1
|
|
|
# Copyright (c) 2020 Stefan Bender |
2
|
|
|
# |
3
|
|
|
# This file is part of pyeppaurora. |
4
|
|
|
# pyeppaurora is free software: you can redistribute it or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published |
6
|
|
|
# by the Free Software Foundation, version 2. |
7
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
8
|
|
|
"""Atmospheric ionization rate parametrizations |
9
|
|
|
|
10
|
|
|
From the SSUSI ATBD documents [#]_ [#]_ [#]_. |
11
|
|
|
|
12
|
|
|
.. [#] https://ssusi.jhuapl.edu/data_algorithms |
13
|
|
|
.. [#] https://ssusi.jhuapl.edu/docs/algorithms/Aurora_LID_c_Version_2.0.pdf |
14
|
|
|
.. [#] https://ssusi.jhuapl.edu/docs/algorithms/SSUSI_DataProductAlgorithms_V1_13.doc |
15
|
|
|
""" |
16
|
|
|
|
17
|
|
|
import numpy as np |
18
|
|
|
|
19
|
|
|
__all__ = ["ssusi_ioniz"] |
20
|
|
|
|
21
|
|
|
# pre-determined analytical model coefficients of peak auroral ionization production rate height |
22
|
|
|
# electrons |
23
|
|
|
CHMAX_E = [2.07923, -9.41205e-2] |
24
|
|
|
# protons |
25
|
|
|
CHMAX_P = [2.078, -4.072e-2] |
26
|
|
|
# pre-determined analytical model coefficients of peak auroral ionization production rate |
27
|
|
|
# electrons |
28
|
|
|
CPMAX_E = [0., 9.25777e-1, -5.03201e-1] |
29
|
|
|
# protons |
30
|
|
|
CPMAX_P = [0., 3.50766e-1, -8.84737e-2] |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
def ssusi_ioniz(z, en, flux, chmax=CHMAX_E, cpmax=CPMAX_E, eref=1., pref=2.57e3, shpc=1.427e10): |
34
|
|
|
"""Parametrization from Sect. 2.6.2 in [#]_ |
35
|
|
|
|
36
|
|
|
Parameters |
37
|
|
|
---------- |
38
|
|
|
z: float, array_like |
39
|
|
|
en: float, array_like |
40
|
|
|
flux: float, array_like |
41
|
|
|
Energy flux in [erg cm^{-2} s^{-1}], note: **not** keV. |
42
|
|
|
chmax: tuple, list, (2,) optional |
43
|
|
|
Pre-determined analytical model coefficients of peak auroral ionization production rate height. |
44
|
|
|
cpmax: tuple, list, (3,) optional |
45
|
|
|
Pre-determined analytical model coefficients of peak auroral ionization production rate |
46
|
|
|
|
47
|
|
|
Returns |
48
|
|
|
------- |
49
|
|
|
q: float, array_like |
50
|
|
|
The atmospheric ionization rate at altitude z. |
51
|
|
|
|
52
|
|
|
References |
53
|
|
|
---------- |
54
|
|
|
.. [#] https://ssusi.jhuapl.edu/docs/algorithms/Aurora_LID_c_Version_2.0.pdf |
55
|
|
|
""" |
56
|
|
|
# pre-determined scale height proportionality factor |
57
|
|
|
shpf = 1e-5 / np.exp(1.) |
58
|
|
|
# log10 ratio of the characteristic energy (Sect. 2.6.2.2, 2.6.2.4) |
59
|
|
|
l10rce = np.log10(en / eref) |
60
|
|
|
# peak auroral ionization production rate height (Sect. 2.6.2.6) |
61
|
|
|
tempX = np.polyval(chmax[::-1], l10rce) |
62
|
|
|
pprh = 10**tempX |
63
|
|
|
# peak auroral ionization production rate (Sect. 2.6.2.8) |
64
|
|
|
tempX = np.polyval(cpmax[::-1], l10rce) |
65
|
|
|
ppr1 = 10**(tempX) * pref |
66
|
|
|
# scale height of the auroral ionization production rate (Sect. 2.6.2.10) |
67
|
|
|
shpr = shpf * shpc / ppr1 |
68
|
|
|
# electron peak auroral ionization production rate (Sect. 2.6.2.12) |
69
|
|
|
pprq = flux * ppr1 |
70
|
|
|
# ionization production rate altitude profile (Sect. 2.6.2.15) |
71
|
|
|
rhpr = (z - pprh) / shpr |
72
|
|
|
q = pprq * np.exp(1. - rhpr - np.exp(-rhpr)) |
73
|
|
|
return q |
74
|
|
|
|