| Total Complexity | 50 |
| Total Lines | 574 |
| Duplicated Lines | 67.25 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like voltcycle.functions_and_tests.core often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | """This module consists of all the functions utilized.""" |
||
| 2 | # This is a tool to automate cyclic voltametry analysis. |
||
| 3 | # Current Version = 1 |
||
| 4 | |||
| 5 | import copy |
||
| 6 | import pandas as pd |
||
| 7 | import numpy as np |
||
| 8 | import matplotlib.pyplot as plt |
||
| 9 | import peakutils |
||
| 10 | |||
| 11 | |||
| 12 | View Code Duplication | def read_cycle(data): |
|
|
|
|||
| 13 | """This function reads a segment of datafile (corresponding a cycle) |
||
| 14 | and generates a dataframe with columns 'Potential' and 'Current' |
||
| 15 | |||
| 16 | Parameters |
||
| 17 | __________ |
||
| 18 | data: segment of data file |
||
| 19 | Returns |
||
| 20 | _______ |
||
| 21 | A dataframe with potential and current columns |
||
| 22 | """ |
||
| 23 | |||
| 24 | current = [] |
||
| 25 | potential = [] |
||
| 26 | for i in data[3:]: |
||
| 27 | current.append(float(i.split("\t")[4])) |
||
| 28 | potential.append(float(i.split("\t")[3])) |
||
| 29 | zipped_list = list(zip(potential, current)) |
||
| 30 | dataframe = pd.DataFrame(zipped_list, columns=['Potential', 'Current']) |
||
| 31 | return dataframe |
||
| 32 | |||
| 33 | |||
| 34 | def read_file_dash(lines): |
||
| 35 | """This function is exactly similar to read_file, but it is for dash |
||
| 36 | |||
| 37 | Parameters |
||
| 38 | __________ |
||
| 39 | file: lines from dash input file |
||
| 40 | |||
| 41 | Returns: |
||
| 42 | ________ |
||
| 43 | dict_of_df: dictionary of dataframes with keys = cycle numbers and |
||
| 44 | values = dataframes for each cycle |
||
| 45 | n_cycle: number of cycles in the raw file |
||
| 46 | """ |
||
| 47 | dict_of_df = {} |
||
| 48 | h_val = 0 |
||
| 49 | l_val = 0 |
||
| 50 | n_cycle = 0 |
||
| 51 | number = 0 |
||
| 52 | #a = [] |
||
| 53 | #with open(file, 'rt') as f: |
||
| 54 | # print(file + ' Opened') |
||
| 55 | for line in lines: |
||
| 56 | record = 0 |
||
| 57 | if not (h_val and l_val): |
||
| 58 | if line.startswith('SCANRATE'): |
||
| 59 | scan_rate = float(line.split()[2]) |
||
| 60 | h_val = 1 |
||
| 61 | if line.startswith('STEPSIZE'): |
||
| 62 | step_size = float(line.split()[2]) |
||
| 63 | l_val = 1 |
||
| 64 | if line.startswith('CURVE'): |
||
| 65 | n_cycle += 1 |
||
| 66 | if n_cycle > 1: |
||
| 67 | number = n_cycle - 1 |
||
| 68 | data = read_cycle(a_val) |
||
| 69 | key_name = 'cycle_' + str(number) |
||
| 70 | #key_name = number |
||
| 71 | dict_of_df[key_name] = copy.deepcopy(data) |
||
| 72 | a_val = [] |
||
| 73 | if n_cycle: |
||
| 74 | a_val.append(line) |
||
| 75 | return dict_of_df, number |
||
| 76 | |||
| 77 | |||
| 78 | View Code Duplication | def read_file(file): |
|
| 79 | """This function reads the raw data file, gets the scanrate and stepsize |
||
| 80 | and then reads the lines according to cycle number. Once it reads the data |
||
| 81 | for one cycle, it calls read_cycle function to denerate a dataframe. It |
||
| 82 | does the same thing for all the cycles and finally returns a dictionary, |
||
| 83 | the keys of which are the cycle numbers and the values are the |
||
| 84 | corresponding dataframes. |
||
| 85 | |||
| 86 | Parameters |
||
| 87 | __________ |
||
| 88 | file: raw data file |
||
| 89 | |||
| 90 | Returns: |
||
| 91 | ________ |
||
| 92 | dict_of_df: dictionary of dataframes with keys = cycle numbers and |
||
| 93 | values = dataframes for each cycle |
||
| 94 | n_cycle: number of cycles in the raw file |
||
| 95 | """ |
||
| 96 | dict_of_df = {} |
||
| 97 | h_val = 0 |
||
| 98 | l_val = 0 |
||
| 99 | n_cycle = 0 |
||
| 100 | #a = [] |
||
| 101 | with open(file, 'rt') as f_val: |
||
| 102 | print(file + ' Opened') |
||
| 103 | for line in f_val: |
||
| 104 | record = 0 |
||
| 105 | if not (h_val and l_val): |
||
| 106 | if line.startswith('SCANRATE'): |
||
| 107 | scan_rate = float(line.split()[2]) |
||
| 108 | h_val = 1 |
||
| 109 | if line.startswith('STEPSIZE'): |
||
| 110 | step_size = float(line.split()[2]) |
||
| 111 | l_val = 1 |
||
| 112 | if line.startswith('CURVE'): |
||
| 113 | n_cycle += 1 |
||
| 114 | if n_cycle > 1: |
||
| 115 | number = n_cycle - 1 |
||
| 116 | data = read_cycle(a_val) |
||
| 117 | key_name = 'cycle_' + str(number) |
||
| 118 | #key_name = number |
||
| 119 | dict_of_df[key_name] = copy.deepcopy(data) |
||
| 120 | a_val = [] |
||
| 121 | if n_cycle: |
||
| 122 | a_val.append(line) |
||
| 123 | return dict_of_df, number |
||
| 124 | |||
| 125 | #df = pd.DataFrame(list(dict1['df_1'].items())) |
||
| 126 | #list1, list2 = list(dict1['df_1'].items()) |
||
| 127 | #list1, list2 = list(dict1.get('df_'+str(1))) |
||
| 128 | |||
| 129 | |||
| 130 | View Code Duplication | def data_frame(dict_cycle, number): |
|
| 131 | """Reads the dictionary of dataframes and returns dataframes for each cycle |
||
| 132 | |||
| 133 | Parameters |
||
| 134 | __________ |
||
| 135 | dict_cycle: Dictionary of dataframes |
||
| 136 | n: cycle number |
||
| 137 | |||
| 138 | Returns: |
||
| 139 | _______ |
||
| 140 | Dataframe correcponding to the cycle number |
||
| 141 | """ |
||
| 142 | list1, list2 = (list(dict_cycle.get('cycle_'+str(number)).items())) |
||
| 143 | zipped_list = list(zip(list1[1], list2[1])) |
||
| 144 | data = pd.DataFrame(zipped_list, columns=['Potential', 'Current']) |
||
| 145 | return data |
||
| 146 | |||
| 147 | |||
| 148 | View Code Duplication | def plot_fig(dict_cycle, number): |
|
| 149 | """For basic plotting of the cycle data |
||
| 150 | |||
| 151 | Parameters |
||
| 152 | __________ |
||
| 153 | dict: dictionary of dataframes for all the cycles |
||
| 154 | n: number of cycles |
||
| 155 | |||
| 156 | Saves the plot in a file called cycle.png |
||
| 157 | """ |
||
| 158 | |||
| 159 | for i in range(number): |
||
| 160 | print(i+1) |
||
| 161 | data = data_frame(dict_cycle, i+1) |
||
| 162 | plt.plot(data.Potential, data.Current, label="Cycle{}".format(i+1)) |
||
| 163 | |||
| 164 | print(data.head()) |
||
| 165 | plt.xlabel('Voltage') |
||
| 166 | plt.ylabel('Current') |
||
| 167 | plt.legend() |
||
| 168 | plt.savefig('cycle.png') |
||
| 169 | print('executed') |
||
| 170 | |||
| 171 | |||
| 172 | #split forward and backward sweping data, to make it easier for processing. |
||
| 173 | View Code Duplication | def split(vector): |
|
| 174 | """ |
||
| 175 | This function takes an array and splits it into equal two half. |
||
| 176 | ---------- |
||
| 177 | Parameters |
||
| 178 | ---------- |
||
| 179 | vector : Can be in any form of that can be turned into numpy array. |
||
| 180 | Normally, for the use of this function, it expects pandas DataFrame column. |
||
| 181 | For example, df['potentials'] could be input as the column of x data. |
||
| 182 | ------- |
||
| 183 | Returns |
||
| 184 | ------- |
||
| 185 | This function returns two equally splited vector. |
||
| 186 | The output then can be used to ease the implementation of peak detection and baseline finding. |
||
| 187 | """ |
||
| 188 | assert isinstance(vector, pd.core.series.Series), "Input should be pandas series" |
||
| 189 | split_top = int(len(vector)/2) |
||
| 190 | end = int(len(vector)) |
||
| 191 | vector1 = np.array(vector)[0:split] |
||
| 192 | vector2 = np.array(vector)[split_top:end] |
||
| 193 | return vector1, vector2 |
||
| 194 | |||
| 195 | |||
| 196 | View Code Duplication | def critical_idx(arr_x, arr_y): ## Finds index where data set is no longer linear |
|
| 197 | """ |
||
| 198 | This function takes x and y values callculate the derrivative of x and y, |
||
| 199 | and calculate moving average of 5 and 15 points. Finds intercepts of different |
||
| 200 | moving average curves and return the indexs of the first intercepts. |
||
| 201 | ---------- |
||
| 202 | Parameters |
||
| 203 | ---------- |
||
| 204 | x : Numpy array. |
||
| 205 | y : Numpy array. |
||
| 206 | Normally, for the use of this function, it expects numpy array |
||
| 207 | that came out from split function. For example, output of |
||
| 208 | split.df['potentials'] could be input for this function as x. |
||
| 209 | ------- |
||
| 210 | Returns |
||
| 211 | ------- |
||
| 212 | This function returns 5th index of the intercepts of different moving average curves. |
||
| 213 | User can change this function according to baseline |
||
| 214 | branch method 2 to get various indexes.. |
||
| 215 | """ |
||
| 216 | assert isinstance(arr_x, np.ndarray), "Input should be numpy array" |
||
| 217 | assert isinstance(arr_y == np.ndarray), "Input should be numpy array" |
||
| 218 | if arr_x.shape[0] != arr_y.shape[0]: |
||
| 219 | raise ValueError("x and y must have same first dimension, but " |
||
| 220 | "have shapes {} and {}".format(arr_x.shape, arr_y.shape)) |
||
| 221 | k_val = np.diff(arr_y)/(np.diff(arr_x)) #calculated slops of x and y |
||
| 222 | ## Calculate moving average for 10 and 15 points. |
||
| 223 | ## This two arbitrary number can be tuned to get better fitting. |
||
| 224 | ave10 = [] |
||
| 225 | ave15 = [] |
||
| 226 | for i in range(len(k_val)-10): |
||
| 227 | # The reason to minus 10 is to prevent j from running out of index. |
||
| 228 | a_val = 0 |
||
| 229 | for j in range(0, 5): |
||
| 230 | a_val = a_val + k_val[i+j] |
||
| 231 | ave10.append(round(a_val/10, 5)) |
||
| 232 | # keeping 5 desimal points for more accuracy |
||
| 233 | # This numbers affect how sensitive to noise. |
||
| 234 | for i in range(len(k_val)-15): |
||
| 235 | b_val = 0 |
||
| 236 | for j in range(0, 15): |
||
| 237 | b_val = b_val + k_val[i+j] |
||
| 238 | ave15.append(round(b_val/15, 5)) |
||
| 239 | ave10i = np.asarray(ave10) |
||
| 240 | ave15i = np.asarray(ave15) |
||
| 241 | ## Find intercepts of different moving average curves |
||
| 242 | #reshape into one row. |
||
| 243 | idx = np.argwhere(np.diff(np.sign(ave15i - ave10i[:len(ave15i)]) != 0)).reshape(-1)+0 |
||
| 244 | return idx[5] |
||
| 245 | # This is based on the method 1 where user can't choose the baseline. |
||
| 246 | # If wanted to add that, choose method2. |
||
| 247 | |||
| 248 | |||
| 249 | def sum_mean(vector): |
||
| 250 | """ |
||
| 251 | This function returns the mean and sum of the given vector. |
||
| 252 | ---------- |
||
| 253 | Parameters |
||
| 254 | ---------- |
||
| 255 | vector : Can be in any form of that can be turned into numpy array. |
||
| 256 | Normally, for the use of this function, it expects pandas DataFrame column. |
||
| 257 | For example, df['potentials'] could be input as the column of x data. |
||
| 258 | """ |
||
| 259 | assert isinstance(vector == np.ndarray), "Input should be numpy array" |
||
| 260 | a_val = 0 |
||
| 261 | for i in vector: |
||
| 262 | a_val = a_val + i |
||
| 263 | return [a_val, a_val/len(vector)] |
||
| 264 | |||
| 265 | |||
| 266 | View Code Duplication | def multiplica(vector_x, vector_y): |
|
| 267 | """ |
||
| 268 | This function returns the sum of the multilica of two given vector. |
||
| 269 | ---------- |
||
| 270 | Parameters |
||
| 271 | ---------- |
||
| 272 | vector_x, vector_y : Output of the split vector function. |
||
| 273 | Two inputs can be the same vector or different vector with same length. |
||
| 274 | ------- |
||
| 275 | Returns |
||
| 276 | ------- |
||
| 277 | This function returns a number that is the sum of multiplicity of given two vector. |
||
| 278 | """ |
||
| 279 | assert isinstance(vector_x == np.ndarray), "Input should be numpy array" |
||
| 280 | assert isinstance(vector_y == np.ndarray), "Input should be numpy array" |
||
| 281 | a_val = 0 |
||
| 282 | for vec_x, vec_y in zip(vector_x, vector_y): |
||
| 283 | a_val = a_val + (vec_x * vec_y) |
||
| 284 | return a_val |
||
| 285 | |||
| 286 | |||
| 287 | View Code Duplication | def linear_coeff(vec_x, vec_y): |
|
| 288 | """ |
||
| 289 | This function returns the inclination coeffecient and y axis interception coeffecient m and b. |
||
| 290 | ---------- |
||
| 291 | Parameters |
||
| 292 | ---------- |
||
| 293 | x : Output of the split vector function. |
||
| 294 | y : Output of the split vector function. |
||
| 295 | ------- |
||
| 296 | Returns |
||
| 297 | ------- |
||
| 298 | float number of m and b. |
||
| 299 | """ |
||
| 300 | m_val = ((multiplica(vec_x, vec_y) - sum_mean(vec_x)[0] * sum_mean(vec_y)[1])/ |
||
| 301 | (multiplica(vec_x, vec_x) - sum_mean(vec_x)[0] * sum_mean(vec_x)[1])) |
||
| 302 | b_val = sum_mean(vec_y)[1] - m_val * sum_mean(vec_x)[1] |
||
| 303 | return m_val, b_val |
||
| 304 | |||
| 305 | |||
| 306 | def y_fitted_line(m_val, b_val, vec_x): |
||
| 307 | """ |
||
| 308 | This function returns the fitted baseline constructed by coeffecient m and b and x values. |
||
| 309 | ---------- |
||
| 310 | Parameters |
||
| 311 | ---------- |
||
| 312 | x : Output of the split vector function. x value of the input. |
||
| 313 | m : inclination of the baseline. |
||
| 314 | b : y intercept of the baseline. |
||
| 315 | ------- |
||
| 316 | Returns |
||
| 317 | ------- |
||
| 318 | List of constructed y_labels. |
||
| 319 | """ |
||
| 320 | y_base = [] |
||
| 321 | for i in vec_x: |
||
| 322 | y_val = m_val * i + b_val |
||
| 323 | y_base.append(y_val) |
||
| 324 | return y_base |
||
| 325 | |||
| 326 | |||
| 327 | View Code Duplication | def linear_background(vec_x, vec_y): |
|
| 328 | """ |
||
| 329 | This function is wrapping function for calculating linear fitted line. |
||
| 330 | It takes x and y values of the cv data, returns the fitted baseline. |
||
| 331 | ---------- |
||
| 332 | Parameters |
||
| 333 | ---------- |
||
| 334 | x : Output of the split vector function. x value of the cyclic voltammetry data. |
||
| 335 | y : Output of the split vector function. y value of the cyclic voltammetry data. |
||
| 336 | ------- |
||
| 337 | Returns |
||
| 338 | ------- |
||
| 339 | List of constructed y_labels. |
||
| 340 | """ |
||
| 341 | assert isinstance(vec_x, np.ndarray), "Input of the function should be numpy array" |
||
| 342 | assert isinstance(vec_y, np.ndarray), "Input of the function should be numpy array" |
||
| 343 | idx = critical_idx(vec_x, vec_y) + 5 #this is also arbitrary number we can play with. |
||
| 344 | m_val, b_val = (linear_coeff(vec_x[(idx - int(0.5 * idx)) : (idx + int(0.5 * idx))], |
||
| 345 | vec_y[(idx - int(0.5 * idx)) : (idx + int(0.5 * idx))])) |
||
| 346 | y_base = y_fitted_line(m_val, b_val, vec_x) |
||
| 347 | return y_base |
||
| 348 | |||
| 349 | |||
| 350 | View Code Duplication | def peak_detection_fxn(data_y): |
|
| 351 | """The function takes an input of the column containing the y variables in the dataframe, |
||
| 352 | associated with the current. The function calls the split function, which splits the |
||
| 353 | column into two arrays, one of the positive and one of the negative values. |
||
| 354 | This is because cyclic voltammetry delivers negative peaks, but the peakutils function works |
||
| 355 | better with positive peaks. The function also runs on the middle 80% of data to eliminate |
||
| 356 | unnecessary noise and messy values associated with pseudo-peaks.The vectors are then imported |
||
| 357 | into the peakutils.indexes function to determine the significant peak for each array. |
||
| 358 | The values are stored in a list, with the first index corresponding to the top peak and the |
||
| 359 | second corresponding to the bottom peak. |
||
| 360 | Parameters |
||
| 361 | ______________ |
||
| 362 | y column: must be a column from a pandas dataframe |
||
| 363 | |||
| 364 | Returns |
||
| 365 | _____________ |
||
| 366 | A list with the index of the peaks from the top curve and bottom curve. |
||
| 367 | """ |
||
| 368 | |||
| 369 | # initialize storage list |
||
| 370 | index_list = [] |
||
| 371 | |||
| 372 | # split data into above and below the baseline |
||
| 373 | col_y1, col_y2 = split(data_y) # removed main. head. |
||
| 374 | |||
| 375 | # detemine length of data and what 10% of the data is |
||
| 376 | len_y = len(col_y1) |
||
| 377 | ten_percent = int(np.around(0.1*len_y)) |
||
| 378 | |||
| 379 | # adjust both input columns to be the middle 80% of data |
||
| 380 | # (take of the first and last 10% of data) |
||
| 381 | # this avoid detecting peaks from electrolysis |
||
| 382 | # (from water splitting and not the molecule itself, |
||
| 383 | # which can form random "peaks") |
||
| 384 | mod_col_y2 = col_y2[ten_percent:len_y-ten_percent] |
||
| 385 | mod_col_y1 = col_y1[ten_percent:len_y-ten_percent] |
||
| 386 | |||
| 387 | # run peakutils package to detect the peaks for both top and bottom |
||
| 388 | peak_top = peakutils.indexes(mod_col_y2, thres=0.99, min_dist=20) |
||
| 389 | peak_bottom = peakutils.indexes(abs(mod_col_y1), thres=0.99, min_dist=20) |
||
| 390 | |||
| 391 | # detemine length of both halves of data |
||
| 392 | len_top = len(peak_top) |
||
| 393 | len_bot = len(peak_bottom) |
||
| 394 | |||
| 395 | # append the values to the storage list |
||
| 396 | # manipulate values by adding the ten_percent value back |
||
| 397 | # (as the indecies have moved) |
||
| 398 | # to detect the actual peaks and not the modified values |
||
| 399 | index_list.append(peak_top[int(len_top/2)]+ten_percent) |
||
| 400 | index_list.append(peak_bottom[int(len_bot/2)]+ten_percent) |
||
| 401 | |||
| 402 | # return storage list |
||
| 403 | # first value is the top, second value is the bottom |
||
| 404 | return index_list |
||
| 405 | |||
| 406 | View Code Duplication | def peak_values(dataframe_x, dataframe_y): |
|
| 407 | """Outputs x (potentials) and y (currents) values from data indices |
||
| 408 | given by peak_detection function. |
||
| 409 | |||
| 410 | ---------- |
||
| 411 | Parameters |
||
| 412 | ---------- |
||
| 413 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 414 | For example, df['potentials'] could be input as the column of x |
||
| 415 | data. |
||
| 416 | |||
| 417 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 418 | For example, df['currents'] could be input as the column of y |
||
| 419 | data. |
||
| 420 | |||
| 421 | Returns |
||
| 422 | ------- |
||
| 423 | Result : numpy array of coordinates at peaks in the following order: |
||
| 424 | potential of peak on top curve, current of peak on top curve, |
||
| 425 | potential of peak on bottom curve, current of peak on bottom curve""" |
||
| 426 | index = peak_detection_fxn(dataframe_y) |
||
| 427 | potential1, potential2 = split(dataframe_x) |
||
| 428 | current1, current2 = split(dataframe_y) |
||
| 429 | peak_values = [] |
||
| 430 | peak_values.append(potential2[(index[0])]) # TOPX (bottom part of curve is |
||
| 431 | # the first part of DataFrame) |
||
| 432 | peak_values.append(current2[(index[0])]) # TOPY |
||
| 433 | peak_values.append(potential1[(index[1])]) # BOTTOMX |
||
| 434 | peak_values.append(current1[(index[1])]) # BOTTOMY |
||
| 435 | peak_array = np.array(peak_values) |
||
| 436 | return peak_array |
||
| 437 | |||
| 438 | |||
| 439 | def del_potential(dataframe_x, dataframe_y): |
||
| 440 | """Outputs the difference in potentials between anoidc and |
||
| 441 | cathodic peaks in cyclic voltammetry data. |
||
| 442 | |||
| 443 | Parameters |
||
| 444 | ---------- |
||
| 445 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 446 | For example, df['potentials'] could be input as the column of x |
||
| 447 | data. |
||
| 448 | |||
| 449 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 450 | For example, df['currents'] could be input as the column of y |
||
| 451 | data. |
||
| 452 | |||
| 453 | Returns |
||
| 454 | ------- |
||
| 455 | Results: difference in peak potentials.""" |
||
| 456 | del_potentials = (peak_values(dataframe_x, dataframe_y)[0] - |
||
| 457 | peak_values(dataframe_x, dataframe_y)[2]) |
||
| 458 | return del_potentials |
||
| 459 | |||
| 460 | |||
| 461 | def half_wave_potential(dataframe_x, dataframe_y): |
||
| 462 | """Outputs the half wave potential(redox potential) from cyclic |
||
| 463 | voltammetry data. |
||
| 464 | |||
| 465 | Parameters |
||
| 466 | ---------- |
||
| 467 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 468 | For example, df['potentials'] could be input as the column of x |
||
| 469 | data. |
||
| 470 | |||
| 471 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 472 | For example, df['currents'] could be input as the column of y |
||
| 473 | data. |
||
| 474 | |||
| 475 | Returns |
||
| 476 | ------- |
||
| 477 | Results : the half wave potential.""" |
||
| 478 | half_wave_pot = (del_potential(dataframe_x, dataframe_y))/2 |
||
| 479 | return half_wave_pot |
||
| 480 | |||
| 481 | |||
| 482 | View Code Duplication | def peak_heights(dataframe_x, dataframe_y): |
|
| 483 | """Outputs heights of minimum peak and maximum |
||
| 484 | peak from cyclic voltammetry data. |
||
| 485 | |||
| 486 | Parameters |
||
| 487 | ---------- |
||
| 488 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 489 | For example, df['potentials'] could be input as the column of x |
||
| 490 | data. |
||
| 491 | |||
| 492 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 493 | For example, df['currents'] could be input as the column of y |
||
| 494 | data. |
||
| 495 | |||
| 496 | Returns |
||
| 497 | ------- |
||
| 498 | Results: height of maximum peak, height of minimum peak |
||
| 499 | in that order in the form of a list.""" |
||
| 500 | current_max = peak_values(dataframe_x, dataframe_y)[1] |
||
| 501 | current_min = peak_values(dataframe_x, dataframe_y)[3] |
||
| 502 | col_x1, col_x2 = split(dataframe_x) |
||
| 503 | col_y1, col_y2 = split(dataframe_y) |
||
| 504 | line_at_min = linear_background(col_x1, col_y1)[peak_detection_fxn(dataframe_y)[1]] |
||
| 505 | line_at_max = linear_background(col_x2, col_y2)[peak_detection_fxn(dataframe_y)[0]] |
||
| 506 | height_of_max = current_max - line_at_max |
||
| 507 | height_of_min = abs(current_min - line_at_min) |
||
| 508 | return [height_of_max, height_of_min] |
||
| 509 | |||
| 510 | |||
| 511 | def peak_ratio(dataframe_x, dataframe_y): |
||
| 512 | """Outputs the peak ratios from cyclic voltammetry data. |
||
| 513 | |||
| 514 | Parameters |
||
| 515 | ---------- |
||
| 516 | DataFrame_x : should be in the form of a pandas DataFrame column. |
||
| 517 | For example, df['potentials'] could be input as the column of x |
||
| 518 | data. |
||
| 519 | |||
| 520 | DataFrame_y : should be in the form of a pandas DataFrame column. |
||
| 521 | For example, df['currents'] could be input as the column of y |
||
| 522 | data. |
||
| 523 | |||
| 524 | Returns |
||
| 525 | ------- |
||
| 526 | Result : returns a the peak ratio.""" |
||
| 527 | ratio = (peak_heights(dataframe_x, dataframe_y)[0] / |
||
| 528 | peak_heights(dataframe_x, dataframe_y)[1]) |
||
| 529 | return ratio |
||
| 530 | |||
| 531 | |||
| 532 | View Code Duplication | def data_analysis(data): |
|
| 533 | """This function returns a dictionary consisting of |
||
| 534 | the relevant values. This can be seen in the user |
||
| 535 | interface (Dash) as well.""" |
||
| 536 | results_dict = {} |
||
| 537 | |||
| 538 | # df = main.data_frame(dict_1,1) |
||
| 539 | x_val = data['Potential'] |
||
| 540 | y_val = data['Current'] |
||
| 541 | # Peaks are here [list] |
||
| 542 | peak_index = peak_detection_fxn(y_val) |
||
| 543 | # Split x,y to get baselines |
||
| 544 | col_x1, col_x2 = split(x_val) |
||
| 545 | col_y1, col_y2 = split(y_val) |
||
| 546 | y_base1 = linear_background(col_x1, col_y1) |
||
| 547 | y_base2 = linear_background(col_x2, col_y2) |
||
| 548 | # Calculations based on baseline and peak |
||
| 549 | values = peak_values(x_val, y_val) |
||
| 550 | esub_t = values[0] |
||
| 551 | esub_b = values[2] |
||
| 552 | dof_e = del_potential(x_val, y_val) |
||
| 553 | half_e = min(esub_t, esub_b) + half_wave_potential(x_val, y_val) |
||
| 554 | ipa = peak_heights(x_val, y_val)[0] |
||
| 555 | ipc = peak_heights(x_val, y_val)[1] |
||
| 556 | ratio_i = peak_ratio(x_val, y_val) |
||
| 557 | results_dict['Peak Current Ratio'] = ratio_i |
||
| 558 | results_dict['Ipc (A)'] = ipc |
||
| 559 | results_dict['Ipa (A)'] = ipa |
||
| 560 | results_dict['Epc (V)'] = esub_b |
||
| 561 | results_dict['Epa (V)'] = esub_t |
||
| 562 | results_dict['∆E (V)'] = dof_e |
||
| 563 | results_dict['Redox Potential (V)'] = half_e |
||
| 564 | if dof_e > 0.3: |
||
| 565 | results_dict['Reversible'] = 'No' |
||
| 566 | else: |
||
| 567 | results_dict['Reversible'] = 'Yes' |
||
| 568 | |||
| 569 | if half_e > 0 and 'Yes' in results_dict.values(): |
||
| 570 | results_dict['Type'] = 'Catholyte' |
||
| 571 | elif 'Yes' in results_dict.values(): |
||
| 572 | results_dict['Type'] = 'Anolyte' |
||
| 573 | return results_dict, col_x1, col_x2, col_y1, col_y2, y_base1, y_base2, peak_index |
||
| 574 | #return results_dict |
||
| 575 |