| @@ 406-436 (lines=31) @@ | ||
| 403 | # first value is the top, second value is the bottom |
|
| 404 | return index_list |
|
| 405 | ||
| 406 | def peak_values(dataframe_x, dataframe_y): |
|
| 407 | """Outputs x (potentials) and y (currents) values from data indices |
|
| 408 | given by peak_detection function. |
|
| 409 | ||
| 410 | ---------- |
|
| 411 | Parameters |
|
| 412 | ---------- |
|
| 413 | DataFrame_x : should be in the form of a pandas DataFrame column. |
|
| 414 | For example, df['potentials'] could be input as the column of x |
|
| 415 | data. |
|
| 416 | ||
| 417 | DataFrame_y : should be in the form of a pandas DataFrame column. |
|
| 418 | For example, df['currents'] could be input as the column of y |
|
| 419 | data. |
|
| 420 | ||
| 421 | Returns |
|
| 422 | ------- |
|
| 423 | Result : numpy array of coordinates at peaks in the following order: |
|
| 424 | potential of peak on top curve, current of peak on top curve, |
|
| 425 | potential of peak on bottom curve, current of peak on bottom curve""" |
|
| 426 | index = peak_detection_fxn(dataframe_y) |
|
| 427 | potential1, potential2 = split(dataframe_x) |
|
| 428 | current1, current2 = split(dataframe_y) |
|
| 429 | peak_values = [] |
|
| 430 | peak_values.append(potential2[(index[0])]) # TOPX (bottom part of curve is |
|
| 431 | # the first part of DataFrame) |
|
| 432 | peak_values.append(current2[(index[0])]) # TOPY |
|
| 433 | peak_values.append(potential1[(index[1])]) # BOTTOMX |
|
| 434 | peak_values.append(current1[(index[1])]) # BOTTOMY |
|
| 435 | peak_array = np.array(peak_values) |
|
| 436 | return peak_array |
|
| 437 | ||
| 438 | ||
| 439 | def del_potential(dataframe_x, dataframe_y): |
|
| @@ 6-36 (lines=31) @@ | ||
| 3 | import numpy as np |
|
| 4 | from . import core |
|
| 5 | ||
| 6 | def peak_values(dataframe_x, dataframe_y): |
|
| 7 | """Outputs x (potentials) and y (currents) values from data indices |
|
| 8 | given by peak_detection function. |
|
| 9 | ||
| 10 | ---------- |
|
| 11 | Parameters |
|
| 12 | ---------- |
|
| 13 | DataFrame_x : should be in the form of a pandas DataFrame column. |
|
| 14 | For example, df['potentials'] could be input as the column of x |
|
| 15 | data. |
|
| 16 | ||
| 17 | DataFrame_y : should be in the form of a pandas DataFrame column. |
|
| 18 | For example, df['currents'] could be input as the column of y |
|
| 19 | data. |
|
| 20 | ||
| 21 | Returns |
|
| 22 | ------- |
|
| 23 | Result : numpy array of coordinates at peaks in the following order: |
|
| 24 | potential of peak on top curve, current of peak on top curve, |
|
| 25 | potential of peak on bottom curve, current of peak on bottom curve""" |
|
| 26 | index = core.peak_detection_fxn(dataframe_y) |
|
| 27 | potential1, potential2 = core.split(dataframe_x) |
|
| 28 | current1, current2 = core.split(dataframe_y) |
|
| 29 | peak_values = [] |
|
| 30 | peak_values.append(potential2[(index[0])]) # TOPX (bottom part of curve is |
|
| 31 | # the first part of DataFrame) |
|
| 32 | peak_values.append(current2[(index[0])]) # TOPY |
|
| 33 | peak_values.append(potential1[(index[1])]) # BOTTOMX |
|
| 34 | peak_values.append(current1[(index[1])]) # BOTTOMY |
|
| 35 | peak_array = np.array(peak_values) |
|
| 36 | return peak_array |
|
| 37 | ||
| 38 | ||
| 39 | def del_potential(dataframe_x, dataframe_y): |
|