|
1
|
|
|
# coding: utf-8 |
|
2
|
|
|
# Copyright (c) 2020 Stefan Bender |
|
3
|
|
|
# |
|
4
|
|
|
# This file is part of pyeppaurora. |
|
5
|
|
|
# pyeppaurora is free software: you can redistribute it or modify |
|
6
|
|
|
# it under the terms of the GNU General Public License as published |
|
7
|
|
|
# by the Free Software Foundation, version 2. |
|
8
|
|
|
# See accompanying LICENSE file or http://www.gnu.org/licenses/gpl-2.0.html. |
|
9
|
|
|
"""Atmospheric ionization rate parametrizations |
|
10
|
|
|
|
|
11
|
|
|
Includes the atmospheric ionization rate parametrizations for auroral |
|
12
|
|
|
and medium-energy electron precipitation, 100 eV--1 MeV [1]_, [2]_, and [3]_. |
|
13
|
|
|
|
|
14
|
|
|
.. [1] Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987 |
|
15
|
|
|
.. [2] Fang et al., J. Geophys. Res., 113, A09311, 2008 |
|
16
|
|
|
.. [3] Fang et al., Geophys. Res. Lett., 37, L22106, 2010 |
|
17
|
|
|
""" |
|
18
|
|
|
|
|
19
|
|
|
import numpy as np |
|
20
|
|
|
from numpy.polynomial.polynomial import polyval |
|
21
|
|
|
|
|
22
|
|
|
from .spectra import pflux_maxwell, ediss_spec_int, ediss_specfun_int |
|
23
|
|
|
|
|
24
|
|
|
__all__ = [ |
|
25
|
|
|
"rr1987", |
|
26
|
|
|
"rr1987_mod", |
|
27
|
|
|
"fang2008", |
|
28
|
|
|
"fang2010_mono", |
|
29
|
|
|
"fang2010_spec_int", |
|
30
|
|
|
"fang2010_maxw_int", |
|
31
|
|
|
] |
|
32
|
|
|
|
|
33
|
|
|
POLY_F2008 = [ |
|
34
|
|
|
[ 3.49979e-1, -6.18200e-2, -4.08124e-2, 1.65414e-2], |
|
35
|
|
|
[ 5.85425e-1, -5.00793e-2, 5.69309e-2, -4.02491e-3], |
|
36
|
|
|
[ 1.69692e-1, -2.58981e-2, 1.96822e-2, 1.20505e-3], |
|
37
|
|
|
[-1.22271e-1, -1.15532e-2, 5.37951e-6, 1.20189e-3], |
|
38
|
|
|
[ 1.57018, 2.87896e-1, -4.14857e-1, 5.18158e-2], |
|
39
|
|
|
[ 8.83195e-1, 4.31402e-2, -8.33599e-2, 1.02515e-2], |
|
40
|
|
|
[ 1.90953, -4.74704e-2, -1.80200e-1, 2.46652e-2], |
|
41
|
|
|
[-1.29566, -2.10952e-1, 2.73106e-1, -2.92752e-2] |
|
42
|
|
|
] |
|
43
|
|
|
|
|
44
|
|
|
POLY_F2010 = [ |
|
45
|
|
|
[ 1.24616E+0, 1.45903E+0, -2.42269E-1, 5.95459E-2], |
|
46
|
|
|
[ 2.23976E+0, -4.22918E-7, 1.36458E-2, 2.53332E-3], |
|
47
|
|
|
[ 1.41754E+0, 1.44597E-1, 1.70433E-2, 6.39717E-4], |
|
48
|
|
|
[ 2.48775E-1, -1.50890E-1, 6.30894E-9, 1.23707E-3], |
|
49
|
|
|
[-4.65119E-1, -1.05081E-1, -8.95701E-2, 1.22450E-2], |
|
50
|
|
|
[ 3.86019E-1, 1.75430E-3, -7.42960E-4, 4.60881E-4], |
|
51
|
|
|
[-6.45454E-1, 8.49555E-4, -4.28581E-2, -2.99302E-3], |
|
52
|
|
|
[ 9.48930E-1, 1.97385E-1, -2.50660E-3, -2.06938E-3] |
|
53
|
|
|
] |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
View Code Duplication |
def rr1987(energy, flux, scale_height, rho): |
|
|
|
|
|
|
57
|
|
|
"""Atmospheric electron energy dissipation Roble and Ridley, 1987 [#]_ |
|
58
|
|
|
|
|
59
|
|
|
Equations (typo corrected) taken from Fang et al., 2008. |
|
60
|
|
|
|
|
61
|
|
|
Parameters |
|
62
|
|
|
---------- |
|
63
|
|
|
energy: array_like (M,...) |
|
64
|
|
|
Characteristic energy E_0 [keV] of the Maxwellian distribution. |
|
65
|
|
|
flux: array_like (M,...) |
|
66
|
|
|
Integrated energy flux Q_0 [keV / cm² / s¹] |
|
67
|
|
|
scale_height: array_like (N,...) |
|
68
|
|
|
The atmospheric scale heights [cm]. |
|
69
|
|
|
rho: array_like (N,...) |
|
70
|
|
|
The atmospheric mass density [g / cm³] |
|
71
|
|
|
|
|
72
|
|
|
Returns |
|
73
|
|
|
------- |
|
74
|
|
|
en_diss: array_like (M,N) |
|
75
|
|
|
The dissipated energy profiles [keV]. |
|
76
|
|
|
|
|
77
|
|
|
References |
|
78
|
|
|
---------- |
|
79
|
|
|
.. [#] Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987 |
|
80
|
|
|
""" |
|
81
|
|
|
_c1 = 2.11685 |
|
82
|
|
|
_c2 = 2.97035 |
|
83
|
|
|
_c3 = 2.09710 |
|
84
|
|
|
_c4 = 0.74054 |
|
85
|
|
|
_c5 = 0.58795 |
|
86
|
|
|
_c6 = 1.72746 |
|
87
|
|
|
_c7 = 1.37459 |
|
88
|
|
|
_c8 = 0.93296 |
|
89
|
|
|
|
|
90
|
|
|
beta = (rho * scale_height / (4 * 1e-6))**(1 / 1.65) # RR 1987, p. 371 |
|
91
|
|
|
y = beta / energy # Corrected in Fang et al. 2008 (4) |
|
92
|
|
|
f_y = (_c1 * (y**_c2) * np.exp(-_c3 * (y**_c4)) + |
|
93
|
|
|
_c5 * (y**_c6) * np.exp(-_c7 * (y**_c8))) |
|
94
|
|
|
# Corrected in Fang et al. 2008 (2) |
|
95
|
|
|
en_diss = 0.5 * flux / scale_height * f_y |
|
96
|
|
|
return en_diss |
|
97
|
|
|
|
|
98
|
|
|
|
|
99
|
|
View Code Duplication |
def rr1987_mod(energy, flux, scale_height, rho): |
|
|
|
|
|
|
100
|
|
|
"""Atmospheric electron energy dissipation Roble and Ridley, 1987 [#]_ |
|
101
|
|
|
|
|
102
|
|
|
Equations (typo corrected) taken from Fang et al., 2008. |
|
103
|
|
|
Modified polynomial values to get closer to Fang et al., 2008, |
|
104
|
|
|
origin unknown. |
|
105
|
|
|
|
|
106
|
|
|
Parameters |
|
107
|
|
|
---------- |
|
108
|
|
|
energy: array_like (M,...) |
|
109
|
|
|
Characteristic energy E_0 [keV] of the Maxwellian distribution. |
|
110
|
|
|
flux: array_like (M,...) |
|
111
|
|
|
Integrated energy flux Q_0 [keV / cm² / s¹] |
|
112
|
|
|
scale_height: array_like (N,...) |
|
113
|
|
|
The atmospheric scale heights [cm]. |
|
114
|
|
|
rho: array_like (N,...) |
|
115
|
|
|
The atmospheric mass density [g / cm³] |
|
116
|
|
|
|
|
117
|
|
|
Returns |
|
118
|
|
|
------- |
|
119
|
|
|
en_diss: array_like (M,N) |
|
120
|
|
|
The dissipated energy profiles [keV]. |
|
121
|
|
|
|
|
122
|
|
|
References |
|
123
|
|
|
---------- |
|
124
|
|
|
.. [#] Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987 |
|
125
|
|
|
""" |
|
126
|
|
|
# Modified polynomial, origin unknown |
|
127
|
|
|
_c1 = 3.233 |
|
128
|
|
|
_c2 = 2.56588 |
|
129
|
|
|
_c3 = 2.2541 |
|
130
|
|
|
_c4 = 0.7297198 |
|
131
|
|
|
_c5 = 1.106907 |
|
132
|
|
|
_c6 = 1.71349 |
|
133
|
|
|
_c7 = 1.8835444 |
|
134
|
|
|
_c8 = 0.86472135 |
|
135
|
|
|
|
|
136
|
|
|
# Fang et al., 2008, Eq. (4) |
|
137
|
|
|
y = (rho * scale_height / (4.6 * 1e-6))**(1 / 1.65) / energy |
|
138
|
|
|
f_y = (_c1 * (y**_c2) * np.exp(-_c3 * (y**_c4)) + |
|
139
|
|
|
_c5 * (y**_c6) * np.exp(-_c7 * (y**_c8))) |
|
140
|
|
|
# energy dissipated [keV] |
|
141
|
|
|
en_diss = 0.5 * flux / scale_height * f_y |
|
142
|
|
|
return en_diss |
|
143
|
|
|
|
|
144
|
|
|
|
|
145
|
|
|
def _fang_f_y(_c, _y): |
|
146
|
|
|
"""Polynomial evaluation helper |
|
147
|
|
|
|
|
148
|
|
|
Fang et al., 2008, Eq. (6), Fang et al., 2010 Eq. (4) |
|
149
|
|
|
""" |
|
150
|
|
|
ret = ( |
|
151
|
|
|
_c[0] * (_y**_c[1]) * np.exp(-_c[2] * (_y**_c[3])) + |
|
152
|
|
|
_c[4] * (_y**_c[5]) * np.exp(-_c[6] * (_y**_c[7])) |
|
153
|
|
|
) |
|
154
|
|
|
return ret |
|
155
|
|
|
|
|
156
|
|
|
|
|
157
|
|
|
def fang2008(energy, flux, scale_height, rho, pij=None): |
|
158
|
|
|
"""Atmospheric electron energy dissipation from Fang et al., 2008 |
|
159
|
|
|
|
|
160
|
|
|
Ionization profile parametrization as derived in Fang et al., 2008 [#]_. |
|
161
|
|
|
|
|
162
|
|
|
Parameters |
|
163
|
|
|
---------- |
|
164
|
|
|
energy: array_like (M,...) |
|
165
|
|
|
Characteristic energy E_0 [keV] of the Maxwellian distribution. |
|
166
|
|
|
flux: array_like (M,...) |
|
167
|
|
|
Integrated energy flux Q_0 [keV / cm² / s¹] |
|
168
|
|
|
scale_height: array_like (N,...) |
|
169
|
|
|
The atmospheric scale height(s) [cm]. |
|
170
|
|
|
rho: array_like (N,...) |
|
171
|
|
|
The atmospheric densities [g / cm³], corresponding to the scale heights. |
|
172
|
|
|
pij: array_like (8, 4), optional |
|
173
|
|
|
Polynomial coefficents for the electron energy dissipation |
|
174
|
|
|
per atmospheric depth. Default: `None` (as given in the reference). |
|
175
|
|
|
|
|
176
|
|
|
Returns |
|
177
|
|
|
------- |
|
178
|
|
|
en_diss: array_like (M,N) |
|
179
|
|
|
The dissipated energy profiles [keV]. |
|
180
|
|
|
|
|
181
|
|
|
References |
|
182
|
|
|
---------- |
|
183
|
|
|
.. [#] Fang et al., J. Geophys. Res., 113, A09311, 2008, doi: 10.1029/2008JA013384 |
|
184
|
|
|
""" |
|
185
|
|
|
pij = np.asarray(pij) or np.asarray(POLY_F2008) |
|
186
|
|
|
# Fang et al., 2008, Eq. (7) |
|
187
|
|
|
_cs = np.exp(polyval(np.log(energy), pij.T)) |
|
188
|
|
|
# Fang et al., 2008, Eq. (4) |
|
189
|
|
|
y = (rho * scale_height / (4e-6))**(1 / 1.65) / energy |
|
190
|
|
|
f_y = _fang_f_y(_cs, y) |
|
191
|
|
|
# Fang et al., 2008, Eq. (2) |
|
192
|
|
|
en_diss = 0.5 * f_y * flux / scale_height |
|
193
|
|
|
return en_diss |
|
194
|
|
|
|
|
195
|
|
|
|
|
196
|
|
|
def fang2010_mono(energy, flux, scale_height, rho, pij=None): |
|
197
|
|
|
r"""Atmospheric electron energy dissipation from Fang et al., 2010 |
|
198
|
|
|
|
|
199
|
|
|
Parametrization for mono-energetic electrons [#]_. |
|
200
|
|
|
|
|
201
|
|
|
Parameters |
|
202
|
|
|
---------- |
|
203
|
|
|
energy: array_like (M,...) |
|
204
|
|
|
Energy E_0 of the mono-energetic electron beam [keV]. |
|
205
|
|
|
flux: array_like (M,...) |
|
206
|
|
|
Energy flux Q_0 of the mono-energetic electron beam [keV / cm² / s¹]. |
|
207
|
|
|
scale_height: array_like (N,...) |
|
208
|
|
|
The atmospheric scale heights [cm]. |
|
209
|
|
|
rho: array_like (N,...) |
|
210
|
|
|
The atmospheric mass densities [g / cm³], corresponding to the scale heights. |
|
211
|
|
|
pij: array_like (8, 4), optional |
|
212
|
|
|
Polynomial coefficents for the electron energy dissipation |
|
213
|
|
|
per atmospheric depth. Default: `None` (as given in the reference). |
|
214
|
|
|
|
|
215
|
|
|
Returns |
|
216
|
|
|
------- |
|
217
|
|
|
en_diss: array_like (M,N) |
|
218
|
|
|
The dissipated energy profiles [keV]. |
|
219
|
|
|
|
|
220
|
|
|
References |
|
221
|
|
|
---------- |
|
222
|
|
|
.. [#] Fang et al., Geophys. Res. Lett., 37, L22106, 2010, doi: 10.1029/2010GL045406 |
|
223
|
|
|
""" |
|
224
|
|
|
pij = np.asarray(pij) or np.asarray(POLY_F2010) |
|
225
|
|
|
# Fang et al., 2010, Eq. (5) |
|
226
|
|
|
_cs = np.exp(polyval(np.log(energy), pij.T)) |
|
227
|
|
|
# Fang et al., 2010, Eq. (1) |
|
228
|
|
|
y = 2. / energy * (rho * scale_height / (6e-6))**(0.7) |
|
229
|
|
|
f_y = _fang_f_y(_cs, y) |
|
230
|
|
|
# Fang et al., 2008, Eq. (2) |
|
231
|
|
|
en_diss = f_y * flux / scale_height |
|
232
|
|
|
return en_diss |
|
233
|
|
|
|
|
234
|
|
|
|
|
235
|
|
|
def fang2010_spec_int(ens, dfluxes, scale_height, rho, pij=None, axis=-1): |
|
236
|
|
|
r"""Integrate over a given energy spectrum |
|
237
|
|
|
|
|
238
|
|
|
Integrates over the mono-energetic parametrization `q` from [#]_ |
|
239
|
|
|
using the given differential particle spectrum `phi`: |
|
240
|
|
|
|
|
241
|
|
|
:math:`\int_\text{spec} \phi(E) q(E, Q) E \text{d}E` |
|
242
|
|
|
|
|
243
|
|
|
Parameters |
|
244
|
|
|
---------- |
|
245
|
|
|
ens: array_like (M,...) |
|
246
|
|
|
Central (bin) energies of the spectrum |
|
247
|
|
|
dfluxes: array_like (M,...) |
|
248
|
|
|
Differential particle fluxes in the given bins |
|
249
|
|
|
scale_height: array_like (N,...) |
|
250
|
|
|
The atmospheric scale heights |
|
251
|
|
|
rho: array_like (N,...) |
|
252
|
|
|
The atmospheric densities, corresponding to the |
|
253
|
|
|
scale heights. |
|
254
|
|
|
pij: array_like (8, 4), optional |
|
255
|
|
|
Polynomial coefficents for the electron energy dissipation |
|
256
|
|
|
per atmospheric depth. Default: `None` (as given in the reference). |
|
257
|
|
|
axis: int, optional |
|
258
|
|
|
The axis to use for integration, default: -1 (last axis). |
|
259
|
|
|
|
|
260
|
|
|
Returns |
|
261
|
|
|
------- |
|
262
|
|
|
en_diss: array_like (N) |
|
263
|
|
|
The dissipated energy profiles [keV]. |
|
264
|
|
|
|
|
265
|
|
|
References |
|
266
|
|
|
---------- |
|
267
|
|
|
.. [#] Fang et al., Geophys. Res. Lett., 37, L22106, 2010, doi: 10.1029/2010GL045406 |
|
268
|
|
|
|
|
269
|
|
|
See Also |
|
270
|
|
|
-------- |
|
271
|
|
|
fang2010_mono, ediss_spec_int |
|
272
|
|
|
""" |
|
273
|
|
|
return ediss_spec_int( |
|
274
|
|
|
ens, dfluxes, scale_height, rho, fang2010_mono, |
|
275
|
|
|
axis=axis, |
|
276
|
|
|
func_kws=dict(pij=pij), |
|
277
|
|
|
) |
|
278
|
|
|
|
|
279
|
|
|
|
|
280
|
|
|
def fang2010_maxw_int(energy, flux, scale_height, rho, bounds=(0.1, 300.), nstep=128, pij=None): |
|
281
|
|
|
"""Integrate Fang et al., 2010 over a Maxwellian spectrum |
|
282
|
|
|
|
|
283
|
|
|
Integrates the mono-energetic parametrization from Fang et al., 2010 [#]_ |
|
284
|
|
|
over a Maxwellian spectrum with characteristic energy `energy` and |
|
285
|
|
|
total energy flux `flux`. |
|
286
|
|
|
|
|
287
|
|
|
Parameters |
|
288
|
|
|
---------- |
|
289
|
|
|
energy: float or array_like (M,...) |
|
290
|
|
|
Characteristic energy E_0 [keV] of the Maxwellian distribution. |
|
291
|
|
|
flux: float or array_like (M,...) |
|
292
|
|
|
Integrated energy flux Q_0 [keV / cm² / s¹] |
|
293
|
|
|
scale_height: float or array_like (N,...) |
|
294
|
|
|
The atmospheric scale heights [cm]. |
|
295
|
|
|
rho: float or array_like (N,...) |
|
296
|
|
|
The atmospheric mass density [g / cm³] |
|
297
|
|
|
bounds: tuple, optional |
|
298
|
|
|
(min, max) [keV] of the integration range to integrate the Maxwellian. |
|
299
|
|
|
Make sure that this is appropriate to encompass the spectrum. |
|
300
|
|
|
Default: (0.1, 300.) |
|
301
|
|
|
nsteps: int, optional |
|
302
|
|
|
Number of integration steps, default: 128. |
|
303
|
|
|
pij: array_like (8, 4), optional |
|
304
|
|
|
Polynomial coefficents for the electron energy dissipation |
|
305
|
|
|
per atmospheric depth. Default: `None` (as given in the reference). |
|
306
|
|
|
|
|
307
|
|
|
Returns |
|
308
|
|
|
------- |
|
309
|
|
|
en_diss: array_like (M,N) |
|
310
|
|
|
The dissipated energy profiles [keV]. |
|
311
|
|
|
|
|
312
|
|
|
References |
|
313
|
|
|
---------- |
|
314
|
|
|
.. [#] Fang et al., Geophys. Res. Lett., 37, L22106, 2010, doi: 10.1029/2010GL045406 |
|
315
|
|
|
|
|
316
|
|
|
See Also |
|
317
|
|
|
-------- |
|
318
|
|
|
fang2010_mono, fang2010_specfun_int, pflux_maxwell |
|
319
|
|
|
""" |
|
320
|
|
|
return ediss_specfun_int( |
|
321
|
|
|
energy, flux, scale_height, rho, fang2010_mono, |
|
322
|
|
|
ediss_kws=dict(pij=pij), |
|
323
|
|
|
bounds=bounds, |
|
324
|
|
|
nstep=nstep, |
|
325
|
|
|
spec_fun=pflux_maxwell, |
|
326
|
|
|
) |
|
327
|
|
|
|