|
1
|
|
|
<?php |
|
2
|
|
|
/** |
|
3
|
|
|
* (c) Steve Nebes <[email protected]> |
|
4
|
|
|
* |
|
5
|
|
|
* For the full copyright and license information, please view the LICENSE |
|
6
|
|
|
* file that was distributed with this source code. |
|
7
|
|
|
*/ |
|
8
|
|
|
|
|
9
|
|
|
declare(strict_types=1); |
|
10
|
|
|
|
|
11
|
|
|
namespace SN\DaisyDiff\RangeDifferencer\Core; |
|
12
|
|
|
|
|
13
|
|
|
/** |
|
14
|
|
|
* LCS - Longest Common Subsequence - Common Methods. |
|
15
|
|
|
* |
|
16
|
|
|
* Used to determine the change set responsible for each line. |
|
17
|
|
|
*/ |
|
18
|
|
|
abstract class LCS |
|
19
|
|
|
{ |
|
20
|
|
|
/** @var int */ |
|
21
|
|
|
private $maxDifferences = 0; |
|
22
|
|
|
|
|
23
|
|
|
/** @var int */ |
|
24
|
|
|
private $length = 0; |
|
25
|
|
|
|
|
26
|
|
|
/** |
|
27
|
|
|
* @return int |
|
28
|
|
|
*/ |
|
29
|
18 |
|
public function getLength(): int |
|
30
|
|
|
{ |
|
31
|
18 |
|
return $this->length; |
|
32
|
|
|
} |
|
33
|
|
|
|
|
34
|
|
|
/** |
|
35
|
|
|
* Myers' algorithm for longest common subsequence. O((M + N)D) worst case time, O(M + N + D^2) expected time, |
|
36
|
|
|
* O(M + N) space (http://citeseer.ist.psu.edu/myers86ond.html) |
|
37
|
|
|
* |
|
38
|
|
|
* Note: Beyond implementing the algorithm as described in the paper I have added diagonal range compression which |
|
39
|
|
|
* helps when finding the LCS of a very long and a very short sequence, also bound the running time to (N + M)^1.5 |
|
40
|
|
|
* when both sequences are very long. |
|
41
|
|
|
* |
|
42
|
|
|
* After this method is called, the longest common subsequence is available by calling getResult() where result[0] |
|
43
|
|
|
* is composed of entries from l1 and result[1] is composed of entries from l2 |
|
44
|
|
|
* |
|
45
|
|
|
* @param LCSSettings $settings |
|
46
|
|
|
* @return void |
|
47
|
|
|
*/ |
|
48
|
11 |
|
public function longestCommonSubsequence(LCSSettings $settings): void |
|
49
|
|
|
{ |
|
50
|
11 |
|
$length1 = $this->getLength1(); |
|
51
|
11 |
|
$length2 = $this->getLength2(); |
|
52
|
|
|
|
|
53
|
11 |
|
if (0 === $length1 || 0 === $length2) { |
|
54
|
|
|
$this->length = 0; |
|
55
|
|
|
|
|
56
|
|
|
return; |
|
57
|
|
|
} |
|
58
|
|
|
|
|
59
|
11 |
|
$this->maxDifferences = (int) (($length1 + $length2 + 1) / 2); |
|
60
|
|
|
|
|
61
|
11 |
|
if ((float) $length1 * (float) $length2 > $settings->getTooLong()) { |
|
62
|
|
|
// Limit complexity to D^POW_LIMIT for long sequences |
|
63
|
|
|
$this->maxDifferences = (int) (\pow($this->maxDifferences, $settings->getPowLimit() - 1.0)); |
|
64
|
|
|
} |
|
65
|
|
|
|
|
66
|
11 |
|
$this->initializeLcs($length1); |
|
67
|
|
|
|
|
68
|
|
|
// The common prefixes and suffixes are always part of some LCS, include them now to reduce our search space. |
|
69
|
11 |
|
$max = \min($length1, $length2); |
|
70
|
|
|
|
|
71
|
|
|
for ( |
|
72
|
11 |
|
$forwardBound = 0; |
|
73
|
11 |
|
$forwardBound < $max && $this->isRangeEqual($forwardBound, $forwardBound); |
|
74
|
|
|
$forwardBound++ |
|
75
|
|
|
) { |
|
76
|
9 |
|
$this->setLcs($forwardBound, $forwardBound); |
|
77
|
|
|
} |
|
78
|
|
|
|
|
79
|
11 |
|
$backBoundL1 = $length1 - 1; |
|
80
|
11 |
|
$backBoundL2 = $length2 - 1; |
|
81
|
|
|
|
|
82
|
11 |
|
while ($backBoundL1 >= $forwardBound && |
|
83
|
11 |
|
$backBoundL2 >= $forwardBound && |
|
84
|
11 |
|
$this->isRangeEqual($backBoundL1, $backBoundL2)) { |
|
85
|
9 |
|
$this->setLcs($backBoundL1, $backBoundL2); |
|
86
|
9 |
|
$backBoundL1--; |
|
87
|
9 |
|
$backBoundL2--; |
|
88
|
|
|
} |
|
89
|
|
|
|
|
90
|
11 |
|
$V = \array_fill(0, 2, \array_fill(0, $length1 + $length2 + 1, 0)); |
|
91
|
11 |
|
$snake = [0, 0, 0]; |
|
92
|
11 |
|
$lcsRec = $this->lcsRec($forwardBound, $backBoundL1, $forwardBound, $backBoundL2, $V, $snake); |
|
93
|
|
|
|
|
94
|
11 |
|
$this->length = $forwardBound + $length1 - $backBoundL1 - 1 + $lcsRec; |
|
95
|
11 |
|
} |
|
96
|
|
|
|
|
97
|
|
|
/** |
|
98
|
|
|
* The recursive helper function for Myers' LCS. Computes the LCS of l1[bottoml1 .. topl1] and l2[bottoml2 .. topl2] |
|
99
|
|
|
* fills in the appropriate location in lcs and returns the length. |
|
100
|
|
|
* |
|
101
|
|
|
* @param int $bottomL1 |
|
102
|
|
|
* @param int $topL1 |
|
103
|
|
|
* @param int $bottomL2 |
|
104
|
|
|
* @param int $topL2 |
|
105
|
|
|
* @param int[][] $V |
|
106
|
|
|
* @param int[] $snake |
|
107
|
|
|
* @return int |
|
108
|
|
|
*/ |
|
109
|
11 |
|
private function lcsRec(int $bottomL1, int $topL1, int $bottomL2, int $topL2, array &$V, array &$snake): int |
|
110
|
|
|
{ |
|
111
|
|
|
// Check that both sequences are non-empty. |
|
112
|
11 |
|
if ($bottomL1 > $topL1 || $bottomL2 > $topL2) { |
|
113
|
11 |
|
return 0; |
|
114
|
|
|
} |
|
115
|
|
|
|
|
116
|
|
|
/** @var int */ |
|
117
|
7 |
|
$d = $this->findMiddleSnake($bottomL1, $topL1, $bottomL2, $topL2, $V, $snake); |
|
118
|
|
|
|
|
119
|
|
|
// Need to store these so we don't lose them when they're overwritten by the recursion. |
|
120
|
7 |
|
$len = $snake[2]; |
|
121
|
7 |
|
$startX = $snake[0]; |
|
122
|
7 |
|
$startY = $snake[1]; |
|
123
|
|
|
|
|
124
|
|
|
// The middle snake is part of the LCS, store it. |
|
125
|
7 |
|
for ($i = 0; $i < $len; $i++) { |
|
126
|
7 |
|
$this->setLcs($startX + $i, $startY + $i); |
|
127
|
|
|
} |
|
128
|
|
|
|
|
129
|
7 |
|
if ($d > 1) { |
|
130
|
7 |
|
$lcs1 = $this->lcsRec($bottomL1, $startX - 1, $bottomL2, $startY - 1, $V, $snake); |
|
131
|
7 |
|
$lcs2 = $this->lcsRec($startX + $len, $topL1, $startY + $len, $topL2, $V, $snake); |
|
132
|
|
|
|
|
133
|
7 |
|
return (int) ($len + $lcs1 + $lcs2); |
|
134
|
|
|
} elseif ($d === 1) { |
|
135
|
|
|
// In this case the sequences differ by exactly 1 line. We have already saved all the lines after the |
|
136
|
|
|
// difference in the for loop above, now we need to save all the lines before the difference. |
|
137
|
|
|
$max = \min($startX - $bottomL1, $startY - $bottomL2); |
|
138
|
|
|
|
|
139
|
|
|
for ($i = 0; $i < $max; $i++) { |
|
140
|
|
|
$this->setLcs($bottomL1 + $i, $bottomL2 + $i); |
|
141
|
|
|
} |
|
142
|
|
|
|
|
143
|
|
|
return $max + $len; |
|
144
|
|
|
} |
|
145
|
|
|
|
|
146
|
|
|
return $len; |
|
147
|
|
|
} |
|
148
|
|
|
|
|
149
|
|
|
/** |
|
150
|
|
|
* Helper function for Myers' LCS algorithm to find the middle snake for l1[bottoml1..topl1] and l2[bottoml2..topl2] |
|
151
|
|
|
* The x, y coodrdinates of the start of the middle snake are saved in snake[0], snake[1] respectively and the |
|
152
|
|
|
* length of the snake is saved in s[2]. |
|
153
|
|
|
* |
|
154
|
|
|
* @param int $bottomL1 |
|
155
|
|
|
* @param int $topL1 |
|
156
|
|
|
* @param int $bottomL2 |
|
157
|
|
|
* @param int $topL2 |
|
158
|
|
|
* @param int[][] $V |
|
159
|
|
|
* @param int[] $snake |
|
160
|
|
|
* @return int |
|
161
|
|
|
*/ |
|
162
|
7 |
|
private function findMiddleSnake( |
|
163
|
|
|
int $bottomL1, |
|
164
|
|
|
int $topL1, |
|
165
|
|
|
int $bottomL2, |
|
166
|
|
|
int $topL2, |
|
167
|
|
|
array &$V, |
|
168
|
|
|
array &$snake |
|
169
|
|
|
): int { |
|
170
|
7 |
|
$N = $topL1 - $bottomL1 + 1; |
|
171
|
7 |
|
$M = $topL2 - $bottomL2 + 1; |
|
172
|
|
|
|
|
173
|
7 |
|
$delta = $N - $M; |
|
174
|
7 |
|
$isEven = ($delta & 1) === 1 ? false : true; |
|
175
|
|
|
|
|
176
|
7 |
|
$limit = \min($this->maxDifferences, (int) (($N + $M + 1) / 2)); |
|
177
|
|
|
|
|
178
|
|
|
// Offset to make it odd/even. |
|
179
|
|
|
// a 0 or 1 that we add to the start offset to make it odd/even |
|
180
|
7 |
|
$valueToAddForward = ($M & 1) === 1 ? 1 : 0; |
|
181
|
7 |
|
$valueToAddBackward = ($N & 1) === 1 ? 1 : 0; |
|
182
|
|
|
|
|
183
|
7 |
|
$startForward = -$M; |
|
184
|
7 |
|
$endForward = $N; |
|
185
|
7 |
|
$startBackward = -$N; |
|
186
|
7 |
|
$endBackward = $M; |
|
187
|
|
|
|
|
188
|
7 |
|
$V[0][$limit + 1] = 0; |
|
189
|
7 |
|
$V[1][$limit - 1] = $N; |
|
190
|
|
|
|
|
191
|
7 |
|
for ($d = 0; $d <= $limit; $d++) { |
|
192
|
7 |
|
$startDiag = \max($valueToAddForward + $startForward, -$d); |
|
193
|
7 |
|
$endDiag = \min($endForward, $d); |
|
194
|
7 |
|
$valueToAddForward = 1 - $valueToAddForward; |
|
195
|
|
|
|
|
196
|
|
|
// Compute forward furthest reaching paths. |
|
197
|
7 |
|
for ($k = $startDiag; $k <= $endDiag; $k += 2) { |
|
198
|
7 |
|
if ($k === -$d || ($k < $d && $V[0][$limit + $k - 1] < $V[0][$limit + $k + 1])) { |
|
199
|
7 |
|
$x = $V[0][$limit + $k + 1]; |
|
200
|
|
|
} else { |
|
201
|
7 |
|
$x = $V[0][$limit + $k - 1] + 1; |
|
202
|
|
|
} |
|
203
|
|
|
|
|
204
|
7 |
|
$y = $x - $k; |
|
205
|
|
|
|
|
206
|
7 |
|
$snake[0] = $x + $bottomL1; |
|
207
|
7 |
|
$snake[1] = $y + $bottomL2; |
|
208
|
7 |
|
$snake[2] = 0; |
|
209
|
|
|
|
|
210
|
7 |
|
while ($x < $N && $y < $M && $this->isRangeEqual($x + $bottomL1, $y + $bottomL2)) { |
|
211
|
7 |
|
$x++; |
|
212
|
7 |
|
$y++; |
|
213
|
7 |
|
$snake[2]++; |
|
214
|
|
|
} |
|
215
|
|
|
|
|
216
|
7 |
|
$V[0][$limit + $k] = $x; |
|
217
|
|
|
|
|
218
|
7 |
|
if (!$isEven && $k >= $delta - $d + 1 && $k <= $delta + $d - 1 && $x >= $V[1][$limit + $k - $delta]) { |
|
219
|
7 |
|
return (int) (2 * $d - 1); |
|
220
|
|
|
} |
|
221
|
|
|
|
|
222
|
|
|
// Check to see if we can cut down the diagonal range. |
|
223
|
7 |
|
if ($x >= $N && $endForward > $k - 1) { |
|
224
|
3 |
|
$endForward = $k - 1; |
|
225
|
7 |
|
} elseif ($y >= $M) { |
|
226
|
5 |
|
$startForward = $k + 1; |
|
227
|
5 |
|
$valueToAddForward = 0; |
|
228
|
|
|
} |
|
229
|
|
|
} |
|
230
|
|
|
|
|
231
|
7 |
|
$startDiag = \max($valueToAddBackward + $startBackward, -$d); |
|
232
|
7 |
|
$endDiag = \min($endBackward, $d); |
|
233
|
7 |
|
$valueToAddBackward = 1 - $valueToAddBackward; |
|
234
|
|
|
|
|
235
|
|
|
// Compute backward furthest reaching paths. |
|
236
|
7 |
|
for ($k = $startDiag; $k <= $endDiag; $k += 2) { |
|
237
|
7 |
|
if ($k === $d || ($k !== -$d && $V[1][$limit + $k - 1] < $V[1][$limit + $k + 1])) { |
|
238
|
7 |
|
$x = $V[1][$limit + $k - 1]; |
|
239
|
|
|
} else { |
|
240
|
7 |
|
$x = $V[1][$limit + $k + 1] - 1; |
|
241
|
|
|
} |
|
242
|
|
|
|
|
243
|
7 |
|
$y = $x - $k - $delta; |
|
244
|
7 |
|
$snake[2] = 0; |
|
245
|
|
|
|
|
246
|
7 |
|
while ($x > 0 && $y > 0 && $this->isRangeEqual($x - 1 + $bottomL1, $y - 1 + $bottomL2)) { |
|
247
|
7 |
|
$x--; |
|
248
|
7 |
|
$y--; |
|
249
|
7 |
|
$snake[2]++; |
|
250
|
|
|
} |
|
251
|
|
|
|
|
252
|
7 |
|
$V[1][$limit + $k] = $x; |
|
253
|
|
|
|
|
254
|
7 |
|
if ($isEven && $k >= -$delta - $d && $k <= $d - $delta && $x <= $V[0][$limit + $k + $delta]) { |
|
255
|
5 |
|
$snake[0] = $bottomL1 + $x; |
|
256
|
5 |
|
$snake[1] = $bottomL2 + $y; |
|
257
|
|
|
|
|
258
|
5 |
|
return (int) (2 * $d); |
|
259
|
|
|
} |
|
260
|
|
|
|
|
261
|
|
|
// Check to see if we can cut down our diagonal range. |
|
262
|
7 |
|
if ($x <= 0) { |
|
263
|
3 |
|
$startBackward = $k + 1; |
|
264
|
3 |
|
$valueToAddBackward = 0; |
|
265
|
7 |
|
} elseif ($y <= 0 && $endBackward > $k - 1) { |
|
266
|
5 |
|
$endBackward = $k - 1; |
|
267
|
|
|
} |
|
268
|
|
|
} |
|
269
|
|
|
} |
|
270
|
|
|
|
|
271
|
|
|
// Computing the true LCS is too expensive, instead find the diagonal with the most progress and pretend a |
|
272
|
|
|
// middle snake of length 0 occurs there. |
|
273
|
|
|
/** @var int[] */ |
|
274
|
|
|
$mostProgress = $this->findMostProgress($M, $N, $limit, $V); |
|
275
|
|
|
|
|
276
|
|
|
$snake[0] = $bottomL1 + $mostProgress[0]; |
|
277
|
|
|
$snake[1] = $bottomL2 + $mostProgress[1]; |
|
278
|
|
|
$snake[2] = 0; |
|
279
|
|
|
|
|
280
|
|
|
return 5; |
|
281
|
|
|
|
|
282
|
|
|
// HACK: since we didn't really finish the LCS computation we don't really know the length of the SES. We don't |
|
283
|
|
|
// do anything with the result anyway, unless it's <=1. We know for a fact SES > 1 so 5 is as good a number as |
|
284
|
|
|
// any to return here. |
|
285
|
|
|
} |
|
286
|
|
|
|
|
287
|
|
|
/** |
|
288
|
|
|
* @param int $M |
|
289
|
|
|
* @param int $N |
|
290
|
|
|
* @param int $limit |
|
291
|
|
|
* @param int[][] $V |
|
292
|
|
|
* @return int[] |
|
293
|
|
|
*/ |
|
294
|
|
|
private function findMostProgress(int $M, int $N, int $limit, array &$V): array |
|
295
|
|
|
{ |
|
296
|
|
|
$delta = $N - $M; |
|
297
|
|
|
|
|
298
|
|
|
if (($M & 1) === ($limit & 1)) { |
|
299
|
|
|
$forwardStartDiag = \max(-$M, -$limit); |
|
300
|
|
|
} else { |
|
301
|
|
|
$forwardStartDiag = \max(1 - $M, -$limit); |
|
302
|
|
|
} |
|
303
|
|
|
|
|
304
|
|
|
$forwardEndDiag = \min($N, $limit); |
|
305
|
|
|
|
|
306
|
|
|
if (($N & 1) === ($limit & 1)) { |
|
307
|
|
|
$backwardStartDiag = \max(-$N, -$limit); |
|
308
|
|
|
} else { |
|
309
|
|
|
$backwardStartDiag = \max(1 - $N, -$limit); |
|
310
|
|
|
} |
|
311
|
|
|
|
|
312
|
|
|
$backwardEndDiag = \min($M, $limit); |
|
313
|
|
|
$maxProgress = \array_fill(0, |
|
314
|
|
|
(int) (\max($forwardEndDiag - $forwardStartDiag, $backwardEndDiag - $backwardStartDiag) / 2 + 1), |
|
315
|
|
|
[0, 0, 0]); |
|
316
|
|
|
$numProgress = 0; |
|
317
|
|
|
// the 1st entry is current, it is initialized with 0s. |
|
318
|
|
|
|
|
319
|
|
|
// First search the forward diagonals. |
|
320
|
|
|
for ($k = $forwardStartDiag; $k <= $forwardEndDiag; $k += 2) { |
|
321
|
|
|
$x = $V[0][$limit + $k]; |
|
322
|
|
|
$y = $x - $k; |
|
323
|
|
|
|
|
324
|
|
|
if ($x > $N || $y > $M) { |
|
325
|
|
|
continue; |
|
326
|
|
|
} |
|
327
|
|
|
|
|
328
|
|
|
$progress = $x + $y; |
|
329
|
|
|
|
|
330
|
|
|
if ($progress > $maxProgress[0][2]) { |
|
331
|
|
|
$numProgress = 0; |
|
332
|
|
|
$maxProgress[0][0] = $x; |
|
333
|
|
|
$maxProgress[0][1] = $y; |
|
334
|
|
|
$maxProgress[0][2] = $progress; |
|
335
|
|
|
} elseif ($progress === $maxProgress[0][2]) { |
|
336
|
|
|
$numProgress++; |
|
337
|
|
|
$maxProgress[$numProgress][0] = $x; |
|
338
|
|
|
$maxProgress[$numProgress][1] = $y; |
|
339
|
|
|
$maxProgress[$numProgress][2] = $progress; |
|
340
|
|
|
} |
|
341
|
|
|
} |
|
342
|
|
|
|
|
343
|
|
|
// Progress is in the forward direction. |
|
344
|
|
|
$maxProgressForward = true; |
|
345
|
|
|
|
|
346
|
|
|
// Now search the backward diagonals. |
|
347
|
|
|
for ($k = $backwardStartDiag; $k <= $backwardEndDiag; $k += 2) { |
|
348
|
|
|
$x = $V[1][$limit + $k]; |
|
349
|
|
|
$y = $x - $k - $delta; |
|
350
|
|
|
|
|
351
|
|
|
if ($x < 0 || $y < 0) { |
|
352
|
|
|
continue; |
|
353
|
|
|
} |
|
354
|
|
|
|
|
355
|
|
|
$progress = $N - $x + $M - $y; |
|
356
|
|
|
|
|
357
|
|
|
if ($progress > $maxProgress[0][2]) { |
|
358
|
|
|
$numProgress = 0; |
|
359
|
|
|
$maxProgressForward = false; |
|
360
|
|
|
$maxProgress[0][0] = $x; |
|
361
|
|
|
$maxProgress[0][1] = $y; |
|
362
|
|
|
$maxProgress[0][2] = $progress; |
|
363
|
|
|
} elseif ($progress === $maxProgress[0][2] && !$maxProgressForward) { |
|
364
|
|
|
$numProgress++; |
|
365
|
|
|
$maxProgress[$numProgress][0] = $x; |
|
366
|
|
|
$maxProgress[$numProgress][1] = $y; |
|
367
|
|
|
$maxProgress[$numProgress][2] = $progress; |
|
368
|
|
|
} |
|
369
|
|
|
} |
|
370
|
|
|
|
|
371
|
|
|
// Return the middle diagonal with maximum progress. |
|
372
|
|
|
return $maxProgress[(int) ($numProgress / 2)]; |
|
373
|
|
|
} |
|
374
|
|
|
|
|
375
|
|
|
/** |
|
376
|
|
|
* @return int |
|
377
|
|
|
*/ |
|
378
|
|
|
abstract protected function getLength1(): int; |
|
379
|
|
|
|
|
380
|
|
|
/** |
|
381
|
|
|
* @return int |
|
382
|
|
|
*/ |
|
383
|
|
|
abstract protected function getLength2(): int; |
|
384
|
|
|
|
|
385
|
|
|
/** |
|
386
|
|
|
* @param int $i1 |
|
387
|
|
|
* @param int $i2 |
|
388
|
|
|
* @return bool |
|
389
|
|
|
*/ |
|
390
|
|
|
abstract protected function isRangeEqual(int $i1, int $i2): bool; |
|
391
|
|
|
|
|
392
|
|
|
/** |
|
393
|
|
|
* @param int $sl1 |
|
394
|
|
|
* @param int $sl2 |
|
395
|
|
|
* @return void |
|
396
|
|
|
*/ |
|
397
|
|
|
abstract protected function setLcs(int $sl1, int $sl2): void; |
|
398
|
|
|
|
|
399
|
|
|
/** |
|
400
|
|
|
* @param int $lcsLength |
|
401
|
|
|
* @return void |
|
402
|
|
|
*/ |
|
403
|
|
|
abstract protected function initializeLcs(int $lcsLength): void; |
|
404
|
|
|
} |
|
405
|
|
|
|