1 | <?php |
||||||
2 | |||||||
3 | namespace Mdanter\Ecc\Math; |
||||||
4 | |||||||
5 | /*********************************************************************** |
||||||
6 | * Copyright (C) 2012 Matyas Danter |
||||||
7 | * |
||||||
8 | * Permission is hereby granted, free of charge, to any person obtaining |
||||||
9 | * a copy of this software and associated documentation files (the "Software"), |
||||||
10 | * to deal in the Software without restriction, including without limitation |
||||||
11 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
||||||
12 | * and/or sell copies of the Software, and to permit persons to whom the |
||||||
13 | * Software is furnished to do so, subject to the following conditions: |
||||||
14 | * |
||||||
15 | * The above copyright notice and this permission notice shall be included |
||||||
16 | * in all copies or substantial portions of the Software. |
||||||
17 | * |
||||||
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
||||||
19 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
||||||
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES |
||||||
22 | * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
||||||
23 | * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
||||||
24 | * OTHER DEALINGS IN THE SOFTWARE. |
||||||
25 | ************************************************************************/ |
||||||
26 | |||||||
27 | /** |
||||||
28 | * Implementation of some number theoretic algorithms |
||||||
29 | * |
||||||
30 | * @author Matyas Danter |
||||||
31 | */ |
||||||
32 | |||||||
33 | use Mdanter\Ecc\Exception\NumberTheoryException; |
||||||
34 | use Mdanter\Ecc\Exception\SquareRootException; |
||||||
35 | |||||||
36 | /** |
||||||
37 | * Rewritten to take a MathAdaptor to handle different environments. Has |
||||||
38 | * some desireable functions for public key compression/recovery. |
||||||
39 | */ |
||||||
40 | class NumberTheory |
||||||
41 | { |
||||||
42 | /** |
||||||
43 | * @var GmpMathInterface |
||||||
44 | */ |
||||||
45 | private $adapter; |
||||||
46 | |||||||
47 | /** |
||||||
48 | * @var GMP |
||||||
49 | */ |
||||||
50 | private $zero; |
||||||
51 | |||||||
52 | /** |
||||||
53 | * @var GMP |
||||||
54 | */ |
||||||
55 | private $one; |
||||||
56 | |||||||
57 | /** |
||||||
58 | * @var GMP |
||||||
59 | */ |
||||||
60 | private $two; |
||||||
61 | |||||||
62 | |||||||
63 | /** |
||||||
64 | * @param GmpMathInterface $adapter |
||||||
65 | */ |
||||||
66 | public function __construct(GmpMathInterface $adapter) |
||||||
67 | { |
||||||
68 | $this->adapter = $adapter; |
||||||
69 | $this->zero = gmp_init(0, 10); |
||||||
0 ignored issues
–
show
|
|||||||
70 | $this->one = gmp_init(1, 10); |
||||||
0 ignored issues
–
show
It seems like
gmp_init(1, 10) of type GMP or resource is incompatible with the declared type Mdanter\Ecc\Math\GMP of property $one .
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property. Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property.. ![]() |
|||||||
71 | $this->two = gmp_init(2, 10); |
||||||
0 ignored issues
–
show
It seems like
gmp_init(2, 10) of type GMP or resource is incompatible with the declared type Mdanter\Ecc\Math\GMP of property $two .
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property. Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property.. ![]() |
|||||||
72 | } |
||||||
73 | |||||||
74 | /** |
||||||
75 | * @param \GMP[] $poly |
||||||
76 | * @param \GMP[] $polymod |
||||||
77 | * @param \GMP $p |
||||||
78 | * @return \GMP[] |
||||||
79 | */ |
||||||
80 | public function polynomialReduceMod(array $poly, array $polymod, \GMP $p): array |
||||||
81 | { |
||||||
82 | $adapter = $this->adapter; |
||||||
83 | |||||||
84 | // Only enter if last value is set, implying count > 0 |
||||||
85 | if ((($last = end($polymod)) instanceof \GMP) && $adapter->equals($last, $this->one)) { |
||||||
86 | $count_polymod = count($polymod); |
||||||
87 | while (count($poly) >= $count_polymod) { |
||||||
88 | if (!$adapter->equals(end($poly), $this->zero)) { |
||||||
89 | for ($i = 2; $i < $count_polymod + 1; $i++) { |
||||||
90 | $poly[count($poly) - $i] = |
||||||
91 | $adapter->mod( |
||||||
92 | $adapter->sub( |
||||||
93 | $poly[count($poly) - $i], |
||||||
94 | $adapter->mul( |
||||||
95 | end($poly), |
||||||
96 | $polymod[$count_polymod - $i] |
||||||
97 | ) |
||||||
98 | ), |
||||||
99 | $p |
||||||
100 | ); |
||||||
101 | } |
||||||
102 | } |
||||||
103 | |||||||
104 | $poly = array_slice($poly, 0, count($poly) - 1); |
||||||
105 | } |
||||||
106 | |||||||
107 | return $poly; |
||||||
108 | } |
||||||
109 | |||||||
110 | throw new NumberTheoryException('Unable to calculate polynomialReduceMod'); |
||||||
111 | } |
||||||
112 | |||||||
113 | /** |
||||||
114 | * @param \GMP[] $m1 |
||||||
115 | * @param \GMP[] $m2 |
||||||
116 | * @param \GMP[] $polymod |
||||||
117 | * @param \GMP $p |
||||||
118 | * @return \GMP[] |
||||||
119 | */ |
||||||
120 | public function polynomialMultiplyMod(array $m1, array $m2, array $polymod, \GMP $p): array |
||||||
121 | { |
||||||
122 | $prod = array(); |
||||||
123 | $cm1 = count($m1); |
||||||
124 | $cm2 = count($m2); |
||||||
125 | |||||||
126 | for ($i = 0; $i < $cm1; $i++) { |
||||||
127 | for ($j = 0; $j < $cm2; $j++) { |
||||||
128 | $index = $i + $j; |
||||||
129 | if (!isset($prod[$index])) { |
||||||
130 | $prod[$index] = $this->zero; |
||||||
131 | } |
||||||
132 | $prod[$index] = |
||||||
133 | $this->adapter->mod( |
||||||
134 | $this->adapter->add( |
||||||
135 | $prod[$index], |
||||||
136 | $this->adapter->mul( |
||||||
137 | $m1[$i], |
||||||
138 | $m2[$j] |
||||||
139 | ) |
||||||
140 | ), |
||||||
141 | $p |
||||||
142 | ); |
||||||
143 | } |
||||||
144 | } |
||||||
145 | |||||||
146 | return $this->polynomialReduceMod($prod, $polymod, $p); |
||||||
147 | } |
||||||
148 | |||||||
149 | /** |
||||||
150 | * @param \GMP[] $base |
||||||
151 | * @param \GMP $exponent |
||||||
152 | * @param \GMP[] $polymod |
||||||
153 | * @param \GMP $p |
||||||
154 | * @return \GMP[] |
||||||
155 | */ |
||||||
156 | public function polynomialPowMod(array $base, \GMP $exponent, array $polymod, \GMP $p): array |
||||||
157 | { |
||||||
158 | $adapter = $this->adapter; |
||||||
159 | |||||||
160 | if ($adapter->cmp($exponent, $p) < 0) { |
||||||
161 | if ($adapter->equals($exponent, $this->zero)) { |
||||||
162 | return $this->one; |
||||||
0 ignored issues
–
show
|
|||||||
163 | } |
||||||
164 | |||||||
165 | $G = $base; |
||||||
166 | $k = $exponent; |
||||||
167 | |||||||
168 | if ($adapter->equals($adapter->mod($k, $this->two), $this->one)) { |
||||||
169 | $s = $G; |
||||||
170 | } else { |
||||||
171 | $s = array($this->one); |
||||||
172 | } |
||||||
173 | |||||||
174 | while ($adapter->cmp($k, $this->one) > 0) { |
||||||
175 | $k = $adapter->div($k, $this->two); |
||||||
176 | |||||||
177 | $G = $this->polynomialMultiplyMod($G, $G, $polymod, $p); |
||||||
178 | if ($adapter->equals($adapter->mod($k, $this->two), $this->one)) { |
||||||
179 | $s = $this->polynomialMultiplyMod($G, $s, $polymod, $p); |
||||||
180 | } |
||||||
181 | } |
||||||
182 | |||||||
183 | return $s; |
||||||
184 | } |
||||||
185 | |||||||
186 | throw new NumberTheoryException('Unable to calculate polynomialPowMod'); |
||||||
187 | } |
||||||
188 | |||||||
189 | /** |
||||||
190 | * @param \GMP $a |
||||||
191 | * @param \GMP $p |
||||||
192 | * @return \GMP |
||||||
193 | */ |
||||||
194 | public function squareRootModP(\GMP $a, \GMP $p): \GMP |
||||||
195 | { |
||||||
196 | $math = $this->adapter; |
||||||
197 | $four = gmp_init(4, 10); |
||||||
198 | $eight = gmp_init(8, 10); |
||||||
199 | |||||||
200 | $modMath = $math->getModularArithmetic($p); |
||||||
201 | if ($math->cmp($this->one, $p) < 0) { |
||||||
202 | if ($math->equals($a, $this->zero)) { |
||||||
203 | return $this->zero; |
||||||
204 | } |
||||||
205 | |||||||
206 | if ($math->equals($p, $this->two)) { |
||||||
207 | return $a; |
||||||
208 | } |
||||||
209 | |||||||
210 | $jac = $math->jacobi($a, $p); |
||||||
211 | if ($jac === -1) { |
||||||
212 | throw new SquareRootException("{$math->toString($a)} has no square root modulo {$math->toString($p)}"); |
||||||
213 | } |
||||||
214 | |||||||
215 | if ($math->equals($math->mod($p, $four), gmp_init(3, 10))) { |
||||||
0 ignored issues
–
show
It seems like
gmp_init(3, 10) can also be of type resource ; however, parameter $other of Mdanter\Ecc\Math\GmpMathInterface::equals() does only seem to accept GMP , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() It seems like
$four can also be of type resource ; however, parameter $modulus of Mdanter\Ecc\Math\GmpMathInterface::mod() does only seem to accept GMP , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
216 | return $modMath->pow($a, $math->div($math->add($p, $this->one), $four)); |
||||||
0 ignored issues
–
show
It seems like
$four can also be of type resource ; however, parameter $divisor of Mdanter\Ecc\Math\GmpMathInterface::div() does only seem to accept GMP , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
217 | } |
||||||
218 | |||||||
219 | if ($math->equals($math->mod($p, $eight), gmp_init(5, 10))) { |
||||||
220 | $d = $modMath->pow($a, $math->div($math->sub($p, $this->one), $four)); |
||||||
221 | if ($math->equals($d, $this->one)) { |
||||||
222 | return $modMath->pow($a, $math->div($math->add($p, gmp_init(3, 10)), $eight)); |
||||||
0 ignored issues
–
show
It seems like
gmp_init(3, 10) can also be of type resource ; however, parameter $addend of Mdanter\Ecc\Math\GmpMathInterface::add() does only seem to accept GMP , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
223 | } |
||||||
224 | |||||||
225 | if ($math->equals($d, $math->sub($p, $this->one))) { |
||||||
226 | return $modMath->mul( |
||||||
227 | $math->mul( |
||||||
228 | $this->two, |
||||||
229 | $a |
||||||
230 | ), |
||||||
231 | $modMath->pow( |
||||||
232 | $math->mul( |
||||||
233 | $four, |
||||||
0 ignored issues
–
show
It seems like
$four can also be of type resource ; however, parameter $multiplier of Mdanter\Ecc\Math\GmpMathInterface::mul() does only seem to accept GMP , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
234 | $a |
||||||
235 | ), |
||||||
236 | $math->div( |
||||||
237 | $math->sub( |
||||||
238 | $p, |
||||||
239 | gmp_init(5, 10) |
||||||
0 ignored issues
–
show
It seems like
gmp_init(5, 10) can also be of type resource ; however, parameter $subtrahend of Mdanter\Ecc\Math\GmpMathInterface::sub() does only seem to accept GMP , maybe add an additional type check?
(
Ignorable by Annotation
)
If this is a false-positive, you can also ignore this issue in your code via the
![]() |
|||||||
240 | ), |
||||||
241 | $eight |
||||||
242 | ) |
||||||
243 | ) |
||||||
244 | ); |
||||||
245 | } |
||||||
246 | //shouldn't get here |
||||||
247 | } |
||||||
248 | |||||||
249 | for ($b = $this->two; $math->cmp($b, $p) < 0; $b = gmp_add($b, $this->one)) { |
||||||
250 | if ($math->jacobi( |
||||||
251 | $math->sub( |
||||||
252 | $math->mul($b, $b), |
||||||
253 | $math->mul($four, $a) |
||||||
254 | ), |
||||||
255 | $p |
||||||
256 | ) == -1 |
||||||
257 | ) { |
||||||
258 | $f = array($a, $math->sub($this->zero, $b), $this->one); |
||||||
259 | |||||||
260 | $ff = $this->polynomialPowMod( |
||||||
261 | array($this->zero, $this->one), |
||||||
262 | $math->div( |
||||||
263 | $math->add( |
||||||
264 | $p, |
||||||
265 | $this->one |
||||||
266 | ), |
||||||
267 | $this->two |
||||||
268 | ), |
||||||
269 | $f, |
||||||
270 | $p |
||||||
271 | ); |
||||||
272 | |||||||
273 | if ($math->equals($ff[1], $this->zero)) { |
||||||
274 | return $ff[0]; |
||||||
275 | } |
||||||
276 | // if we got here no b was found |
||||||
277 | } |
||||||
278 | } |
||||||
279 | } |
||||||
280 | |||||||
281 | throw new SquareRootException('Unable to calculate square root mod p!'); |
||||||
282 | } |
||||||
283 | } |
||||||
284 |
Our type inference engine has found an assignment to a property that is incompatible with the declared type of that property.
Either this assignment is in error or the assigned type should be added to the documentation/type hint for that property..