|
1
|
|
|
# coding: utf-8 |
|
2
|
|
|
# Copyright (c) 2023 Stefan Bender |
|
3
|
|
|
# |
|
4
|
|
|
# This file is part of pyeppaurora. |
|
5
|
|
|
# pyeppaurora is free software: you can redistribute it or modify |
|
6
|
|
|
# it under the terms of the GNU General Public License as published |
|
7
|
|
|
# by the Free Software Foundation, version 2. |
|
8
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
|
9
|
|
|
"""Empirical model for auroral ionization rates |
|
10
|
|
|
|
|
11
|
|
|
Implements the empirical model for auroral ionization, |
|
12
|
|
|
derived from SSUSI UV observations [1]_. |
|
13
|
|
|
|
|
14
|
|
|
.. [1] Bender et al., in prep., 2023 |
|
15
|
|
|
""" |
|
16
|
|
|
from os import path |
|
17
|
|
|
from pkg_resources import resource_filename |
|
18
|
|
|
|
|
19
|
|
|
import numpy as np |
|
20
|
|
|
import xarray as xr |
|
21
|
|
|
|
|
22
|
|
|
__all__ = [ |
|
23
|
|
|
"ssusiq2023", |
|
24
|
|
|
] |
|
25
|
|
|
|
|
26
|
|
|
COEFF_FILE = "SSUSI_IRgrid_coeffs_f17f18.nc" |
|
27
|
|
|
COEFF_PATH = resource_filename(__name__, path.join("data", COEFF_FILE)) |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
def ssusiq2023(gmlat, mlt, alt, sw_coeffs, coeff_ds=None, return_var=False): |
|
31
|
|
|
u""" |
|
32
|
|
|
Parameters |
|
33
|
|
|
---------- |
|
34
|
|
|
gmlat: float |
|
35
|
|
|
Geomagnetic latitude in [degrees]. |
|
36
|
|
|
mlt: float |
|
37
|
|
|
Magnetic local time in [hours]. |
|
38
|
|
|
alt: float |
|
39
|
|
|
Altitude in [km] |
|
40
|
|
|
sw_coeffs: array_like or `xarray.DataArray` |
|
41
|
|
|
The space weather index values to use (for the requested time(s)), |
|
42
|
|
|
should be of shape (N, M) with N = number of proxies, currently 5: |
|
43
|
|
|
[Kp, PC, Ap, log(f10.7_81ctr_obs), log(v_plasma)]. |
|
44
|
|
|
The `xarray.DataArray` should have a dimension named "proxy" with |
|
45
|
|
|
matching coordinates: |
|
46
|
|
|
["Kp", "PC", "Ap", "log_f107_81ctr_obs", "log_v_plasma"] |
|
47
|
|
|
All the other dimensions will be broadcasted. |
|
48
|
|
|
coeff_ds: `xarray.Dataset`, optional (default: None) |
|
49
|
|
|
Dataset with the model coefficients, `None` uses the packaged version. |
|
50
|
|
|
return_var: bool, optional (default: False) |
|
51
|
|
|
If `True`, returns the predicted variance in addition to the values, |
|
52
|
|
|
otherwise only the mean prediction is returned. |
|
53
|
|
|
|
|
54
|
|
|
Returns |
|
55
|
|
|
------- |
|
56
|
|
|
q: `xarray.DataArray` |
|
57
|
|
|
log(q), where q is the ionization rate in [cm⁻³ s⁻¹] |
|
58
|
|
|
if `return_var` is False. |
|
59
|
|
|
q, var(q): tuple of `xarray.DataArray`s |
|
60
|
|
|
log(q) and var(log(q)) where q is the ionization rate in [cm⁻³ s⁻¹] |
|
61
|
|
|
if `return_var` is True. |
|
62
|
|
|
""" |
|
63
|
|
|
coeff_ds = coeff_ds or xr.open_dataset(COEFF_PATH, decode_times=False) |
|
64
|
|
|
coeff_sel = coeff_ds.sel( |
|
65
|
|
|
altitude=alt, latitude=gmlat, mlt=mlt, method="nearest", |
|
66
|
|
|
) |
|
67
|
|
|
|
|
68
|
|
|
# prepare the coefficients (array) as a `xarray.DataArray` |
|
69
|
|
|
if isinstance(sw_coeffs, xr.DataArray): |
|
70
|
|
|
if "offset" in coeff_ds.proxy.values: |
|
71
|
|
|
ones = xr.ones_like(sw_coeffs.isel(proxy=0)) |
|
72
|
|
|
ones = ones.assign_coords({"proxy": "offset"}) |
|
73
|
|
|
sw_coeffs = xr.concat([sw_coeffs, ones], dim="proxy") |
|
74
|
|
|
else: |
|
75
|
|
|
sw_coeffs = np.atleast_2d(sw_coeffs) |
|
76
|
|
|
if "offset" in coeff_ds.proxy.values: |
|
77
|
|
|
aix = sw_coeffs.shape.index(len(coeff_ds.proxy.values) - 1) |
|
78
|
|
|
if aix != 0: |
|
79
|
|
|
sw_coeffs = sw_coeffs.T |
|
80
|
|
|
sw_coeffs = np.vstack([sw_coeffs, np.ones(sw_coeffs.shape[1])]) |
|
81
|
|
|
else: |
|
82
|
|
|
aix = sw_coeffs.shape.index(len(coeff_ds.proxy.values)) |
|
83
|
|
|
if aix != 0: |
|
84
|
|
|
sw_coeffs = sw_coeffs.T |
|
85
|
|
|
extra_dims = ["dim_{0}".format(_d) for _d in range(sw_coeffs.ndim - 1)] |
|
86
|
|
|
sw_coeffs = xr.DataArray( |
|
87
|
|
|
sw_coeffs, |
|
88
|
|
|
dims=["proxy"] + extra_dims, |
|
89
|
|
|
coords={"proxy": coeff_ds.proxy.values}, |
|
90
|
|
|
) |
|
91
|
|
|
|
|
92
|
|
|
# Calculate model (mean) values from `beta` |
|
93
|
|
|
# fill NaNs with zero for `.dot()` |
|
94
|
|
|
coeffs = coeff_sel.beta.fillna(0.) |
|
95
|
|
|
q = coeffs.dot(sw_coeffs) |
|
96
|
|
|
if not return_var: |
|
97
|
|
|
return q |
|
98
|
|
|
|
|
99
|
|
|
# Calculate variance of the model from `beta_std` |
|
100
|
|
|
# fill NaNs with zero for `.dot()` |
|
101
|
|
|
coeffv = coeff_sel.beta_std.fillna(0.)**2 |
|
102
|
|
|
q_var = coeffv.dot(sw_coeffs**2) |
|
103
|
|
|
return q, q_var |
|
104
|
|
|
|