GitHub Access Token became invalid

It seems like the GitHub access token used for retrieving details about this repository from GitHub became invalid. This might prevent certain types of inspections from being run (in particular, everything related to pull requests).
Please ask an admin of your repository to re-new the access token on this website.

Code Duplication    Length = 31-31 lines in 4 locations

voltcycle/core.py 1 location

@@ 404-434 (lines=31) @@
401
    return index_list
402
403
404
def peak_values(DataFrame_x, DataFrame_y):
405
    """Outputs x (potentials) and y (currents) values from data indices
406
        given by peak_detection function.
407
408
       ----------
409
       Parameters
410
       ----------
411
       DataFrame_x : should be in the form of a pandas DataFrame column.
412
         For example, df['potentials'] could be input as the column of x
413
         data.
414
415
        DataFrame_y : should be in the form of a pandas DataFrame column.
416
          For example, df['currents'] could be input as the column of y
417
          data.
418
419
       Returns
420
       -------
421
       Result : numpy array of coordinates at peaks in the following order:
422
         potential of peak on top curve, current of peak on top curve,
423
         potential of peak on bottom curve, current of peak on bottom curve"""
424
    index = peak_detection_fxn(DataFrame_y)
425
    potential1, potential2 = split(DataFrame_x)
426
    current1, current2 = split(DataFrame_y)
427
    Peak_values = []
428
    Peak_values.append(potential2[(index[0])])  # TOPX (bottom part of curve is
429
    # the first part of DataFrame)
430
    Peak_values.append(current2[(index[0])])  # TOPY
431
    Peak_values.append(potential1[(index[1])])  # BOTTOMX
432
    Peak_values.append(current1[(index[1])])  # BOTTOMY
433
    Peak_array = np.array(Peak_values)
434
    return Peak_array
435
436
437
def del_potential(DataFrame_x, DataFrame_y):

practice/core.py 1 location

@@ 316-346 (lines=31) @@
313
    return index_list
314
315
316
def peak_values(DataFrame_x, DataFrame_y):
317
    """Outputs x (potentials) and y (currents) values from data indices
318
        given by peak_detection function.
319
320
       ----------
321
       Parameters
322
       ----------
323
       DataFrame_x : should be in the form of a pandas DataFrame column.
324
         For example, df['potentials'] could be input as the column of x
325
         data.
326
327
        DataFrame_y : should be in the form of a pandas DataFrame column.
328
          For example, df['currents'] could be input as the column of y
329
          data.
330
331
       Returns
332
       -------
333
       Result : numpy array of coordinates at peaks in the following order:
334
         potential of peak on top curve, current of peak on top curve,
335
         potential of peak on bottom curve, current of peak on bottom curve"""
336
    index = peak_detection_fxn(DataFrame_y)
337
    potential1, potential2 = split(DataFrame_x)
338
    current1, current2 = split(DataFrame_y)
339
    Peak_values = []
340
    Peak_values.append(potential2[(index[0])])  # TOPX (bottom part of curve is
341
    # the first part of DataFrame)
342
    Peak_values.append(current2[(index[0])])  # TOPY
343
    Peak_values.append(potential1[(index[1])])  # BOTTOMX
344
    Peak_values.append(current1[(index[1])])  # BOTTOMY
345
    Peak_array = np.array(Peak_values)
346
    return Peak_array
347
348
349
def del_potential(DataFrame_x, DataFrame_y):

practice/dash_resumable_upload.py 1 location

@@ 316-346 (lines=31) @@
313
    return index_list
314
315
316
def peak_values(DataFrame_x, DataFrame_y):
317
    """Outputs x (potentials) and y (currents) values from data indices
318
        given by peak_detection function.
319
320
       ----------
321
       Parameters
322
       ----------
323
       DataFrame_x : should be in the form of a pandas DataFrame column.
324
         For example, df['potentials'] could be input as the column of x
325
         data.
326
327
        DataFrame_y : should be in the form of a pandas DataFrame column.
328
          For example, df['currents'] could be input as the column of y
329
          data.
330
331
       Returns
332
       -------
333
       Result : numpy array of coordinates at peaks in the following order:
334
         potential of peak on top curve, current of peak on top curve,
335
         potential of peak on bottom curve, current of peak on bottom curve"""
336
    index = peak_detection_fxn(DataFrame_y)
337
    potential1, potential2 = split(DataFrame_x)
338
    current1, current2 = split(DataFrame_y)
339
    Peak_values = []
340
    Peak_values.append(potential2[(index[0])])  # TOPX (bottom part of curve is
341
    # the first part of DataFrame)
342
    Peak_values.append(current2[(index[0])])  # TOPY
343
    Peak_values.append(potential1[(index[1])])  # BOTTOMX
344
    Peak_values.append(current1[(index[1])])  # BOTTOMY
345
    Peak_array = np.array(Peak_values)
346
    return Peak_array
347
348
349
def del_potential(DataFrame_x, DataFrame_y):

voltcycle/submodule/calculations.py 1 location

@@ 5-35 (lines=31) @@
2
import pandas as pd
3
4
5
def peak_values(DataFrame_x, DataFrame_y):
6
    """Outputs x (potentials) and y (currents) values from data indices
7
        given by peak_detection function.
8
9
       ----------
10
       Parameters
11
       ----------
12
       DataFrame_x : should be in the form of a pandas DataFrame column.
13
         For example, df['potentials'] could be input as the column of x
14
         data.
15
16
        DataFrame_y : should be in the form of a pandas DataFrame column.
17
          For example, df['currents'] could be input as the column of y
18
          data.
19
20
       Returns
21
       -------
22
       Result : numpy array of coordinates at peaks in the following order:
23
         potential of peak on top curve, current of peak on top curve,
24
         potential of peak on bottom curve, current of peak on bottom curve"""
25
    index = peak_detection(DataFrame_y)
26
    potential1, potential2 = split(DataFrame_x)
27
    current1, current2 = split(DataFrame_y)
28
    Peak_values = []
29
    Peak_values.append(potential2[(index[0])])  # TOPX (bottom part of curve is
30
    # the first part of DataFrame)
31
    Peak_values.append(current2[(index[0])])  # TOPY
32
    Peak_values.append(potential1[(index[1])])  # BOTTOMX
33
    Peak_values.append(current1[(index[1])])  # BOTTOMY
34
    Peak_array = np.array(Peak_values)
35
    return Peak_array
36
37
38
def del_potential(DataFrame_x, DataFrame_y):