
165
|
|
|
Parameters |
166
|
|
|
---------- |
167
|
|
|
swpath_all: str, optional, default depending on package install location |
168
|
|
|
Filename for the large combined index file including the |
169
|
|
|
historic data, absolute path or relative to the current dir. |
170
|
|
|
swpath_5y: str, optional, default depending on package install location |
171
|
|
|
Filename for the 5-year index file, absolute path or relative to the current dir. |
172
|
|
|
update: bool, optional, default False |
173
|
|
|
Attempt to update the local data if it is older than `update_interval`. |
174
|
|
|
update_interval: str, optional, default "30days" |
175
|
|
|
The time after which the data are considered "old". |
176
|
|
|
By default, no automatic re-download is initiated, set `update` to true. |
177
|
|
|
The online data is updated every 3 hours, thus setting this value to |
178
|
|
|
a shorter time is not needed and not recommended. |
179
|
|
|
""" |
180
|
|
|
|
181
|
|
|
|
182
|
|
|
def _doc_param(**sub): |
183
|
|
|
def dec(obj): |
184
|
|
|
obj.__doc__ = obj.__doc__.format(**sub) |
185
|
|
|
return obj |
186
|
|
|
return dec |
187
|
|
|
|
188
|
|
|
|
189
|
|
|
@_doc_param(params=_SW_COMMON_PARAMS) |
190
|
|
|
def sw_daily(swpath_all=SW_PATH_ALL, swpath_5y=SW_PATH_5Y, update=False, update_interval="30days"): |
191
|
|
|
"""Combined daily Ap, Kp, and f10.7 index values |
192
|
|
|
|
193
|
|
|
Combines the "historic" and last-5-year data into one dataframe. |
194
|
|
|
|
195
|
|
|
All arguments are optional and changing them from the defaults should not |
196
|
|
|
be required neither should it be necessary nor is it recommended. |
197
|
|
|
{params} |
198
|
|
|
Returns |
199
|
|
|
------- |
200
|
|
|
sw_df: pd.Dataframe |
201
|
|
|
The combined parsed space weather data (daily values). |
202
|
|
|
""" |
203
|
|
|
# ensure that the file exists and is up to date |
204
|
|
|
if ( |
205
|
|
|
not os.path.exists(swpath_all) |
206
|
|
|
or not os.path.exists(swpath_5y) |
207
|
|
|
): |
208
|
|
|
warn("Could not find space weather data, trying to download.") |
209
|
|
|
update_data() |
210
|
|
|
|
211
|
|
|
if ( |
212
|
|
|
# 1460 = 4 * 365 |
213
|
|
|
get_file_age(swpath_all) > pd.Timedelta("1460days") |
214
|
|
|
or get_file_age(swpath_5y) > pd.Timedelta(update_interval) |
215
|
|
|
): |
216
|
|
|
if update: |
217
|
|
|
update_data() |
218
|
|
|
else: |
219
|
|
|
warn("Data files *might* be too old, consider running `sw.update_data()`.") |
220
|
|
|
|
221
|
|
|
df_all = read_sw(swpath_all) |
222
|
|
|
df_5y = read_sw(swpath_5y) |
223
|
|
|
return pd.concat([df_all[:df_5y.index[0]], df_5y[1:]]) |
224
|
|
|
|
225
|
|
|
|
226
|
|
|
@_doc_param(params=_SW_COMMON_PARAMS) |
227
|
|
|
def ap_kp_3h(*args, **kwargs): |
228
|
|
|
"""Extract 3h values of Ap and Kp |
229
|
|
|
|
230
|
|
|
Extracts 3-hourly Ap and Kp indices from the full daily data set. |
231
|
|
|
|
232
|
|
|
Accepts the same arguments as `sw_daily()`. |
233
|
|
|
All arguments are optional and changing them from the defaults should not |
234
|
|
|
be required neither should it be necessary nor is it recommended. |
235
|
|
|
{params} |
236
|
|
|
Returns |
237
|
|
|
------- |
238
|
|
|
sw_df: pd.Dataframe |
239
|
|
|
The combined Ap and Kp index data (3h values). |
240
|
|
|
|
241
|
|
|
See Also |
242
|
|
|
-------- |
243
|
|
|
`sw_daily()` |
244
|
|
|
""" |
245
|
|
|
daily_df = sw_daily(*args, **kwargs) |
246
|
|
|
ret = daily_df.copy() |
247
|
|
|
apns = ["Ap{0}".format(i) for i in range(0, 23, 3)] |
248
|
|
|
kpns = ["Kp{0}".format(i) for i in range(0, 23, 3)] |
249
|
|
|
for i, (ap, kp) in enumerate(zip(apns, kpns)): |
250
|
|
|
ret[ap].index = daily_df[ap].index + pd.Timedelta((i * 3 + 1.5), unit="h") |
251
|
|
|
ret[kp].index = daily_df[kp].index + pd.Timedelta((i * 3 + 1.5), unit="h") |
252
|
|
|
sw_ap = pd.concat([ret[ap] for ap in apns]) |
253
|
|
|
sw_kp = pd.concat([ret[kp] for kp in kpns]) |
254
|
|
|
return pd.DataFrame({"Ap": sw_ap, "Kp": sw_kp}) |
255
|
|
|
|