1
|
|
|
# Copyright (c) 2020--2024 Stefan Bender |
2
|
|
|
# |
3
|
|
|
# This module is part of pyspaceweather. |
4
|
|
|
# pyspaceweather is free software: you can redistribute it or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published |
6
|
|
|
# by the Free Software Foundation, version 2. |
7
|
|
|
# See accompanying COPYING.GPLv2 file or http://www.gnu.org/licenses/gpl-2.0.html. |
8
|
|
|
"""Python interface for space weather indices from GFZ Potsdam |
9
|
|
|
|
10
|
|
|
GFZ space weather indices ASCII file parser for python [#]_. |
11
|
|
|
|
12
|
|
|
.. [#] https://kp.gfz-potsdam.de/en/ |
13
|
|
|
""" |
14
|
|
|
import os |
15
|
|
|
from pkg_resources import resource_filename |
16
|
|
|
import logging |
17
|
|
|
from warnings import warn |
18
|
|
|
|
19
|
|
|
import numpy as np |
20
|
|
|
import pandas as pd |
21
|
|
|
|
22
|
|
|
from .core import _assert_file_exists, _dl_file |
23
|
|
|
|
24
|
|
|
__all__ = [ |
25
|
|
|
"gfz_daily", "gfz_3h", "read_gfz", |
26
|
|
|
"get_gfz_age", "update_gfz", |
27
|
|
|
"GFZ_PATH_ALL", "GFZ_PATH_30D", |
28
|
|
|
] |
29
|
|
|
|
30
|
|
|
GFZ_URL_ALL = "https://kp.gfz-potsdam.de/app/files/Kp_ap_Ap_SN_F107_since_1932.txt" |
31
|
|
|
GFZ_URL_30D = "https://kp.gfz-potsdam.de/app/files/Kp_ap_Ap_SN_F107_nowcast.txt" |
32
|
|
|
GFZ_FILE_ALL = os.path.basename(GFZ_URL_ALL) |
33
|
|
|
GFZ_FILE_30D = os.path.basename(GFZ_URL_30D) |
34
|
|
|
GFZ_PATH_ALL = resource_filename(__name__, os.path.join("data", GFZ_FILE_ALL)) |
35
|
|
|
GFZ_PATH_30D = resource_filename(__name__, os.path.join("data", GFZ_FILE_30D)) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def get_gfz_age(gfzpath, relative=True): |
39
|
|
|
"""Age of the downloaded data file |
40
|
|
|
|
41
|
|
|
Retrieves the last update time of the given file or full path. |
42
|
|
|
|
43
|
|
|
Parameters |
44
|
|
|
---------- |
45
|
|
|
gfzpath: str |
46
|
|
|
Filename to check, absolute path or relative to the current dir. |
47
|
|
|
relative: bool, optional, default True |
48
|
|
|
Return the file's age (True) or the last update time (False). |
49
|
|
|
|
50
|
|
|
Returns |
51
|
|
|
------- |
52
|
|
|
upd: pandas.Timestamp or pandas.Timedelta |
53
|
|
|
The last updated time or the file age, depending on the setting |
54
|
|
|
of `relative` above. |
55
|
|
|
Raises ``IOError`` if the file is not found. |
56
|
|
|
""" |
57
|
|
|
_assert_file_exists(gfzpath) |
58
|
|
|
with open(gfzpath) as fp: |
59
|
|
|
for line in fp: |
60
|
|
|
# forward to last line |
61
|
|
|
pass |
62
|
|
|
upd = pd.to_datetime(line[:10].replace(" ", "-"), utc=True) |
|
|
|
|
63
|
|
|
if relative: |
64
|
|
|
return pd.Timestamp.utcnow() - upd |
65
|
|
|
return upd |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
def update_gfz( |
69
|
|
|
min_age="1d", |
70
|
|
|
gfzpath_all=GFZ_PATH_ALL, gfzpath_30d=GFZ_PATH_30D, |
71
|
|
|
url_all=GFZ_URL_ALL, url_30d=GFZ_URL_30D, |
72
|
|
|
): |
73
|
|
|
"""Update the local space weather index data |
74
|
|
|
|
75
|
|
|
Updates the local space weather index data from the website [#]_, |
76
|
|
|
given that the 30-day file is older than `min_age`, |
77
|
|
|
or the combined (large) file is older than 30 days. |
78
|
|
|
If the data is missing for some reason, a download will be attempted nonetheless. |
79
|
|
|
|
80
|
|
|
All arguments are optional and changing them from the defaults should |
81
|
|
|
neither be necessary nor is it recommended. |
82
|
|
|
|
83
|
|
|
.. [#] https://kp.gfz-potsdam.de/en/ |
84
|
|
|
|
85
|
|
|
Parameters |
86
|
|
|
---------- |
87
|
|
|
min_age: str, optional, default "1d" |
88
|
|
|
The time after which a new download will be attempted. |
89
|
|
|
The online data is updated every day, thus setting this value to |
90
|
|
|
a shorter time is not needed and not recommended. |
91
|
|
|
gfzpath_all: str, optional, default depending on package install location |
92
|
|
|
Filename for the large combined index file including the |
93
|
|
|
historic data, absolute path or relative to the current dir. |
94
|
|
|
gfzpath_30d: str, optional, default depending on package install location |
95
|
|
|
Filename for the 30-day (nowcast) index file, absolute path or relative |
96
|
|
|
to the current dir. |
97
|
|
|
url_all: str, optional, default `gfz.GFZ_URL_ALL` |
98
|
|
|
The url of the "historic" data file. |
99
|
|
|
url_30d: str, optional, default `gfz.GFZ_URL_30D` |
100
|
|
|
The url of the data file containing the indices for the last 30 days. |
101
|
|
|
|
102
|
|
|
Returns |
103
|
|
|
------- |
104
|
|
|
Nothing. |
105
|
|
|
""" |
106
|
|
|
def _update_file(gfzpath, url, min_age): |
107
|
|
|
if not os.path.exists(gfzpath): |
108
|
|
|
logging.info("{0} not found, downloading.".format(gfzpath)) |
109
|
|
|
_dl_file(gfzpath, url) |
110
|
|
|
return |
111
|
|
|
if get_gfz_age(gfzpath) < pd.Timedelta(min_age): |
112
|
|
|
logging.info("not updating '{0}'.".format(gfzpath)) |
113
|
|
|
return |
114
|
|
|
logging.info("updating '{0}'.".format(gfzpath)) |
115
|
|
|
_dl_file(gfzpath, url) |
116
|
|
|
|
117
|
|
|
# Update the large file after 30 days |
118
|
|
|
_update_file(gfzpath_all, url_all, "30days") |
119
|
|
|
# Don't re-download before `min_age` has passed (1d) |
120
|
|
|
_update_file(gfzpath_30d, url_30d, min_age) |
121
|
|
|
|
122
|
|
|
|
123
|
|
|
def read_gfz(gfzpath): |
124
|
|
|
"""Read and parse space weather index data file |
125
|
|
|
|
126
|
|
|
Reads the given file and parses it according to the space weather data format. |
127
|
|
|
|
128
|
|
|
Parameters |
129
|
|
|
---------- |
130
|
|
|
gfzpath: str |
131
|
|
|
File to parse, absolute path or relative to the current dir. |
132
|
|
|
|
133
|
|
|
Returns |
134
|
|
|
------- |
135
|
|
|
gfz_df: pandas.DataFrame |
136
|
|
|
The parsed space weather data (daily values). |
137
|
|
|
Raises an ``IOError`` if the file is not found. |
138
|
|
|
|
139
|
|
|
The dataframe contains the following columns: |
140
|
|
|
|
141
|
|
|
"year", "month", "day": |
142
|
|
|
The observation date |
143
|
|
|
"bsrn": |
144
|
|
|
Bartels Solar Rotation Number. |
145
|
|
|
A sequence of 27-day intervals counted continuously from 1832 Feb 8. |
146
|
|
|
"rotd": |
147
|
|
|
Number of Day within the Bartels 27-day cycle (01-27). |
148
|
|
|
"Kp0", "Kp3", "Kp6", "Kp9", "Kp12", "Kp15", "Kp18", "Kp21": |
149
|
|
|
Planetary 3-hour Range Index (Kp) for 0000-0300, 0300-0600, |
150
|
|
|
0600-0900, 0900-1200, 1200-1500, 1500-1800, 1800-2100, 2100-2400 UT |
151
|
|
|
"Kpsum": Sum of the 8 Kp indices for the day. |
152
|
|
|
Expressed to the nearest third of a unit. |
153
|
|
|
"Ap0", "Ap3", "Ap6", "Ap9", "Ap12", "Ap15", "Ap18", "Ap21": |
154
|
|
|
Planetary Equivalent Amplitude (Ap) for 0000-0300, 0300-0600, |
155
|
|
|
0600-0900, 0900-1200, 1200-1500, 1500-1800, 1800-2100, 2100-2400 UT |
156
|
|
|
"Apavg": |
157
|
|
|
Arithmetic average of the 8 Ap indices for the day. |
158
|
|
|
"isn": |
159
|
|
|
International Sunspot Number. |
160
|
|
|
Records contain the Zurich number through 1980 Dec 31 and the |
161
|
|
|
International Brussels number thereafter. |
162
|
|
|
"f107_obs": |
163
|
|
|
Observed (unadjusted) value of F10.7. |
164
|
|
|
"f107_adj": |
165
|
|
|
10.7-cm Solar Radio Flux (F10.7) Adjusted to 1 AU. |
166
|
|
|
Measured at Ottawa at 1700 UT daily from 1947 Feb 14 until |
167
|
|
|
1991 May 31 and measured at Penticton at 2000 UT from 1991 Jun 01 on. |
168
|
|
|
Expressed in units of 10-22 W/m2/Hz. |
169
|
|
|
"D": |
170
|
|
|
Definitive indicator. |
171
|
|
|
0: Kp and SN preliminary |
172
|
|
|
1: Kp definitive, SN preliminary |
173
|
|
|
2: Kp and SN definitive |
174
|
|
|
""" |
175
|
|
|
_assert_file_exists(gfzpath) |
176
|
|
|
gfz = np.genfromtxt( |
177
|
|
|
gfzpath, |
178
|
|
|
skip_header=3, |
179
|
|
|
delimiter=[ |
180
|
|
|
# yy mm dd dd dm br db kp kp kp kp kp kp kp kp |
181
|
|
|
4, 3, 3, 6, 8, 5, 3, 7, 7, 7, 7, 7, 7, 7, 7, |
182
|
|
|
# ap ap ap ap ap ap ap ap Ap sn f1 f2 def |
183
|
|
|
5, 5, 5, 5, 5, 5, 5, 5, 6, 4, 9, 9, 2, |
184
|
|
|
], |
185
|
|
|
dtype=( |
186
|
|
|
"i4,i4,i4,i4,f4,i4,i4,f4,f4,f4,f4,f4,f4,f4," |
187
|
|
|
"f4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,f8,f8,i4," |
188
|
|
|
), |
189
|
|
|
names=[ |
190
|
|
|
"year", "month", "day", "days", "days_m", "bsrn", "rotd", |
191
|
|
|
"Kp0", "Kp3", "Kp6", "Kp9", "Kp12", "Kp15", "Kp18", "Kp21", |
192
|
|
|
"Ap0", "Ap3", "Ap6", "Ap9", "Ap12", "Ap15", "Ap18", "Ap21", "Apavg", |
193
|
|
|
"isn", "f107_obs", "f107_adj", "D", |
194
|
|
|
] |
195
|
|
|
) |
196
|
|
|
gfz = gfz[gfz["year"] != -1] |
197
|
|
|
ts = pd.to_datetime([ |
198
|
|
|
"{0:04d}-{1:02d}-{2:02d}".format(yy, mm, dd) |
199
|
|
|
for yy, mm, dd in gfz[["year", "month", "day"]] |
200
|
|
|
]) |
201
|
|
|
gfz_df = pd.DataFrame(gfz, index=ts) |
202
|
|
|
# Sum Kp for compatibility with celestrak dataframe |
203
|
|
|
kpns = list(map("Kp{0}".format, range(0, 23, 3))) |
204
|
|
|
gfz_df.insert(15, "Kpsum", gfz_df[kpns].sum(axis=1)) |
205
|
|
|
return gfz_df |
206
|
|
|
|
207
|
|
|
|
208
|
|
|
def read_gfz_wdc(gfzpath): |
209
|
|
|
"""Parse space weather index data file in WDC format |
210
|
|
|
|
211
|
|
|
Parses the GFZ index data in WDC format. |
212
|
|
|
|
213
|
|
|
Parameters |
214
|
|
|
---------- |
215
|
|
|
gfzpath: str |
216
|
|
|
File to parse, absolute path or relative to the current dir. |
217
|
|
|
|
218
|
|
|
Returns |
219
|
|
|
------- |
220
|
|
|
gfz_df: pandas.DataFrame |
221
|
|
|
The parsed space weather data (daily values). |
222
|
|
|
Raises an ``IOError`` if the file is not found. |
223
|
|
|
|
224
|
|
|
The dataframe contains the following columns: |
225
|
|
|
|
226
|
|
|
"year", "month", "day": |
227
|
|
|
The observation date |
228
|
|
|
"bsrn": |
229
|
|
|
Bartels Solar Rotation Number. |
230
|
|
|
A sequence of 27-day intervals counted continuously from 1832 Feb 8. |
231
|
|
|
"rotd": |
232
|
|
|
Number of Day within the Bartels 27-day cycle (01-27). |
233
|
|
|
"Kp0", "Kp3", "Kp6", "Kp9", "Kp12", "Kp15", "Kp18", "Kp21": |
234
|
|
|
Planetary 3-hour Range Index (Kp) for 0000-0300, 0300-0600, |
235
|
|
|
0600-0900, 0900-1200, 1200-1500, 1500-1800, 1800-2100, 2100-2400 UT |
236
|
|
|
"Kpsum": Sum of the 8 Kp indices for the day. |
237
|
|
|
Expressed to the nearest third of a unit. |
238
|
|
|
"Ap0", "Ap3", "Ap6", "Ap9", "Ap12", "Ap15", "Ap18", "Ap21": |
239
|
|
|
Planetary Equivalent Amplitude (Ap) for 0000-0300, 0300-0600, |
240
|
|
|
0600-0900, 0900-1200, 1200-1500, 1500-1800, 1800-2100, 2100-2400 UT |
241
|
|
|
"Apavg": |
242
|
|
|
Arithmetic average of the 8 Ap indices for the day. |
243
|
|
|
"Cp": |
244
|
|
|
Cp index - the daily planetary character figure, a qualitative |
245
|
|
|
estimate of the overall level of geomagnetic activity for this day |
246
|
|
|
determined from the sum of the eight ap amplitudes, |
247
|
|
|
ranging from 0.0 to 2.5 in steps of 0.1. |
248
|
|
|
"C9": |
249
|
|
|
The contracted scale for Cp with only 1 digit, from 0 to 9. |
250
|
|
|
""" |
251
|
|
|
_assert_file_exists(gfzpath) |
252
|
|
|
gfz = np.genfromtxt( |
253
|
|
|
gfzpath, |
254
|
|
|
skip_header=3, |
255
|
|
|
delimiter=[ |
256
|
|
|
# yy mm dd br db kp kp kp kp kp kp kp kp kps |
257
|
|
|
2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, |
258
|
|
|
# ap ap ap ap ap ap ap ap Ap Cp C9 |
259
|
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, |
260
|
|
|
], |
261
|
|
|
dtype=( |
262
|
|
|
"i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4,i4," |
263
|
|
|
"i4,i4,i4,i4,i4,i4,i4,i4,i4,f8,i4," |
264
|
|
|
), |
265
|
|
|
names=[ |
266
|
|
|
"year", "month", "day", "bsrn", "rotd", |
267
|
|
|
"Kp0", "Kp3", "Kp6", "Kp9", "Kp12", "Kp15", "Kp18", "Kp21", "Kpsum", |
268
|
|
|
"Ap0", "Ap3", "Ap6", "Ap9", "Ap12", "Ap15", "Ap18", "Ap21", "Apavg", |
269
|
|
|
"Cp", "C9", |
270
|
|
|
] |
271
|
|
|
) |
272
|
|
|
gfz = gfz[gfz["year"] != -1] |
273
|
|
|
ts = pd.to_datetime([ |
274
|
|
|
"{0:04d}-{1:02d}-{2:02d}".format(2000 + yy if yy < 32 else 1900 + yy, mm, dd) |
275
|
|
|
for yy, mm, dd in gfz[["year", "month", "day"]] |
276
|
|
|
]) |
277
|
|
|
gfz_df = pd.DataFrame(gfz, index=ts) |
278
|
|
|
gfz_df.loc[:, "year"] = ts.year |
279
|
|
|
# Adjust Kp to 0...9 |
280
|
|
|
kpns = list(map("Kp{0}".format, range(0, 23, 3))) + ["Kpsum"] |
281
|
|
|
gfz_df[kpns] = 0.1 * gfz_df[kpns] |
282
|
|
|
return gfz_df |
283
|
|
|
|
284
|
|
|
|
285
|
|
|
# Common arguments for the public daily and 3h interfaces |
286
|
|
|
_GFZ_COMMON_PARAMS = """ |
287
|
|
|
Parameters |
288
|
|
|
---------- |
289
|
|
|
gfzpath_all: str, optional, default depending on package install location |
290
|
|
|
Filename for the large combined index file including the |
291
|
|
|
historic data, absolute path or relative to the current dir. |
292
|
|
|
gfzpath_30d: str, optional, default depending on package install location |
293
|
|
|
Filename for the 30-day (nowcast) index file, |
294
|
|
|
absolute path or relative to the current dir. |
295
|
|
|
update: bool, optional, default False |
296
|
|
|
Attempt to update the local data if it is older than `update_interval`. |
297
|
|
|
update_interval: str, optional, default "30days" |
298
|
|
|
The time after which the data are considered "old". |
299
|
|
|
By default, no automatic re-download is initiated, set `update` to true. |
300
|
|
|
The online data is updated every 3 hours, thus setting this value to |
301
|
|
|
a shorter time is not needed and not recommended. |
302
|
|
|
""" |
303
|
|
|
|
304
|
|
|
|
305
|
|
|
def _doc_param(**sub): |
306
|
|
|
def dec(obj): |
307
|
|
|
obj.__doc__ = obj.__doc__.format(**sub) |
308
|
|
|
return obj |
309
|
|
|
return dec |
310
|
|
|
|
311
|
|
|
|
312
|
|
|
@_doc_param(params=_GFZ_COMMON_PARAMS) |
313
|
|
|
def gfz_daily(gfzpath_all=GFZ_PATH_ALL, gfzpath_30d=GFZ_PATH_30D, update=False, update_interval="10days"): |
314
|
|
|
"""Combined daily Ap, Kp, and f10.7 index values |
315
|
|
|
|
316
|
|
|
Combines the "historic" and last-30-day data into one dataframe. |
317
|
|
|
|
318
|
|
|
All arguments are optional and changing them from the defaults should not |
319
|
|
|
be required neither should it be necessary nor is it recommended. |
320
|
|
|
{params} |
321
|
|
|
Returns |
322
|
|
|
------- |
323
|
|
|
gfz_df: pandas.DataFrame |
324
|
|
|
The combined parsed space weather data (daily values). |
325
|
|
|
Raises ``IOError`` if the data files cannot be found. |
326
|
|
|
|
327
|
|
|
See Also |
328
|
|
|
-------- |
329
|
|
|
gfz_3h, read_gfz |
330
|
|
|
""" |
331
|
|
|
# ensure that the file exists and is up to date |
332
|
|
|
if ( |
333
|
|
|
not os.path.exists(gfzpath_all) |
334
|
|
|
or not os.path.exists(gfzpath_30d) |
335
|
|
|
): |
336
|
|
|
warn("Could not find space weather data, trying to download.") |
337
|
|
|
update_gfz(gfzpath_all=gfzpath_all, gfzpath_30d=gfzpath_30d) |
338
|
|
|
|
339
|
|
|
if ( |
340
|
|
|
get_gfz_age(gfzpath_all) > pd.Timedelta("30days") |
341
|
|
|
or get_gfz_age(gfzpath_30d) > pd.Timedelta(update_interval) |
342
|
|
|
): |
343
|
|
|
if update: |
344
|
|
|
update_gfz(gfzpath_all=gfzpath_all, gfzpath_30d=gfzpath_30d) |
345
|
|
|
else: |
346
|
|
|
warn( |
347
|
|
|
"Local data files are older than {0}, pass `update=True` or " |
348
|
|
|
"run `gfz.update_gfz()` manually if you need newer data.".format( |
349
|
|
|
update_interval |
350
|
|
|
) |
351
|
|
|
) |
352
|
|
|
|
353
|
|
|
df_all = read_gfz(gfzpath_all) |
354
|
|
|
df_30d = read_gfz(gfzpath_30d) |
355
|
|
|
return pd.concat([df_all[:df_30d.index[0]], df_30d[1:]]) |
356
|
|
|
|
357
|
|
|
|
358
|
|
|
@_doc_param(params=_GFZ_COMMON_PARAMS) |
359
|
|
|
def gfz_3h(*args, **kwargs): |
360
|
|
|
"""3h values of Ap and Kp |
361
|
|
|
|
362
|
|
|
Provides the 3-hourly Ap and Kp indices from the full daily data set. |
363
|
|
|
|
364
|
|
|
Accepts the same arguments as `gfz_daily()`. |
365
|
|
|
All arguments are optional and changing them from the defaults should not |
366
|
|
|
be required neither should it be necessary nor is it recommended. |
367
|
|
|
{params} |
368
|
|
|
Returns |
369
|
|
|
------- |
370
|
|
|
gfz_df: pandas.DataFrame |
371
|
|
|
The combined Ap and Kp index data (3h values). |
372
|
|
|
The index values are centred at the 3h interval, i.e. at 01:30:00, |
373
|
|
|
04:30:00, 07:30:00, ... and so on. |
374
|
|
|
Raises ``IOError`` if the data files cannot be found. |
375
|
|
|
|
376
|
|
|
See Also |
377
|
|
|
-------- |
378
|
|
|
gfz_daily |
379
|
|
|
""" |
380
|
|
|
daily_df = gfz_daily(*args, **kwargs) |
381
|
|
|
ret = daily_df.copy() |
382
|
|
|
apns = list(map("Ap{0}".format, range(0, 23, 3))) |
383
|
|
|
kpns = list(map("Kp{0}".format, range(0, 23, 3))) |
384
|
|
|
for i, (ap, kp) in enumerate(zip(apns, kpns)): |
385
|
|
|
ret[ap].index = daily_df[ap].index + pd.Timedelta((i * 3 + 1.5), unit="h") |
386
|
|
|
ret[kp].index = daily_df[kp].index + pd.Timedelta((i * 3 + 1.5), unit="h") |
387
|
|
|
gfz_ap = pd.concat(map(ret.__getitem__, apns)) |
388
|
|
|
gfz_kp = pd.concat(map(ret.__getitem__, kpns)) |
389
|
|
|
df = pd.DataFrame({"Ap": gfz_ap, "Kp": gfz_kp}) |
390
|
|
|
return df.reindex(df.index.sort_values()) |
391
|
|
|
|