shanecurran /
phpecc
| 1 | <?php |
||||||
| 2 | |||||||
| 3 | namespace Mdanter\Ecc\Math; |
||||||
| 4 | |||||||
| 5 | /*********************************************************************** |
||||||
| 6 | * Copyright (C) 2012 Matyas Danter |
||||||
| 7 | * |
||||||
| 8 | * Permission is hereby granted, free of charge, to any person obtaining |
||||||
| 9 | * a copy of this software and associated documentation files (the "Software"), |
||||||
| 10 | * to deal in the Software without restriction, including without limitation |
||||||
| 11 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
||||||
| 12 | * and/or sell copies of the Software, and to permit persons to whom the |
||||||
| 13 | * Software is furnished to do so, subject to the following conditions: |
||||||
| 14 | * |
||||||
| 15 | * The above copyright notice and this permission notice shall be included |
||||||
| 16 | * in all copies or substantial portions of the Software. |
||||||
| 17 | * |
||||||
| 18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
||||||
| 19 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
| 20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
||||||
| 21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES |
||||||
| 22 | * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
||||||
| 23 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
||||||
| 24 | * OTHER DEALINGS IN THE SOFTWARE. |
||||||
| 25 | ************************************************************************/ |
||||||
| 26 | |||||||
| 27 | /** |
||||||
| 28 | * Implementation of some number theoretic algorithms |
||||||
| 29 | * |
||||||
| 30 | * @author Matyas Danter |
||||||
| 31 | */ |
||||||
| 32 | |||||||
| 33 | use Mdanter\Ecc\Exception\NumberTheoryException; |
||||||
| 34 | use Mdanter\Ecc\Exception\SquareRootException; |
||||||
| 35 | |||||||
| 36 | /** |
||||||
| 37 | * Rewritten to take a MathAdaptor to handle different environments. Has |
||||||
| 38 | * some desireable functions for public key compression/recovery. |
||||||
| 39 | */ |
||||||
| 40 | class NumberTheory |
||||||
| 41 | { |
||||||
| 42 | /** |
||||||
| 43 | * @var GmpMathInterface |
||||||
| 44 | */ |
||||||
| 45 | private $adapter; |
||||||
| 46 | |||||||
| 47 | /** |
||||||
| 48 | * @var GMP |
||||||
| 49 | */ |
||||||
| 50 | private $zero; |
||||||
| 51 | |||||||
| 52 | /** |
||||||
| 53 | * @var GMP |
||||||
| 54 | */ |
||||||
| 55 | private $one; |
||||||
| 56 | |||||||
| 57 | /** |
||||||
| 58 | * @var GMP |
||||||
| 59 | */ |
||||||
| 60 | private $two; |
||||||
| 61 | |||||||
| 62 | |||||||
| 63 | /** |
||||||
| 64 | * @param GmpMathInterface $adapter |
||||||
| 65 | */ |
||||||
| 66 | public function __construct(GmpMathInterface $adapter) |
||||||
| 67 | { |
||||||
| 68 | $this->adapter = $adapter; |
||||||
| 69 | $this->zero = gmp_init(0, 10); |
||||||
|
0 ignored issues
–
show
|
|||||||
| 70 | $this->one = gmp_init(1, 10); |
||||||
|
0 ignored issues
–
show
It seems like
gmp_init(1, 10) of type GMP or resource is incompatible with the declared type Mdanter\Ecc\Math\GMP of property $one.
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property. Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property.. Loading history...
|
|||||||
| 71 | $this->two = gmp_init(2, 10); |
||||||
|
0 ignored issues
–
show
It seems like
gmp_init(2, 10) of type GMP or resource is incompatible with the declared type Mdanter\Ecc\Math\GMP of property $two.
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property. Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property.. Loading history...
|
|||||||
| 72 | } |
||||||
| 73 | |||||||
| 74 | /** |
||||||
| 75 | * @param \GMP[] $poly |
||||||
| 76 | * @param \GMP[] $polymod |
||||||
| 77 | * @param \GMP $p |
||||||
| 78 | * @return \GMP[] |
||||||
| 79 | */ |
||||||
| 80 | public function polynomialReduceMod(array $poly, array $polymod, \GMP $p): array |
||||||
| 81 | { |
||||||
| 82 | $adapter = $this->adapter; |
||||||
| 83 | |||||||
| 84 | // Only enter if last value is set, implying count > 0 |
||||||
| 85 | if ((($last = end($polymod)) instanceof \GMP) && $adapter->equals($last, $this->one)) { |
||||||
| 86 | $count_polymod = count($polymod); |
||||||
| 87 | while (count($poly) >= $count_polymod) { |
||||||
| 88 | if (!$adapter->equals(end($poly), $this->zero)) { |
||||||
| 89 | for ($i = 2; $i < $count_polymod + 1; $i++) { |
||||||
| 90 | $poly[count($poly) - $i] = |
||||||
| 91 | $adapter->mod( |
||||||
| 92 | $adapter->sub( |
||||||
| 93 | $poly[count($poly) - $i], |
||||||
| 94 | $adapter->mul( |
||||||
| 95 | end($poly), |
||||||
| 96 | $polymod[$count_polymod - $i] |
||||||
| 97 | ) |
||||||
| 98 | ), |
||||||
| 99 | $p |
||||||
| 100 | ); |
||||||
| 101 | } |
||||||
| 102 | } |
||||||
| 103 | |||||||
| 104 | $poly = array_slice($poly, 0, count($poly) - 1); |
||||||
| 105 | } |
||||||
| 106 | |||||||
| 107 | return $poly; |
||||||
| 108 | } |
||||||
| 109 | |||||||
| 110 | throw new NumberTheoryException('Unable to calculate polynomialReduceMod'); |
||||||
| 111 | } |
||||||
| 112 | |||||||
| 113 | /** |
||||||
| 114 | * @param \GMP[] $m1 |
||||||
| 115 | * @param \GMP[] $m2 |
||||||
| 116 | * @param \GMP[] $polymod |
||||||
| 117 | * @param \GMP $p |
||||||
| 118 | * @return \GMP[] |
||||||
| 119 | */ |
||||||
| 120 | public function polynomialMultiplyMod(array $m1, array $m2, array $polymod, \GMP $p): array |
||||||
| 121 | { |
||||||
| 122 | $prod = array(); |
||||||
| 123 | $cm1 = count($m1); |
||||||
| 124 | $cm2 = count($m2); |
||||||
| 125 | |||||||
| 126 | for ($i = 0; $i < $cm1; $i++) { |
||||||
| 127 | for ($j = 0; $j < $cm2; $j++) { |
||||||
| 128 | $index = $i + $j; |
||||||
| 129 | if (!isset($prod[$index])) { |
||||||
| 130 | $prod[$index] = $this->zero; |
||||||
| 131 | } |
||||||
| 132 | $prod[$index] = |
||||||
| 133 | $this->adapter->mod( |
||||||
| 134 | $this->adapter->add( |
||||||
| 135 | $prod[$index], |
||||||
| 136 | $this->adapter->mul( |
||||||
| 137 | $m1[$i], |
||||||
| 138 | $m2[$j] |
||||||
| 139 | ) |
||||||
| 140 | ), |
||||||
| 141 | $p |
||||||
| 142 | ); |
||||||
| 143 | } |
||||||
| 144 | } |
||||||
| 145 | |||||||
| 146 | return $this->polynomialReduceMod($prod, $polymod, $p); |
||||||
| 147 | } |
||||||
| 148 | |||||||
| 149 | /** |
||||||
| 150 | * @param \GMP[] $base |
||||||
| 151 | * @param \GMP $exponent |
||||||
| 152 | * @param \GMP[] $polymod |
||||||
| 153 | * @param \GMP $p |
||||||
| 154 | * @return \GMP[] |
||||||
| 155 | */ |
||||||
| 156 | public function polynomialPowMod(array $base, \GMP $exponent, array $polymod, \GMP $p): array |
||||||
| 157 | { |
||||||
| 158 | $adapter = $this->adapter; |
||||||
| 159 | |||||||
| 160 | if ($adapter->cmp($exponent, $p) < 0) { |
||||||
| 161 | if ($adapter->equals($exponent, $this->zero)) { |
||||||
| 162 | return $this->one; |
||||||
|
0 ignored issues
–
show
|
|||||||
| 163 | } |
||||||
| 164 | |||||||
| 165 | $G = $base; |
||||||
| 166 | $k = $exponent; |
||||||
| 167 | |||||||
| 168 | if ($adapter->equals($adapter->mod($k, $this->two), $this->one)) { |
||||||
| 169 | $s = $G; |
||||||
| 170 | } else { |
||||||
| 171 | $s = array($this->one); |
||||||
| 172 | } |
||||||
| 173 | |||||||
| 174 | while ($adapter->cmp($k, $this->one) > 0) { |
||||||
| 175 | $k = $adapter->div($k, $this->two); |
||||||
| 176 | |||||||
| 177 | $G = $this->polynomialMultiplyMod($G, $G, $polymod, $p); |
||||||
| 178 | if ($adapter->equals($adapter->mod($k, $this->two), $this->one)) { |
||||||
| 179 | $s = $this->polynomialMultiplyMod($G, $s, $polymod, $p); |
||||||
| 180 | } |
||||||
| 181 | } |
||||||
| 182 | |||||||
| 183 | return $s; |
||||||
| 184 | } |
||||||
| 185 | |||||||
| 186 | throw new NumberTheoryException('Unable to calculate polynomialPowMod'); |
||||||
| 187 | } |
||||||
| 188 | |||||||
| 189 | /** |
||||||
| 190 | * @param \GMP $a |
||||||
| 191 | * @param \GMP $p |
||||||
| 192 | * @return \GMP |
||||||
| 193 | */ |
||||||
| 194 | public function squareRootModP(\GMP $a, \GMP $p): \GMP |
||||||
| 195 | { |
||||||
| 196 | $math = $this->adapter; |
||||||
| 197 | $four = gmp_init(4, 10); |
||||||
| 198 | $eight = gmp_init(8, 10); |
||||||
| 199 | |||||||
| 200 | $modMath = $math->getModularArithmetic($p); |
||||||
| 201 | if ($math->cmp($this->one, $p) < 0) { |
||||||
| 202 | if ($math->equals($a, $this->zero)) { |
||||||
| 203 | return $this->zero; |
||||||
| 204 | } |
||||||
| 205 | |||||||
| 206 | if ($math->equals($p, $this->two)) { |
||||||
| 207 | return $a; |
||||||
| 208 | } |
||||||
| 209 | |||||||
| 210 | $jac = $math->jacobi($a, $p); |
||||||
| 211 | if ($jac === -1) { |
||||||
| 212 | throw new SquareRootException("{$math->toString($a)} has no square root modulo {$math->toString($p)}"); |
||||||
| 213 | } |
||||||
| 214 | |||||||
| 215 | if ($math->equals($math->mod($p, $four), gmp_init(3, 10))) { |
||||||
|
0 ignored issues
–
show
It seems like
gmp_init(3, 10) can also be of type resource; however, parameter $other of Mdanter\Ecc\Math\GmpMathInterface::equals() does only seem to accept GMP, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
It seems like
$four can also be of type resource; however, parameter $modulus of Mdanter\Ecc\Math\GmpMathInterface::mod() does only seem to accept GMP, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 216 | return $modMath->pow($a, $math->div($math->add($p, $this->one), $four)); |
||||||
|
0 ignored issues
–
show
It seems like
$four can also be of type resource; however, parameter $divisor of Mdanter\Ecc\Math\GmpMathInterface::div() does only seem to accept GMP, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 217 | } |
||||||
| 218 | |||||||
| 219 | if ($math->equals($math->mod($p, $eight), gmp_init(5, 10))) { |
||||||
| 220 | $d = $modMath->pow($a, $math->div($math->sub($p, $this->one), $four)); |
||||||
| 221 | if ($math->equals($d, $this->one)) { |
||||||
| 222 | return $modMath->pow($a, $math->div($math->add($p, gmp_init(3, 10)), $eight)); |
||||||
|
0 ignored issues
–
show
It seems like
gmp_init(3, 10) can also be of type resource; however, parameter $addend of Mdanter\Ecc\Math\GmpMathInterface::add() does only seem to accept GMP, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 223 | } |
||||||
| 224 | |||||||
| 225 | if ($math->equals($d, $math->sub($p, $this->one))) { |
||||||
| 226 | return $modMath->mul( |
||||||
| 227 | $math->mul( |
||||||
| 228 | $this->two, |
||||||
| 229 | $a |
||||||
| 230 | ), |
||||||
| 231 | $modMath->pow( |
||||||
| 232 | $math->mul( |
||||||
| 233 | $four, |
||||||
|
0 ignored issues
–
show
It seems like
$four can also be of type resource; however, parameter $multiplier of Mdanter\Ecc\Math\GmpMathInterface::mul() does only seem to accept GMP, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 234 | $a |
||||||
| 235 | ), |
||||||
| 236 | $math->div( |
||||||
| 237 | $math->sub( |
||||||
| 238 | $p, |
||||||
| 239 | gmp_init(5, 10) |
||||||
|
0 ignored issues
–
show
It seems like
gmp_init(5, 10) can also be of type resource; however, parameter $subtrahend of Mdanter\Ecc\Math\GmpMathInterface::sub() does only seem to accept GMP, maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
Loading history...
|
|||||||
| 240 | ), |
||||||
| 241 | $eight |
||||||
| 242 | ) |
||||||
| 243 | ) |
||||||
| 244 | ); |
||||||
| 245 | } |
||||||
| 246 | //shouldn't get here |
||||||
| 247 | } |
||||||
| 248 | |||||||
| 249 | for ($b = $this->two; $math->cmp($b, $p) < 0; $b = gmp_add($b, $this->one)) { |
||||||
| 250 | if ($math->jacobi( |
||||||
| 251 | $math->sub( |
||||||
| 252 | $math->mul($b, $b), |
||||||
| 253 | $math->mul($four, $a) |
||||||
| 254 | ), |
||||||
| 255 | $p |
||||||
| 256 | ) == -1 |
||||||
| 257 | ) { |
||||||
| 258 | $f = array($a, $math->sub($this->zero, $b), $this->one); |
||||||
| 259 | |||||||
| 260 | $ff = $this->polynomialPowMod( |
||||||
| 261 | array($this->zero, $this->one), |
||||||
| 262 | $math->div( |
||||||
| 263 | $math->add( |
||||||
| 264 | $p, |
||||||
| 265 | $this->one |
||||||
| 266 | ), |
||||||
| 267 | $this->two |
||||||
| 268 | ), |
||||||
| 269 | $f, |
||||||
| 270 | $p |
||||||
| 271 | ); |
||||||
| 272 | |||||||
| 273 | if ($math->equals($ff[1], $this->zero)) { |
||||||
| 274 | return $ff[0]; |
||||||
| 275 | } |
||||||
| 276 | // if we got here no b was found |
||||||
| 277 | } |
||||||
| 278 | } |
||||||
| 279 | } |
||||||
| 280 | |||||||
| 281 | throw new SquareRootException('Unable to calculate square root mod p!'); |
||||||
| 282 | } |
||||||
| 283 | } |
||||||
| 284 |
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property.
Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property..