1
|
|
|
# coding: utf-8 |
2
|
|
|
# Copyright (c) 2020 Stefan Bender |
3
|
|
|
# |
4
|
|
|
# This file is part of pyeppaurora. |
5
|
|
|
# pyeppaurora is free software: you can redistribute it or modify |
6
|
|
|
# it under the terms of the GNU General Public License as published |
7
|
|
|
# by the Free Software Foundation, version 2. |
8
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
9
|
|
|
"""Particle precipitation spectra |
10
|
|
|
|
11
|
|
|
Includes variants describing a normalized particle flux, |
12
|
|
|
as well as variants describing a normalized energy flux. |
13
|
|
|
""" |
14
|
|
|
|
15
|
|
|
import numpy as np |
16
|
|
|
|
17
|
|
|
__all__ = [ |
18
|
|
|
"exp_general", |
19
|
|
|
"gaussian_general", |
20
|
|
|
"maxwell_general", |
21
|
|
|
"pow_general", |
22
|
|
|
"pflux_exp", |
23
|
|
|
"pflux_gaussian", |
24
|
|
|
"pflux_maxwell", |
25
|
|
|
"pflux_pow", |
26
|
|
|
"ediss_spec_int", |
27
|
|
|
"ediss_specfun_int", |
28
|
|
|
] |
29
|
|
|
|
30
|
|
|
|
31
|
|
|
# General normalized spectra, standard distributions |
32
|
|
|
def exp_general(en, en_0=10.): |
33
|
|
|
r"""Exponential number flux spectrum |
34
|
|
|
|
35
|
|
|
.. math:: |
36
|
|
|
\phi(E, E_0) = 1 / E_0 \cdot \exp\{-E / E_0\} |
37
|
|
|
|
38
|
|
|
Standard exponential distribution with |
39
|
|
|
:math:`\lambda` = 1 / ``en_0`` or :math:`\beta` = ``en_0``. |
40
|
|
|
normalized to unit number flux, i.e. |
41
|
|
|
:math:`\int_0^\infty \phi(E) \text{d}E = 1`. |
42
|
|
|
|
43
|
|
|
Parameters |
44
|
|
|
---------- |
45
|
|
|
en: float or array_like (N,) |
46
|
|
|
Energy in [keV] |
47
|
|
|
en_0: float, optional |
48
|
|
|
Characteristic energy in [keV] of the distribution. |
49
|
|
|
Default: 10 keV |
50
|
|
|
|
51
|
|
|
Returns |
52
|
|
|
------- |
53
|
|
|
phi: float or array_like (N,) |
54
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
55
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
56
|
|
|
""" |
57
|
|
|
return 1. / en_0 * np.exp(-en / en_0) |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
def gaussian_general(en, en_0=10., w=1.): |
61
|
|
|
r"""Gaussian number flux spectrum |
62
|
|
|
|
63
|
|
|
Standard normal distribution with |
64
|
|
|
:math:`\mu` = ``en_0`` and :math:`\sigma` = ``w`` / sqrt(2): |
65
|
|
|
|
66
|
|
|
.. math:: |
67
|
|
|
\phi(E, E_0, W) = 1 / \sqrt{\pi}W \cdot \exp\{-(E - E_0)^2 / W^2\} |
68
|
|
|
|
69
|
|
|
Almost normalized to unit number flux |
70
|
|
|
:math:`\int_0^\infty \phi(E) \text{d}E = 1` |
71
|
|
|
(ignoring the negative tail for large ``en_0`` / ``w`` ratios). |
72
|
|
|
|
73
|
|
|
Parameters |
74
|
|
|
---------- |
75
|
|
|
en: float or array_like (N,) |
76
|
|
|
Energy in [keV] |
77
|
|
|
en_0: float, optional |
78
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
79
|
|
|
Default: 10 keV |
80
|
|
|
w: float, optional |
81
|
|
|
Width of the Gaussian distribution, in [keV]. |
82
|
|
|
Default: 1 keV |
83
|
|
|
|
84
|
|
|
Returns |
85
|
|
|
------- |
86
|
|
|
phi: float or array_like (N,) |
87
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
88
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
89
|
|
|
""" |
90
|
|
|
return 1. / np.sqrt(np.pi * w**2) * np.exp(-(en - en_0)**2 / w**2) |
91
|
|
|
|
92
|
|
|
|
93
|
|
|
def maxwell_general(en, en_0=10.): |
94
|
|
|
r"""Maxwell number flux spectrum |
95
|
|
|
|
96
|
|
|
.. math:: |
97
|
|
|
\phi(E, E_0) = E / E_0^2 \cdot \exp\{-E / E_0\} |
98
|
|
|
|
99
|
|
|
Equal to a standard Gamma distribution with |
100
|
|
|
:math:`\alpha` = 2 and :math:`\beta` = 1 / ``en_0``, |
101
|
|
|
or |
102
|
|
|
:math:`k` = 2 and :math:`\theta` = ``en_0``. |
103
|
|
|
Normalized to :math:`\int_0^\infty \phi(E) \text{d}E = 1`. |
104
|
|
|
|
105
|
|
|
Parameters |
106
|
|
|
---------- |
107
|
|
|
en: float or array_like (N,) |
108
|
|
|
Energy in [keV] |
109
|
|
|
en_0: float, optional |
110
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
111
|
|
|
Default: 10 keV |
112
|
|
|
|
113
|
|
|
Returns |
114
|
|
|
------- |
115
|
|
|
phi: float or array_like (N,) |
116
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
117
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
118
|
|
|
""" |
119
|
|
|
return en / en_0**2 * np.exp(-en / en_0) |
120
|
|
|
|
121
|
|
|
|
122
|
|
|
def pow_general(en, en_0=10., gamma=-3., het=True): |
123
|
|
|
r"""Power-law number flux spectrum |
124
|
|
|
|
125
|
|
|
.. math:: |
126
|
|
|
\phi(E, E_0, \gamma) = \mp (\gamma + 1) / E_0 \cdot (E / E_0)^\gamma |
127
|
|
|
|
128
|
|
|
The minus-sign (-) and is used for the high-energy tail variant, |
129
|
|
|
and the plus-sign (+) for the low-energy tail variant. |
130
|
|
|
The exponent ``gamma`` needs to be set appropriately, |
131
|
|
|
< -1 for `het`, and > 1 for `let`. |
132
|
|
|
|
133
|
|
|
The "high-energy tail" version (`het` = `True`) |
134
|
|
|
resembles a Pareto distribution with |
135
|
|
|
scale parameter :math:`x_m` = ``en_0`` |
136
|
|
|
and shape parameter :math:`\alpha` = -(``gamma`` + 1). |
137
|
|
|
|
138
|
|
|
Adapted from Strickland et al., 1993 [#]_ and |
139
|
|
|
normalized to unit particle flux: |
140
|
|
|
:math:`\int_{E_0}^\infty \phi(E) \text{d}E = 1` |
141
|
|
|
for the high-energy tail version, and |
142
|
|
|
:math:`\int_0^{E_0} \phi(E) \text{d}E = 1` |
143
|
|
|
for the low-energy tail version. |
144
|
|
|
|
145
|
|
|
Parameters |
146
|
|
|
---------- |
147
|
|
|
en: float or array_like (N,) |
148
|
|
|
Energy in [keV] |
149
|
|
|
en_0: float, optional |
150
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
151
|
|
|
Default: 10 keV |
152
|
|
|
gamma: float, optional |
153
|
|
|
Exponent of the power-law distribution, in [keV]. |
154
|
|
|
het: bool, optional |
155
|
|
|
Return a high-energy tail (het, default: true) for en > en_0, |
156
|
|
|
or low-energy tail (false) for en < en_0. |
157
|
|
|
Adjusts the normalization accordingly. |
158
|
|
|
|
159
|
|
|
Returns |
160
|
|
|
------- |
161
|
|
|
phi: float or array_like (N,) |
162
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
163
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
164
|
|
|
|
165
|
|
|
References |
166
|
|
|
---------- |
167
|
|
|
.. [#] D. J. Strickland, R. E. Daniell Jr, J. R. Jasperse, B. Basu |
168
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
169
|
|
|
doi: `10.1029/93JA01645 <https://doi.org/10.1029/93JA01645>`_ |
170
|
|
|
""" |
171
|
|
|
isscalar = (np.ndim(en) == 0) |
172
|
|
|
en = np.atleast_1d(en) |
173
|
|
|
spec = (gamma + 1) / en_0 * (en / en_0)**gamma |
174
|
|
|
if het: |
175
|
|
|
spec[en < en_0] = 0. |
176
|
|
|
return -spec[0] if isscalar else -spec |
177
|
|
|
spec[en > en_0] = 0. |
178
|
|
|
return spec[0] if isscalar else spec |
179
|
|
|
|
180
|
|
|
|
181
|
|
|
def pflux_exp(en, en_0=10.): |
182
|
|
|
r"""Exponential particle flux spectrum |
183
|
|
|
|
184
|
|
|
.. math:: |
185
|
|
|
\phi(E, E_0) = 1 / E_0^2 \cdot \exp\{-E / E_0\} |
186
|
|
|
|
187
|
|
|
Normalized to unit energy flux: |
188
|
|
|
:math:`\int_0^\infty \phi(E) E \text{d}E = 1`. |
189
|
|
|
|
190
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
191
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
192
|
|
|
|
193
|
|
|
Parameters |
194
|
|
|
---------- |
195
|
|
|
en: float or array_like (N,) |
196
|
|
|
Energy in [keV] |
197
|
|
|
en_0: float, optional |
198
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
199
|
|
|
Default: 10 keV. |
200
|
|
|
|
201
|
|
|
Returns |
202
|
|
|
------- |
203
|
|
|
phi: float or array_like (N,) |
204
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
205
|
|
|
([keV-2] scaled by unit energy flux). |
206
|
|
|
|
207
|
|
|
See Also |
208
|
|
|
-------- |
209
|
|
|
exp_general |
210
|
|
|
""" |
211
|
|
|
return exp_general(en, en_0=en_0) / en_0 |
212
|
|
|
|
213
|
|
|
|
214
|
|
|
def pflux_gaussian(en, en_0=10., w=1): |
215
|
|
|
r"""Gaussian particle flux spectrum |
216
|
|
|
|
217
|
|
|
As used in, e.g., Strickland et al., 1993 [#]_ |
218
|
|
|
|
219
|
|
|
.. math:: |
220
|
|
|
\phi(E, E_0, W) = 1 / \sqrt{\pi}E_0W \cdot \exp\{-(E - E_0)^2 / W^2\} |
221
|
|
|
|
222
|
|
|
Normalized to :math:`\int_0^\infty \phi(E) E \text{d}E = 1` |
223
|
|
|
(ignoring the negative tail). |
224
|
|
|
|
225
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
226
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
227
|
|
|
|
228
|
|
|
Parameters |
229
|
|
|
---------- |
230
|
|
|
en: float or array_like (N,) |
231
|
|
|
Energy in [keV] |
232
|
|
|
en_0: float, optional |
233
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
234
|
|
|
Default: 10 keV. |
235
|
|
|
|
236
|
|
|
Returns |
237
|
|
|
------- |
238
|
|
|
phi: float or array_like (N,) |
239
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
240
|
|
|
([kev-2] scaled by unit energy flux). |
241
|
|
|
|
242
|
|
|
References |
243
|
|
|
---------- |
244
|
|
|
.. [#] D. J. Strickland, R. E. Daniell, J. R. Jasperse, B. Basu |
245
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
246
|
|
|
doi: 10.1029/93JA01645 |
247
|
|
|
|
248
|
|
|
See Also |
249
|
|
|
-------- |
250
|
|
|
gaussian_general |
251
|
|
|
""" |
252
|
|
|
return gaussian_general(en, en_0=en_0, w=w) / en_0 |
253
|
|
|
|
254
|
|
|
|
255
|
|
|
def pflux_maxwell(en, en_0=10.): |
256
|
|
|
r"""Maxwell particle flux spectrum |
257
|
|
|
|
258
|
|
|
As used in, e.g., Strickland et al., 1993 [#]_ |
259
|
|
|
|
260
|
|
|
.. math:: |
261
|
|
|
\phi(E, E_0) = E / 2E_0^3 \cdot \exp\{-E / E_0\} |
262
|
|
|
|
263
|
|
|
Equal to a standard Gamma distribution with |
264
|
|
|
:math:`\alpha` = 3 and :math:`\beta` = 1 / ``en_0``, |
265
|
|
|
or |
266
|
|
|
:math:`k` = 3 and :math:`\theta` = ``en_0``. |
267
|
|
|
The total precipitating energy flux is fixed to 1 keV cm-2 s-1, |
268
|
|
|
multiply by Q_0 [keV cm-2 s-1] to scale the particle flux. |
269
|
|
|
|
270
|
|
|
Normalized to :math:`\int_0^\infty \phi(E) E \text{d}E = 1`. |
271
|
|
|
|
272
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
273
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
274
|
|
|
|
275
|
|
|
Parameters |
276
|
|
|
---------- |
277
|
|
|
en: float or array_like (N,) |
278
|
|
|
Energy in [keV] |
279
|
|
|
en_0: float, optional |
280
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
281
|
|
|
Default: 10 keV. |
282
|
|
|
|
283
|
|
|
Returns |
284
|
|
|
------- |
285
|
|
|
phi: float or array_like (N,) |
286
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
287
|
|
|
([kev-2] scaled by unit energy flux). |
288
|
|
|
|
289
|
|
|
References |
290
|
|
|
---------- |
291
|
|
|
.. [#] D. J. Strickland, R. E. Daniell, J. R. Jasperse, B. Basu |
292
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
293
|
|
|
doi: 10.1029/93JA01645 |
294
|
|
|
|
295
|
|
|
See Also |
296
|
|
|
-------- |
297
|
|
|
maxwell_general |
298
|
|
|
""" |
299
|
|
|
return 0.5 / en_0 * maxwell_general(en, en_0) |
300
|
|
|
|
301
|
|
|
|
302
|
|
|
def pflux_pow(en, en_0=10., gamma=-3., het=True): |
303
|
|
|
r"""Power-law particle flux spectrum |
304
|
|
|
|
305
|
|
|
As used in, e.g., Strickland et al., 1993 [#]_ |
306
|
|
|
|
307
|
|
|
.. math:: |
308
|
|
|
\phi(E, E_0, \gamma) = \mp (\gamma + 2) / E_0^2 \cdot (E / E_0)^\gamma |
309
|
|
|
|
310
|
|
|
The minus-sign (-) and is used for the high-energy tail variant, |
311
|
|
|
and the plus-sign (+) for the low-energy tail variant. |
312
|
|
|
The exponent ``gamma`` needs to be set appropriately, |
313
|
|
|
< -1 for `het`, and > 1 for `let`. |
314
|
|
|
|
315
|
|
|
Normalized to :math:`\int_{E_0}^\infty \phi(E) E \text{d}E = 1` |
316
|
|
|
for the high-energy tail version, and to |
317
|
|
|
:math:`\int_0^{E_0} \phi(E) E \text{d}E = 1` |
318
|
|
|
for the low-energy tail version. |
319
|
|
|
|
320
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
321
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
322
|
|
|
|
323
|
|
|
Parameters |
324
|
|
|
---------- |
325
|
|
|
en: float or array_like (N,) |
326
|
|
|
Energy in [keV] |
327
|
|
|
en_0: float, optional |
328
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
329
|
|
|
Default: 10 keV |
330
|
|
|
gamma: float, optional |
331
|
|
|
Exponent of the power-law distribution, in [keV]. |
332
|
|
|
het: bool, optional (default True) |
333
|
|
|
Return a high-energy tail (true) for en > en_0, |
334
|
|
|
or low-energy tail (false) for en < en_0. |
335
|
|
|
Adjusts the normalization accordingly. |
336
|
|
|
|
337
|
|
|
Returns |
338
|
|
|
------- |
339
|
|
|
phi: float or array_like (N,) |
340
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
341
|
|
|
([keV-2] scaled by unit energy flux). |
342
|
|
|
|
343
|
|
|
References |
344
|
|
|
---------- |
345
|
|
|
.. [#] D. J. Strickland, R. E. Daniell Jr, J. R. Jasperse, B. Basu |
346
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
347
|
|
|
doi: `10.1029/93JA01645 <https://doi.org/10.1029/93JA01645>`_ |
348
|
|
|
|
349
|
|
|
See Also |
350
|
|
|
-------- |
351
|
|
|
pow_general |
352
|
|
|
""" |
353
|
|
|
return (gamma + 2) / (gamma + 1) / en_0 * pow_general(en, en_0=en_0, gamma=gamma, het=het) |
354
|
|
|
|
355
|
|
|
|
356
|
|
|
def ediss_spec_int( |
357
|
|
|
ens, |
358
|
|
|
dfluxes, |
359
|
|
|
scale_height, |
360
|
|
|
rho, |
361
|
|
|
func, |
362
|
|
|
axis=-1, |
363
|
|
|
func_kws=None, |
364
|
|
|
): |
365
|
|
|
r"""Integrate over a given energy spectrum |
366
|
|
|
|
367
|
|
|
Integrates a mono-energetic parametrization `q`, e.g. from Fang et al., 2010 |
368
|
|
|
using the given differential particle spectrum `phi`: |
369
|
|
|
|
370
|
|
|
:math:`\int_\text{spec} \phi(E) q(E, Q) E \text{d}E` |
371
|
|
|
|
372
|
|
|
This function uses the differential spectrum evaluated at the given energy bins. |
373
|
|
|
|
374
|
|
|
Parameters |
375
|
|
|
---------- |
376
|
|
|
ens: array_like (M,...) |
377
|
|
|
Central (bin) energies of the spectrum |
378
|
|
|
dfluxes: array_like (M,...) |
379
|
|
|
Differential particle fluxes in the given bins |
380
|
|
|
scale_height: array_like (N,...) |
381
|
|
|
The atmospheric scale heights |
382
|
|
|
rho: array_like (N,...) |
383
|
|
|
The atmospheric densities, corresponding to the |
384
|
|
|
scale heights. |
385
|
|
|
func: callable |
386
|
|
|
Mono-energetic energy dissipation function to integrate. |
387
|
|
|
axis: int, optional |
388
|
|
|
The axis to use for integration, default: -1 (last axis). |
389
|
|
|
func_kws: dict-like, optional |
390
|
|
|
Optional keyword arguments to pass to the mono-energetic |
391
|
|
|
energy dissipation function. Default: `None` |
392
|
|
|
|
393
|
|
|
Returns |
394
|
|
|
------- |
395
|
|
|
en_diss: array_like (N) |
396
|
|
|
The dissipated energy profiles [keV]. |
397
|
|
|
|
398
|
|
|
See Also |
399
|
|
|
-------- |
400
|
|
|
ediss_specfun_int |
401
|
|
|
""" |
402
|
|
|
ens = np.atleast_1d(ens) |
403
|
|
|
dfluxes = np.atleast_1d(dfluxes) |
404
|
|
|
scale_height = np.atleast_1d(scale_height) |
405
|
|
|
rho = np.atleast_1d(rho) |
406
|
|
|
func_kws = func_kws or dict() |
407
|
|
|
ediss = func( |
408
|
|
|
ens[None, None, :], |
409
|
|
|
dfluxes, |
410
|
|
|
scale_height[..., None], |
411
|
|
|
rho[..., None], |
412
|
|
|
**func_kws |
413
|
|
|
) |
414
|
|
|
return np.trapz(ediss * ens, ens, axis=axis) |
415
|
|
|
|
416
|
|
|
|
417
|
|
|
def ediss_specfun_int( |
418
|
|
|
energy, |
419
|
|
|
flux, |
420
|
|
|
scale_height, |
421
|
|
|
rho, |
422
|
|
|
ediss_func, |
423
|
|
|
ediss_kws=None, |
424
|
|
|
bounds=(0.1, 300.), |
425
|
|
|
nstep=128, |
426
|
|
|
spec_fun=pflux_maxwell, |
427
|
|
|
spec_kws=None, |
428
|
|
|
): |
429
|
|
|
"""Integrate mono-energetic parametrization over a spectrum |
430
|
|
|
|
431
|
|
|
Integrates the mono-energetic parametrization over a spectrum given by a |
432
|
|
|
functional dependence with characteristic energy `energy` and total energy |
433
|
|
|
flux `flux`. |
434
|
|
|
|
435
|
|
|
Parameters |
436
|
|
|
---------- |
437
|
|
|
energy: float or array_like (M,...) |
438
|
|
|
Characteristic energy E_0 [keV] of the spectral distribution. |
439
|
|
|
flux: float or array_like (M,...) |
440
|
|
|
Integrated energy flux Q_0 [keV / cm² / s¹] |
441
|
|
|
scale_height: float or array_like (N,...) |
442
|
|
|
The atmospheric scale heights [cm]. |
443
|
|
|
rho: float or array_like (N,...) |
444
|
|
|
The atmospheric mass density [g / cm³] |
445
|
|
|
ediss_func: callable |
446
|
|
|
Mono-energetic energy dissipation function to integrate. |
447
|
|
|
ediss_kws: dict-like, optional |
448
|
|
|
Optional keyword arguments to pass to the mono-energetic |
449
|
|
|
energy dissipation function. Default: `None` |
450
|
|
|
bounds: tuple, optional |
451
|
|
|
(min, max) [keV] of the integration range to integrate the Maxwellian. |
452
|
|
|
Make sure that this is appropriate to encompass the spectrum. |
453
|
|
|
Default: (0.1, 300.) |
454
|
|
|
nsteps: int, optional |
455
|
|
|
Number of integration steps, default: 128. |
456
|
|
|
spec_func: callable, optional, default :func:`pflux_maxwell` |
457
|
|
|
Spectral shape function, choices are: |
458
|
|
|
|
459
|
|
|
* :func:`pflux_exp` for a exponential spectrum |
460
|
|
|
* :func:`pflux_gaussian` for a Gaussian shaped spectrum |
461
|
|
|
* :func:`pflux_maxwell` for a Maxwellian shaped spectrum |
462
|
|
|
* :func:`pflux_pow` for a power-law |
463
|
|
|
spec_kws: dict-like, optional |
464
|
|
|
Optional keyword arguments to pass to the spectral function |
465
|
|
|
Default: `None` |
466
|
|
|
|
467
|
|
|
Returns |
468
|
|
|
------- |
469
|
|
|
en_diss: array_like (M,N) |
470
|
|
|
The dissipated energy profiles [keV]. |
471
|
|
|
|
472
|
|
|
See Also |
473
|
|
|
-------- |
474
|
|
|
ediss_spec_int |
475
|
|
|
""" |
476
|
|
|
energy = np.asarray(energy) |
477
|
|
|
flux = np.asarray(flux) |
478
|
|
|
bounds_l10 = np.log10(bounds) |
479
|
|
|
ens = np.logspace(*bounds_l10, num=nstep) |
480
|
|
|
ensd = np.reshape(ens, (-1,) + (1,) * energy.ndim) |
481
|
|
|
spec_kws = spec_kws or dict() |
482
|
|
|
# "overwrite" the characteristic energy |
483
|
|
|
spec_kws["en_0"] = energy.T |
484
|
|
|
dflux = flux.T * spec_fun(ensd, **spec_kws) |
485
|
|
|
return ediss_spec_int( |
486
|
|
|
ens, dflux.T, scale_height, rho, ediss_func, |
487
|
|
|
axis=-1, func_kws=ediss_kws, |
488
|
|
|
) |
489
|
|
|
|