|
1
|
|
|
# coding: utf-8 |
|
2
|
|
|
# Copyright (c) 2020 Stefan Bender |
|
3
|
|
|
# |
|
4
|
|
|
# This file is part of pyeppaurora. |
|
5
|
|
|
# pyeppaurora is free software: you can redistribute it or modify |
|
6
|
|
|
# it under the terms of the GNU General Public License as published |
|
7
|
|
|
# by the Free Software Foundation, version 2. |
|
8
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
|
9
|
|
|
"""Particle precipitation spectra |
|
10
|
|
|
|
|
11
|
|
|
Includes variants describing a normalized particle flux, |
|
12
|
|
|
as well as variants describing a normalized energy flux. |
|
13
|
|
|
""" |
|
14
|
|
|
|
|
15
|
|
|
import numpy as np |
|
16
|
|
|
|
|
17
|
|
|
__all__ = [ |
|
18
|
|
|
"exp_general", |
|
19
|
|
|
"gaussian_general", |
|
20
|
|
|
"maxwell_general", |
|
21
|
|
|
"pow_general", |
|
22
|
|
|
"pflux_exp", |
|
23
|
|
|
"pflux_gaussian", |
|
24
|
|
|
"pflux_maxwell", |
|
25
|
|
|
"pflux_pow", |
|
26
|
|
|
"ediss_spec_int", |
|
27
|
|
|
"ediss_specfun_int", |
|
28
|
|
|
] |
|
29
|
|
|
|
|
30
|
|
|
|
|
31
|
|
|
# General normalized spectra, standard distributions |
|
32
|
|
|
def exp_general(en, en_0=10.): |
|
33
|
|
|
r"""Exponential number flux spectrum |
|
34
|
|
|
|
|
35
|
|
|
.. math:: |
|
36
|
|
|
\phi(E, E_0) = 1 / E_0 \cdot \exp\{-E / E_0\} |
|
37
|
|
|
|
|
38
|
|
|
Standard exponential distribution with |
|
39
|
|
|
:math:`\lambda` = 1 / ``en_0`` or :math:`\beta` = ``en_0``. |
|
40
|
|
|
normalized to unit number flux, i.e. |
|
41
|
|
|
:math:`\int_0^\infty \phi(E) \text{d}E = 1`. |
|
42
|
|
|
|
|
43
|
|
|
Parameters |
|
44
|
|
|
---------- |
|
45
|
|
|
en: float or array_like (N,) |
|
46
|
|
|
Energy in [keV] |
|
47
|
|
|
en_0: float, optional |
|
48
|
|
|
Characteristic energy in [keV] of the distribution. |
|
49
|
|
|
Default: 10 keV |
|
50
|
|
|
|
|
51
|
|
|
Returns |
|
52
|
|
|
------- |
|
53
|
|
|
phi: float or array_like (N,) |
|
54
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
|
55
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
|
56
|
|
|
""" |
|
57
|
|
|
return 1. / en_0 * np.exp(-en / en_0) |
|
58
|
|
|
|
|
59
|
|
|
|
|
60
|
|
|
def gaussian_general(en, en_0=10., w=1.): |
|
61
|
|
|
r"""Gaussian number flux spectrum |
|
62
|
|
|
|
|
63
|
|
|
Standard normal distribution with |
|
64
|
|
|
:math:`\mu` = ``en_0`` and :math:`\sigma` = ``w`` / sqrt(2): |
|
65
|
|
|
|
|
66
|
|
|
.. math:: |
|
67
|
|
|
\phi(E, E_0, W) = 1 / \sqrt{\pi}W \cdot \exp\{-(E - E_0)^2 / W^2\} |
|
68
|
|
|
|
|
69
|
|
|
Almost normalized to unit number flux |
|
70
|
|
|
:math:`\int_0^\infty \phi(E) \text{d}E = 1` |
|
71
|
|
|
(ignoring the negative tail for large ``en_0`` / ``w`` ratios). |
|
72
|
|
|
|
|
73
|
|
|
Parameters |
|
74
|
|
|
---------- |
|
75
|
|
|
en: float or array_like (N,) |
|
76
|
|
|
Energy in [keV] |
|
77
|
|
|
en_0: float, optional |
|
78
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
79
|
|
|
Default: 10 keV |
|
80
|
|
|
w: float, optional |
|
81
|
|
|
Width of the Gaussian distribution, in [keV]. |
|
82
|
|
|
Default: 1 keV |
|
83
|
|
|
|
|
84
|
|
|
Returns |
|
85
|
|
|
------- |
|
86
|
|
|
phi: float or array_like (N,) |
|
87
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
|
88
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
|
89
|
|
|
""" |
|
90
|
|
|
return 1. / np.sqrt(np.pi * w**2) * np.exp(-(en - en_0)**2 / w**2) |
|
91
|
|
|
|
|
92
|
|
|
|
|
93
|
|
|
def maxwell_general(en, en_0=10.): |
|
94
|
|
|
r"""Maxwell number flux spectrum |
|
95
|
|
|
|
|
96
|
|
|
.. math:: |
|
97
|
|
|
\phi(E, E_0) = E / E_0^2 \cdot \exp\{-E / E_0\} |
|
98
|
|
|
|
|
99
|
|
|
Equal to a standard Gamma distribution with |
|
100
|
|
|
:math:`\alpha` = 2 and :math:`\beta` = 1 / ``en_0``, |
|
101
|
|
|
or |
|
102
|
|
|
:math:`k` = 2 and :math:`\theta` = ``en_0``. |
|
103
|
|
|
Normalized to :math:`\int_0^\infty \phi(E) \text{d}E = 1`. |
|
104
|
|
|
|
|
105
|
|
|
Parameters |
|
106
|
|
|
---------- |
|
107
|
|
|
en: float or array_like (N,) |
|
108
|
|
|
Energy in [keV] |
|
109
|
|
|
en_0: float, optional |
|
110
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
111
|
|
|
Default: 10 keV |
|
112
|
|
|
|
|
113
|
|
|
Returns |
|
114
|
|
|
------- |
|
115
|
|
|
phi: float or array_like (N,) |
|
116
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
|
117
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
|
118
|
|
|
""" |
|
119
|
|
|
return en / en_0**2 * np.exp(-en / en_0) |
|
120
|
|
|
|
|
121
|
|
|
|
|
122
|
|
|
def pow_general(en, en_0=10., gamma=-3., het=True): |
|
123
|
|
|
r"""Power-law number flux spectrum |
|
124
|
|
|
|
|
125
|
|
|
.. math:: |
|
126
|
|
|
\phi(E, E_0, \gamma) = \mp (\gamma + 1) / E_0 \cdot (E / E_0)^\gamma |
|
127
|
|
|
|
|
128
|
|
|
The minus-sign (-) and is used for the high-energy tail variant, |
|
129
|
|
|
and the plus-sign (+) for the low-energy tail variant. |
|
130
|
|
|
The exponent ``gamma`` needs to be set appropriately, |
|
131
|
|
|
< -1 for `het`, and > 1 for `let`. |
|
132
|
|
|
|
|
133
|
|
|
The "high-energy tail" version (`het` = `True`) |
|
134
|
|
|
resembles a Pareto distribution with |
|
135
|
|
|
scale parameter :math:`x_m` = ``en_0`` |
|
136
|
|
|
and shape parameter :math:`\alpha` = -(``gamma`` + 1). |
|
137
|
|
|
|
|
138
|
|
|
Adapted from Strickland et al., 1993 [#]_ and |
|
139
|
|
|
normalized to unit particle flux: |
|
140
|
|
|
:math:`\int_{E_0}^\infty \phi(E) \text{d}E = 1` |
|
141
|
|
|
for the high-energy tail version, and |
|
142
|
|
|
:math:`\int_0^{E_0} \phi(E) \text{d}E = 1` |
|
143
|
|
|
for the low-energy tail version. |
|
144
|
|
|
|
|
145
|
|
|
Parameters |
|
146
|
|
|
---------- |
|
147
|
|
|
en: float or array_like (N,) |
|
148
|
|
|
Energy in [keV] |
|
149
|
|
|
en_0: float, optional |
|
150
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
151
|
|
|
Default: 10 keV |
|
152
|
|
|
gamma: float, optional |
|
153
|
|
|
Exponent of the power-law distribution, in [keV]. |
|
154
|
|
|
het: bool, optional |
|
155
|
|
|
Return a high-energy tail (het, default: true) for en > en_0, |
|
156
|
|
|
or low-energy tail (false) for en < en_0. |
|
157
|
|
|
Adjusts the normalization accordingly. |
|
158
|
|
|
|
|
159
|
|
|
Returns |
|
160
|
|
|
------- |
|
161
|
|
|
phi: float or array_like (N,) |
|
162
|
|
|
Normalized differential hemispherical number flux at `en` in [keV-1 cm-2 s-1] |
|
163
|
|
|
([keV] or scaled by 1 keV-2 cm-2 s-1, e.g.). |
|
164
|
|
|
|
|
165
|
|
|
References |
|
166
|
|
|
---------- |
|
167
|
|
|
.. [#] D. J. Strickland, R. E. Daniell Jr, J. R. Jasperse, B. Basu |
|
168
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
|
169
|
|
|
doi: `10.1029/93JA01645 <https://doi.org/10.1029/93JA01645>`_ |
|
170
|
|
|
""" |
|
171
|
|
|
isscalar = (np.ndim(en) == 0) |
|
172
|
|
|
en = np.atleast_1d(en) |
|
173
|
|
|
spec = (gamma + 1) / en_0 * (en / en_0)**gamma |
|
174
|
|
|
if het: |
|
175
|
|
|
spec[en < en_0] = 0. |
|
176
|
|
|
return -spec[0] if isscalar else -spec |
|
177
|
|
|
spec[en > en_0] = 0. |
|
178
|
|
|
return spec[0] if isscalar else spec |
|
179
|
|
|
|
|
180
|
|
|
|
|
181
|
|
|
def pflux_exp(en, en_0=10.): |
|
182
|
|
|
r"""Exponential particle flux spectrum |
|
183
|
|
|
|
|
184
|
|
|
.. math:: |
|
185
|
|
|
\phi(E, E_0) = 1 / E_0^2 \cdot \exp\{-E / E_0\} |
|
186
|
|
|
|
|
187
|
|
|
Normalized to unit energy flux: |
|
188
|
|
|
:math:`\int_0^\infty \phi(E) E \text{d}E = 1`. |
|
189
|
|
|
|
|
190
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
|
191
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
|
192
|
|
|
|
|
193
|
|
|
Parameters |
|
194
|
|
|
---------- |
|
195
|
|
|
en: float or array_like (N,) |
|
196
|
|
|
Energy in [keV] |
|
197
|
|
|
en_0: float, optional |
|
198
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
199
|
|
|
Default: 10 keV. |
|
200
|
|
|
|
|
201
|
|
|
Returns |
|
202
|
|
|
------- |
|
203
|
|
|
phi: float or array_like (N,) |
|
204
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
|
205
|
|
|
([keV-2] scaled by unit energy flux). |
|
206
|
|
|
|
|
207
|
|
|
See Also |
|
208
|
|
|
-------- |
|
209
|
|
|
exp_general |
|
210
|
|
|
""" |
|
211
|
|
|
return exp_general(en, en_0=en_0) / en_0 |
|
212
|
|
|
|
|
213
|
|
|
|
|
214
|
|
|
def pflux_gaussian(en, en_0=10., w=1): |
|
215
|
|
|
r"""Gaussian particle flux spectrum |
|
216
|
|
|
|
|
217
|
|
|
As used in, e.g., Strickland et al., 1993 [#]_ |
|
218
|
|
|
|
|
219
|
|
|
.. math:: |
|
220
|
|
|
\phi(E, E_0, W) = 1 / \sqrt{\pi}E_0W \cdot \exp\{-(E - E_0)^2 / W^2\} |
|
221
|
|
|
|
|
222
|
|
|
Normalized to :math:`\int_0^\infty \phi(E) E \text{d}E = 1` |
|
223
|
|
|
(ignoring the negative tail). |
|
224
|
|
|
|
|
225
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
|
226
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
|
227
|
|
|
|
|
228
|
|
|
Parameters |
|
229
|
|
|
---------- |
|
230
|
|
|
en: float or array_like (N,) |
|
231
|
|
|
Energy in [keV] |
|
232
|
|
|
en_0: float, optional |
|
233
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
234
|
|
|
Default: 10 keV. |
|
235
|
|
|
|
|
236
|
|
|
Returns |
|
237
|
|
|
------- |
|
238
|
|
|
phi: float or array_like (N,) |
|
239
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
|
240
|
|
|
([kev-2] scaled by unit energy flux). |
|
241
|
|
|
|
|
242
|
|
|
References |
|
243
|
|
|
---------- |
|
244
|
|
|
.. [#] D. J. Strickland, R. E. Daniell, J. R. Jasperse, B. Basu |
|
245
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
|
246
|
|
|
doi: 10.1029/93JA01645 |
|
247
|
|
|
|
|
248
|
|
|
See Also |
|
249
|
|
|
-------- |
|
250
|
|
|
gaussian_general |
|
251
|
|
|
""" |
|
252
|
|
|
return gaussian_general(en, en_0=en_0, w=w) / en_0 |
|
253
|
|
|
|
|
254
|
|
|
|
|
255
|
|
|
def pflux_maxwell(en, en_0=10.): |
|
256
|
|
|
r"""Maxwell particle flux spectrum |
|
257
|
|
|
|
|
258
|
|
|
As used in, e.g., Strickland et al., 1993 [#]_ |
|
259
|
|
|
|
|
260
|
|
|
.. math:: |
|
261
|
|
|
\phi(E, E_0) = E / 2E_0^3 \cdot \exp\{-E / E_0\} |
|
262
|
|
|
|
|
263
|
|
|
Equal to a standard Gamma distribution with |
|
264
|
|
|
:math:`\alpha` = 3 and :math:`\beta` = 1 / ``en_0``, |
|
265
|
|
|
or |
|
266
|
|
|
:math:`k` = 3 and :math:`\theta` = ``en_0``. |
|
267
|
|
|
The total precipitating energy flux is fixed to 1 keV cm-2 s-1, |
|
268
|
|
|
multiply by Q_0 [keV cm-2 s-1] to scale the particle flux. |
|
269
|
|
|
|
|
270
|
|
|
Normalized to :math:`\int_0^\infty \phi(E) E \text{d}E = 1`. |
|
271
|
|
|
|
|
272
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
|
273
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
|
274
|
|
|
|
|
275
|
|
|
Parameters |
|
276
|
|
|
---------- |
|
277
|
|
|
en: float or array_like (N,) |
|
278
|
|
|
Energy in [keV] |
|
279
|
|
|
en_0: float, optional |
|
280
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
281
|
|
|
Default: 10 keV. |
|
282
|
|
|
|
|
283
|
|
|
Returns |
|
284
|
|
|
------- |
|
285
|
|
|
phi: float or array_like (N,) |
|
286
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
|
287
|
|
|
([kev-2] scaled by unit energy flux). |
|
288
|
|
|
|
|
289
|
|
|
References |
|
290
|
|
|
---------- |
|
291
|
|
|
.. [#] D. J. Strickland, R. E. Daniell, J. R. Jasperse, B. Basu |
|
292
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
|
293
|
|
|
doi: 10.1029/93JA01645 |
|
294
|
|
|
|
|
295
|
|
|
See Also |
|
296
|
|
|
-------- |
|
297
|
|
|
maxwell_general |
|
298
|
|
|
""" |
|
299
|
|
|
return 0.5 / en_0 * maxwell_general(en, en_0) |
|
300
|
|
|
|
|
301
|
|
|
|
|
302
|
|
|
def pflux_pow(en, en_0=10., gamma=-3., het=True): |
|
303
|
|
|
r"""Power-law particle flux spectrum |
|
304
|
|
|
|
|
305
|
|
|
As used in, e.g., Strickland et al., 1993 [#]_ |
|
306
|
|
|
|
|
307
|
|
|
.. math:: |
|
308
|
|
|
\phi(E, E_0, \gamma) = \mp (\gamma + 2) / E_0^2 \cdot (E / E_0)^\gamma |
|
309
|
|
|
|
|
310
|
|
|
The minus-sign (-) and is used for the high-energy tail variant, |
|
311
|
|
|
and the plus-sign (+) for the low-energy tail variant. |
|
312
|
|
|
The exponent ``gamma`` needs to be set appropriately, |
|
313
|
|
|
< -1 for `het`, and > 1 for `let`. |
|
314
|
|
|
|
|
315
|
|
|
Normalized to :math:`\int_{E_0}^\infty \phi(E) E \text{d}E = 1` |
|
316
|
|
|
for the high-energy tail version, and to |
|
317
|
|
|
:math:`\int_0^{E_0} \phi(E) E \text{d}E = 1` |
|
318
|
|
|
for the low-energy tail version. |
|
319
|
|
|
|
|
320
|
|
|
Scales to arbitrary energy flux :math:`Q` via multiplication: |
|
321
|
|
|
:math:`\tilde\phi = Q \cdot \phi`. |
|
322
|
|
|
|
|
323
|
|
|
Parameters |
|
324
|
|
|
---------- |
|
325
|
|
|
en: float or array_like (N,) |
|
326
|
|
|
Energy in [keV] |
|
327
|
|
|
en_0: float, optional |
|
328
|
|
|
Characteristic energy in [keV], i.e. mode of the distribution. |
|
329
|
|
|
Default: 10 keV |
|
330
|
|
|
gamma: float, optional |
|
331
|
|
|
Exponent of the power-law distribution, in [keV]. |
|
332
|
|
|
het: bool, optional (default True) |
|
333
|
|
|
Return a high-energy tail (true) for en > en_0, |
|
334
|
|
|
or low-energy tail (false) for en < en_0. |
|
335
|
|
|
Adjusts the normalization accordingly. |
|
336
|
|
|
|
|
337
|
|
|
Returns |
|
338
|
|
|
------- |
|
339
|
|
|
phi: float or array_like (N,) |
|
340
|
|
|
Hemispherical differential particle flux at `en` in [keV-1 cm-2 s-1] |
|
341
|
|
|
([keV-2] scaled by unit energy flux). |
|
342
|
|
|
|
|
343
|
|
|
References |
|
344
|
|
|
---------- |
|
345
|
|
|
.. [#] D. J. Strickland, R. E. Daniell Jr, J. R. Jasperse, B. Basu |
|
346
|
|
|
J. Geophys. Res., 98(A12), pp. 21533--21548, 1993 |
|
347
|
|
|
doi: `10.1029/93JA01645 <https://doi.org/10.1029/93JA01645>`_ |
|
348
|
|
|
|
|
349
|
|
|
See Also |
|
350
|
|
|
-------- |
|
351
|
|
|
pow_general |
|
352
|
|
|
""" |
|
353
|
|
|
return (gamma + 2) / (gamma + 1) / en_0 * pow_general(en, en_0=en_0, gamma=gamma, het=het) |
|
354
|
|
|
|
|
355
|
|
|
|
|
356
|
|
|
def ediss_spec_int( |
|
357
|
|
|
ens, |
|
358
|
|
|
dfluxes, |
|
359
|
|
|
scale_height, |
|
360
|
|
|
rho, |
|
361
|
|
|
func, |
|
362
|
|
|
axis=-1, |
|
363
|
|
|
func_kws=None, |
|
364
|
|
|
): |
|
365
|
|
|
r"""Integrate over a given energy spectrum |
|
366
|
|
|
|
|
367
|
|
|
Integrates a mono-energetic parametrization `q`, e.g. from Fang et al., 2010 |
|
368
|
|
|
using the given differential particle spectrum `phi`: |
|
369
|
|
|
|
|
370
|
|
|
:math:`\int_\text{spec} \phi(E) q(E, Q) E \text{d}E` |
|
371
|
|
|
|
|
372
|
|
|
This function uses the differential spectrum evaluated at the given energy bins. |
|
373
|
|
|
|
|
374
|
|
|
Parameters |
|
375
|
|
|
---------- |
|
376
|
|
|
ens: array_like (M,...) |
|
377
|
|
|
Central (bin) energies of the spectrum |
|
378
|
|
|
dfluxes: array_like (M,...) |
|
379
|
|
|
Differential particle fluxes in the given bins |
|
380
|
|
|
scale_height: array_like (N,...) |
|
381
|
|
|
The atmospheric scale heights |
|
382
|
|
|
rho: array_like (N,...) |
|
383
|
|
|
The atmospheric densities, corresponding to the |
|
384
|
|
|
scale heights. |
|
385
|
|
|
func: callable |
|
386
|
|
|
Mono-energetic energy dissipation function to integrate. |
|
387
|
|
|
axis: int, optional |
|
388
|
|
|
The axis to use for integration, default: -1 (last axis). |
|
389
|
|
|
func_kws: dict-like, optional |
|
390
|
|
|
Optional keyword arguments to pass to the mono-energetic |
|
391
|
|
|
energy dissipation function. Default: `None` |
|
392
|
|
|
|
|
393
|
|
|
Returns |
|
394
|
|
|
------- |
|
395
|
|
|
en_diss: array_like (N) |
|
396
|
|
|
The dissipated energy profiles [keV]. |
|
397
|
|
|
|
|
398
|
|
|
See Also |
|
399
|
|
|
-------- |
|
400
|
|
|
ediss_specfun_int |
|
401
|
|
|
""" |
|
402
|
|
|
ens = np.atleast_1d(ens) |
|
403
|
|
|
dfluxes = np.atleast_1d(dfluxes) |
|
404
|
|
|
scale_height = np.atleast_1d(scale_height) |
|
405
|
|
|
rho = np.atleast_1d(rho) |
|
406
|
|
|
func_kws = func_kws or dict() |
|
407
|
|
|
ediss = func( |
|
408
|
|
|
ens[None, None, :], |
|
409
|
|
|
dfluxes, |
|
410
|
|
|
scale_height[..., None], |
|
411
|
|
|
rho[..., None], |
|
412
|
|
|
**func_kws |
|
413
|
|
|
) |
|
414
|
|
|
return np.trapz(ediss * ens, ens, axis=axis) |
|
415
|
|
|
|
|
416
|
|
|
|
|
417
|
|
|
def ediss_specfun_int( |
|
418
|
|
|
energy, |
|
419
|
|
|
flux, |
|
420
|
|
|
scale_height, |
|
421
|
|
|
rho, |
|
422
|
|
|
ediss_func, |
|
423
|
|
|
ediss_kws=None, |
|
424
|
|
|
bounds=(0.1, 300.), |
|
425
|
|
|
nstep=128, |
|
426
|
|
|
spec_fun=pflux_maxwell, |
|
427
|
|
|
spec_kws=None, |
|
428
|
|
|
): |
|
429
|
|
|
"""Integrate mono-energetic parametrization over a spectrum |
|
430
|
|
|
|
|
431
|
|
|
Integrates the mono-energetic parametrization over a spectrum given by a |
|
432
|
|
|
functional dependence with characteristic energy `energy` and total energy |
|
433
|
|
|
flux `flux`. |
|
434
|
|
|
|
|
435
|
|
|
Parameters |
|
436
|
|
|
---------- |
|
437
|
|
|
energy: float or array_like (M,...) |
|
438
|
|
|
Characteristic energy E_0 [keV] of the spectral distribution. |
|
439
|
|
|
flux: float or array_like (M,...) |
|
440
|
|
|
Integrated energy flux Q_0 [keV / cm² / s¹] |
|
441
|
|
|
scale_height: float or array_like (N,...) |
|
442
|
|
|
The atmospheric scale heights [cm]. |
|
443
|
|
|
rho: float or array_like (N,...) |
|
444
|
|
|
The atmospheric mass density [g / cm³] |
|
445
|
|
|
ediss_func: callable |
|
446
|
|
|
Mono-energetic energy dissipation function to integrate. |
|
447
|
|
|
ediss_kws: dict-like, optional |
|
448
|
|
|
Optional keyword arguments to pass to the mono-energetic |
|
449
|
|
|
energy dissipation function. Default: `None` |
|
450
|
|
|
bounds: tuple, optional |
|
451
|
|
|
(min, max) [keV] of the integration range to integrate the Maxwellian. |
|
452
|
|
|
Make sure that this is appropriate to encompass the spectrum. |
|
453
|
|
|
Default: (0.1, 300.) |
|
454
|
|
|
nsteps: int, optional |
|
455
|
|
|
Number of integration steps, default: 128. |
|
456
|
|
|
spec_func: callable, optional, default :func:`pflux_maxwell` |
|
457
|
|
|
Spectral shape function, choices are: |
|
458
|
|
|
|
|
459
|
|
|
* :func:`pflux_exp` for a exponential spectrum |
|
460
|
|
|
* :func:`pflux_gaussian` for a Gaussian shaped spectrum |
|
461
|
|
|
* :func:`pflux_maxwell` for a Maxwellian shaped spectrum |
|
462
|
|
|
* :func:`pflux_pow` for a power-law |
|
463
|
|
|
spec_kws: dict-like, optional |
|
464
|
|
|
Optional keyword arguments to pass to the spectral function |
|
465
|
|
|
Default: `None` |
|
466
|
|
|
|
|
467
|
|
|
Returns |
|
468
|
|
|
------- |
|
469
|
|
|
en_diss: array_like (M,N) |
|
470
|
|
|
The dissipated energy profiles [keV]. |
|
471
|
|
|
|
|
472
|
|
|
See Also |
|
473
|
|
|
-------- |
|
474
|
|
|
ediss_spec_int |
|
475
|
|
|
""" |
|
476
|
|
|
energy = np.asarray(energy) |
|
477
|
|
|
flux = np.asarray(flux) |
|
478
|
|
|
bounds_l10 = np.log10(bounds) |
|
479
|
|
|
ens = np.logspace(*bounds_l10, num=nstep) |
|
480
|
|
|
ensd = np.reshape(ens, (-1,) + (1,) * energy.ndim) |
|
481
|
|
|
spec_kws = spec_kws or dict() |
|
482
|
|
|
# "overwrite" the characteristic energy |
|
483
|
|
|
spec_kws["en_0"] = energy.T |
|
484
|
|
|
dflux = flux.T * spec_fun(ensd, **spec_kws) |
|
485
|
|
|
return ediss_spec_int( |
|
486
|
|
|
ens, dflux.T, scale_height, rho, ediss_func, |
|
487
|
|
|
axis=-1, func_kws=ediss_kws, |
|
488
|
|
|
) |
|
489
|
|
|
|