GitHub Access Token became invalid

It seems like the GitHub access token used for retrieving details about this repository from GitHub became invalid. This might prevent certain types of inspections from being run (in particular, everything related to pull requests).
Please ask an admin of your repository to re-new the access token on this website.
Passed
Push — master ( 99a1bc...f9fdb5 )
by Sabiha
01:28
created

test_peak_heights()   A

Complexity

Conditions 1

Size

Total Lines 12
Code Lines 10

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 10
nop 0
dl 0
loc 12
rs 9.9
c 0
b 0
f 0
1
import numpy as np
2
import pandas as pd
3
4
5
import calculations
6
7
8
def peak_detection(Dataframe_y):
9
    list = [0, 1]
10
    return list
11
12
13
def split(vector):
14
    split = int(len(vector)/2)
15
    end = int(len(vector))
16
    vector1 = np.array(vector)[0:split]
17
    vector2 = np.array(vector)[split:end]
18
    return vector1, vector2
19
20
21
def linear_background(x, y):
22
    fake_line_list = [1, 2, 3, 4]
23
    fake_line_array = np.array(fake_line_list)
24
    return fake_line_array
25
26
27
def test_peak_values():
28
    """This function tests peak_values() function."""
29
    potentials = [0.500, 0.499, 0.498, 0.497]
30
    currents = [7.040, 6.998, 8.256, 8.286]
31
    potentials_d = pd.DataFrame(potentials)
32
    currents_d = pd.DataFrame(currents)
33
34
    assert type(calculations.peak_values(potentials_d, currents_d)) == np.ndarray, "output is not an array"
35
    assert calculations.peak_values(potentials_d, currents_d)[0] == 0.498, "array value incorrect for data"
36
    assert calculations.peak_values(potentials_d, currents_d)[2] == 0.499, "array value incorrect for data"
37
    assert calculations.peak_values(potentials_d, currents_d)[1] == 8.256, "array value incorrect for data"
38
    assert calculations.peak_values(potentials_d, currents_d)[3] == 6.998, "array value incorrect for data"
39
    return
40
41
42
def test_del_potential():
43
    """This function tests the del_potential function."""
44
    potentials = [0.500, 0.498, 0.499, 0.497]
45
    currents = [7.040, 6.998, 8.256, 8.286]
46
    potentials_d = pd.DataFrame(potentials)
47
    currents_d = pd.DataFrame(currents)
48
49
    assert type(calculations.del_potential(potentials_d, currents_d)) == np.ndarray, "output is not an array"
50
    assert calculations.del_potential(potentials_d, currents_d).shape == (1,), "output shape incorrect"
51
    assert calculations.del_potential(potentials_d, currents_d).size == 1, "array size incorrect"
52
    np.testing.assert_almost_equal(calculations.del_potential(potentials_d, currents_d), 0.001, decimal=3), "value incorrect for data"
53
    return
54
55
56
def test_half_wave_potential():
57
    """This function tests half_wave_potential() function."""
58
    potentials = [0.500, 0.498, 0.499, 0.497]
59
    currents = [7.040, 6.998, 8.256, 8.286]
60
    potentials_d = pd.DataFrame(potentials)
61
    currents_d = pd.DataFrame(currents)
62
63
    assert type(calculations.half_wave_potential(potentials_d, currents_d)) == np.ndarray, "output is not an array"
64
    assert calculations.half_wave_potential(potentials_d, currents_d).size == 1, "out not correct size"
65
    np.testing.assert_almost_equal(calculations.half_wave_potential(potentials_d, currents_d), 0.0005, decimal=4), "value incorrect for data"
66
    return
67
68
69
def test_peak_heights():
70
    """This function tests peak_heights() function."""
71
    potentials = [0.500, 0.498, 0.499, 0.497]
72
    currents = [7.040, 6.998, 8.256, 8.286]
73
    potentials_d = pd.DataFrame(potentials)
74
    currents_d = pd.DataFrame(currents)
75
76
    assert type(calculations.peak_heights(potentials_d, currents_d)) == list, "output is not a list"
77
    assert len(calculations.peak_heights(potentials_d, currents_d)) == 2, "output list is not the correct length"
78
    np.testing.assert_almost_equal(calculations.peak_heights(potentials_d, currents_d)[0], 7.256, decimal=3), "max peak height incorrect for data"
79
    np.testing.assert_almost_equal(calculations.peak_heights(potentials_d, currents_d)[1], 4.998, decimal=3), "min peak height incorrect for data"
80
    return
81
82
83
def test_peak_ratio():
84
    """This function tests peak_ratio() function."""
85
    potentials = [0.500, 0.498, 0.499, 0.497]
86
    currents = [7.040, 6.998, 8.256, 8.286]
87
    potentials_d = pd.DataFrame(potentials)
88
    currents_d = pd.DataFrame(currents)
89
90
    assert type(calculations.peak_ratio(potentials_d, currents_d)) == np.ndarray, "output is not an array"
91
    assert len(calculations.peak_ratio(potentials_d, currents_d)) == 1, "output list is not the correct length"
92
    np.testing.assert_almost_equal(calculations.peak_ratio(potentials_d, currents_d), 1.451, decimal=3), "max peak height incorrect for data"
93
    return
94