|
1
|
|
|
|
|
|
|
|
|
|
2
|
|
|
import dash_resumable_upload
|
|
3
|
|
|
import dash
|
|
4
|
|
|
import dash_html_components as html
|
|
5
|
|
|
from dash.dependencies import Input, Output
|
|
6
|
|
|
import base64
|
|
7
|
|
|
from os import listdir,system,path,remove
|
|
|
|
|
|
|
8
|
|
|
import dash_table_experiments as dt
|
|
9
|
|
|
import dash_core_components as dcc
|
|
10
|
|
|
from os.path import isfile, join
|
|
11
|
|
|
import shutil
|
|
12
|
|
|
import time
|
|
13
|
|
|
import core
|
|
14
|
|
|
import io
|
|
15
|
|
|
import plotly.graph_objs as go
|
|
16
|
|
|
import pandas as pd
|
|
17
|
|
|
import numpy as np
|
|
18
|
|
|
|
|
19
|
|
|
#try:
|
|
20
|
|
|
# system("rm -r uploads")
|
|
21
|
|
|
#except:
|
|
22
|
|
|
# pass
|
|
23
|
|
|
|
|
24
|
|
|
directory = './uploads'
|
|
25
|
|
|
|
|
26
|
|
|
if path.exists(directory):
|
|
27
|
|
|
system("rm -r uploads")
|
|
28
|
|
|
# remove(directory)
|
|
29
|
|
|
else:
|
|
30
|
|
|
pass
|
|
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
app = dash.Dash('')
|
|
33
|
|
|
|
|
34
|
|
|
#external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css', 'https://codepen.io/rmarren1/pen/eMQKBW.css']
|
|
|
|
|
|
|
35
|
|
|
#app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
|
|
36
|
|
|
|
|
37
|
|
|
colors = {
|
|
38
|
|
|
'background': '#ECF0F1',
|
|
39
|
|
|
'text': '#800000'
|
|
40
|
|
|
}
|
|
41
|
|
|
|
|
42
|
|
|
image_filename = 'Logo.png' # replace with your own image
|
|
43
|
|
|
encoded_image = base64.b64encode(open(image_filename, 'rb').read()).decode('ascii')
|
|
44
|
|
|
|
|
45
|
|
|
dash_resumable_upload.decorate_server(app.server, "uploads")
|
|
46
|
|
|
|
|
47
|
|
|
app.scripts.config.serve_locally = True # Uploaded to npm, this can work online now too.
|
|
48
|
|
|
|
|
49
|
|
|
|
|
50
|
|
|
app.css.append_css({
|
|
51
|
|
|
"external_url": "https://codepen.io/rmarren1/pen/eMQKBW.css"
|
|
52
|
|
|
})
|
|
53
|
|
|
|
|
54
|
|
|
app.layout = html.Div(style={'backgroundColor': colors['background']}, children=[
|
|
55
|
|
|
html.H1(
|
|
56
|
|
|
children='VoltCycle',
|
|
57
|
|
|
style={
|
|
58
|
|
|
'textAlign': 'center',
|
|
59
|
|
|
'color': colors['text']
|
|
60
|
|
|
}
|
|
61
|
|
|
),
|
|
62
|
|
|
|
|
63
|
|
|
html.Div([
|
|
64
|
|
|
html.Img(draggable=True, style={
|
|
65
|
|
|
'height': '20%',
|
|
|
|
|
|
|
66
|
|
|
'width': '20%'
|
|
|
|
|
|
|
67
|
|
|
}, src='data:image/png;base64,{}'.format(encoded_image))
|
|
|
|
|
|
|
68
|
|
|
], style={'textAlign': 'center'}),
|
|
|
|
|
|
|
69
|
|
|
|
|
70
|
|
|
html.H2(children='A Tool for Accelerating the Analysis of Cyclic Voltammetry Data', style={
|
|
71
|
|
|
'textAlign': 'center',
|
|
72
|
|
|
'color': colors['text']
|
|
73
|
|
|
}),
|
|
74
|
|
|
html.Br(),
|
|
75
|
|
|
html.Div([
|
|
76
|
|
|
html.Link(rel='stylesheet', href='https://codepen.io/rmarren1/pen/eMQKBW.css'),
|
|
|
|
|
|
|
77
|
|
|
dash_resumable_upload.Upload(
|
|
|
|
|
|
|
78
|
|
|
id='upload',
|
|
79
|
|
|
maxFiles=1,
|
|
80
|
|
|
maxFileSize=1024*1024*1000, # 100 MB
|
|
81
|
|
|
service="/upload_resumable",
|
|
82
|
|
|
textLabel="Upload Files",
|
|
83
|
|
|
startButton=False)
|
|
84
|
|
|
]),
|
|
85
|
|
|
html.Div(id='output_uploaded_file'),
|
|
86
|
|
|
html.Br(),
|
|
87
|
|
|
html.H2(
|
|
88
|
|
|
children='Select File to Analyze',
|
|
89
|
|
|
style={
|
|
90
|
|
|
'textAlign': 'center',
|
|
91
|
|
|
'color': colors['text']
|
|
92
|
|
|
}
|
|
93
|
|
|
),
|
|
94
|
|
|
html.Div([
|
|
95
|
|
|
dcc.Dropdown(id='files_dropdown')
|
|
|
|
|
|
|
96
|
|
|
],style={'width': '70%', 'height': '40', 'display': 'inline-block', 'textAlign': 'center'}
|
|
|
|
|
|
|
97
|
|
|
),
|
|
|
|
|
|
|
98
|
|
|
html.Div([
|
|
99
|
|
|
html.Br(),
|
|
100
|
|
|
dcc.Graph(id='CV_graph'),
|
|
101
|
|
|
],style={
|
|
|
|
|
|
|
102
|
|
|
'columnCount': 1,
|
|
103
|
|
|
'width':'70%',
|
|
104
|
|
|
'height': '80%',
|
|
105
|
|
|
}
|
|
106
|
|
|
),
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
|
|
|
109
|
|
|
html.Div([
|
|
110
|
|
|
html.Br(),
|
|
111
|
|
|
html.H2(
|
|
112
|
|
|
children='Redox Properties',
|
|
113
|
|
|
style={
|
|
114
|
|
|
'color': colors['text']
|
|
115
|
|
|
}
|
|
116
|
|
|
),
|
|
117
|
|
|
dt.DataTable(
|
|
118
|
|
|
rows=[{}],
|
|
119
|
|
|
row_selectable=True,
|
|
120
|
|
|
filterable=True,
|
|
121
|
|
|
selected_row_indices=[],
|
|
122
|
|
|
id='datatable_initial'
|
|
123
|
|
|
),
|
|
124
|
|
|
html.Div(id='selected-indexes'),
|
|
125
|
|
|
|
|
126
|
|
|
],
|
|
127
|
|
|
style={
|
|
|
|
|
|
|
128
|
|
|
'width': '98%',
|
|
129
|
|
|
#'height': '60px',
|
|
130
|
|
|
#'lineHeight': '60px',
|
|
131
|
|
|
'margin': '10px'
|
|
132
|
|
|
},
|
|
133
|
|
|
)
|
|
|
|
|
|
|
134
|
|
|
|
|
135
|
|
|
])
|
|
136
|
|
|
|
|
137
|
|
|
|
|
138
|
|
|
def parse_contents(value):
|
|
139
|
|
|
|
|
140
|
|
|
if path.exists(directory):
|
|
141
|
|
|
lines1 = base64.b64encode(open("uploads/%s" % (value), 'rb').read())
|
|
142
|
|
|
lines2 = base64.b64decode(lines1).decode('utf-8').split('\n')
|
|
143
|
|
|
dict_1, n_cycle = core.read_file_dash(lines2)
|
|
144
|
|
|
#print(n_cycle)
|
|
145
|
|
|
df = core.data_frame(dict_1, 1)
|
|
146
|
|
|
return df
|
|
147
|
|
|
|
|
148
|
|
|
|
|
149
|
|
|
def data_analysis(df):
|
|
150
|
|
|
results_dict = {}
|
|
151
|
|
|
|
|
152
|
|
|
# df = main.data_frame(dict_1,1)
|
|
153
|
|
|
x = df['Potential']
|
|
154
|
|
|
y = df['Current']
|
|
155
|
|
|
# Peaks are here [list]
|
|
156
|
|
|
peak_index = core.peak_detection_fxn(y)
|
|
157
|
|
|
# Split x,y to get baselines
|
|
158
|
|
|
x1,x2 = core.split(x)
|
|
|
|
|
|
|
159
|
|
|
y1,y2 = core.split(y)
|
|
|
|
|
|
|
160
|
|
|
y_base1 = core.linear_background(x1,y1)
|
|
|
|
|
|
|
161
|
|
|
y_base2 = core.linear_background(x2,y2)
|
|
|
|
|
|
|
162
|
|
|
# Calculations based on baseline and peak
|
|
163
|
|
|
values = core.peak_values(x,y)
|
|
|
|
|
|
|
164
|
|
|
Et = values[0]
|
|
165
|
|
|
Eb = values[2]
|
|
166
|
|
|
dE = core.del_potential(x,y)
|
|
|
|
|
|
|
167
|
|
|
half_E = min(Et,Eb) + core.half_wave_potential(x,y)
|
|
|
|
|
|
|
168
|
|
|
ia = core.peak_heights(x,y)[0]
|
|
|
|
|
|
|
169
|
|
|
ic = core.peak_heights(x,y)[1]
|
|
|
|
|
|
|
170
|
|
|
ratio_i = core.peak_ratio(x,y)
|
|
|
|
|
|
|
171
|
|
|
results_dict['Peak Current Ratio'] = ratio_i
|
|
172
|
|
|
results_dict['Ipc (A)'] = ic
|
|
173
|
|
|
results_dict['Ipa (A)'] = ia
|
|
174
|
|
|
results_dict['Epc (V)'] = Eb
|
|
175
|
|
|
results_dict['Epa (V)'] = Et
|
|
176
|
|
|
results_dict['∆E (V)'] = dE
|
|
177
|
|
|
results_dict['Redox Potential (V)'] = half_E
|
|
178
|
|
|
if dE>0.3:
|
|
|
|
|
|
|
179
|
|
|
results_dict['Reversible'] = 'No'
|
|
180
|
|
|
else:
|
|
181
|
|
|
results_dict['Reversible'] = 'Yes'
|
|
182
|
|
|
|
|
|
|
|
|
|
183
|
|
|
if half_E>0 and 'Yes' in results_dict.values():
|
|
|
|
|
|
|
184
|
|
|
results_dict['Type'] = 'Catholyte'
|
|
185
|
|
|
elif 'Yes' in results_dict.values():
|
|
186
|
|
|
results_dict['Type'] = 'Anolyte'
|
|
187
|
|
|
return results_dict, x1, x2, y1, y2, y_base1, y_base2, peak_index
|
|
188
|
|
|
#return results_dict
|
|
189
|
|
|
|
|
190
|
|
|
|
|
191
|
|
|
@app.callback(Output('output_uploaded_file', 'children'),
|
|
192
|
|
|
[Input('upload', 'fileNames')])
|
|
193
|
|
|
def display_files(fileNames):
|
|
194
|
|
|
if fileNames is not None:
|
|
195
|
|
|
return html.Ul([html.Li(html.A(x), style={'textAlign': 'center'}) for x in fileNames])
|
|
196
|
|
|
return html.Ul(html.Li("No Files Uploaded Yet!"), style={'textAlign': 'center'})
|
|
197
|
|
|
|
|
198
|
|
|
|
|
199
|
|
|
@app.callback(Output('files_dropdown', 'options'),
|
|
200
|
|
|
[Input('upload','fileNames')])
|
|
|
|
|
|
|
201
|
|
|
def dropdown_files(fileNames):
|
|
202
|
|
|
mypath='./uploads/'
|
|
|
|
|
|
|
203
|
|
|
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
|
|
204
|
|
|
return [{'label': i, 'value': i} for i in onlyfiles]
|
|
205
|
|
|
|
|
206
|
|
|
|
|
207
|
|
|
@app.callback( #update charge datatable
|
|
208
|
|
|
Output('datatable_initial', 'rows'),
|
|
209
|
|
|
[Input('files_dropdown', 'value')])
|
|
210
|
|
|
def update_table1(value):
|
|
211
|
|
|
|
|
|
|
|
|
|
212
|
|
|
df = parse_contents(value)
|
|
213
|
|
|
#print(df.head())
|
|
214
|
|
|
#final_dict = data_analysis(df)
|
|
215
|
|
|
final_dict, x_1, x_2, y_1, y_2, ybase_1, ybase_2, peak_i = data_analysis(df)
|
|
216
|
|
|
df1=pd.DataFrame.from_records([final_dict])
|
|
|
|
|
|
|
217
|
|
|
return df1.to_dict('records')
|
|
218
|
|
|
|
|
219
|
|
|
|
|
220
|
|
|
@app.callback(
|
|
221
|
|
|
Output('CV_graph', 'figure'),
|
|
222
|
|
|
[Input('files_dropdown', 'value')])
|
|
223
|
|
|
def update_figure(value):
|
|
224
|
|
|
df = parse_contents(value)
|
|
225
|
|
|
final_dict, x_1, x_2, y_1, y_2, ybase_1, ybase_2, peak_i = data_analysis(df)
|
|
226
|
|
|
|
|
|
|
|
|
|
227
|
|
|
trace1 = go.Scatter(
|
|
228
|
|
|
x = df['Potential'],
|
|
|
|
|
|
|
229
|
|
|
y = df['Current'],
|
|
|
|
|
|
|
230
|
|
|
marker={
|
|
|
|
|
|
|
231
|
|
|
'size': 15,
|
|
232
|
|
|
'opacity': 0.5,
|
|
233
|
|
|
'color' : '#F00000'
|
|
234
|
|
|
})
|
|
235
|
|
|
trace2 = go.Scatter(
|
|
236
|
|
|
x = x_1,
|
|
|
|
|
|
|
237
|
|
|
y = ybase_1,
|
|
|
|
|
|
|
238
|
|
|
mode = 'lines',
|
|
|
|
|
|
|
239
|
|
|
line = dict(
|
|
|
|
|
|
|
240
|
|
|
color = ('rgb(0, 0, 256)'),
|
|
|
|
|
|
|
241
|
|
|
width = 3,
|
|
|
|
|
|
|
242
|
|
|
dash = 'dash')
|
|
|
|
|
|
|
243
|
|
|
)
|
|
|
|
|
|
|
244
|
|
|
trace3 = go.Scatter(
|
|
245
|
|
|
x = x_2,
|
|
|
|
|
|
|
246
|
|
|
y = ybase_2,
|
|
|
|
|
|
|
247
|
|
|
mode = 'lines',
|
|
|
|
|
|
|
248
|
|
|
line = dict(
|
|
|
|
|
|
|
249
|
|
|
color = ('rgb(0, 0, 256)'),
|
|
|
|
|
|
|
250
|
|
|
width = 3,
|
|
|
|
|
|
|
251
|
|
|
dash = 'dash')
|
|
|
|
|
|
|
252
|
|
|
)
|
|
|
|
|
|
|
253
|
|
|
trace4 = go.Scatter(
|
|
254
|
|
|
x = np.array(x_1[peak_i[1]]),
|
|
|
|
|
|
|
255
|
|
|
y = np.array(y_1[peak_i[1]]),
|
|
|
|
|
|
|
256
|
|
|
mode = 'markers',
|
|
|
|
|
|
|
257
|
|
|
marker={
|
|
|
|
|
|
|
258
|
|
|
'size': 35,
|
|
259
|
|
|
'opacity': 0.5,
|
|
260
|
|
|
'color' : '#000080'
|
|
261
|
|
|
})
|
|
262
|
|
|
trace5 = go.Scatter(
|
|
263
|
|
|
x = np.array(x_2[peak_i[0]]),
|
|
|
|
|
|
|
264
|
|
|
y = np.array(y_2[peak_i[0]]),
|
|
|
|
|
|
|
265
|
|
|
mode = 'markers',
|
|
|
|
|
|
|
266
|
|
|
marker={
|
|
|
|
|
|
|
267
|
|
|
'size': 35,
|
|
268
|
|
|
'opacity': 0.5,
|
|
269
|
|
|
'color' : '#000080'
|
|
270
|
|
|
})
|
|
271
|
|
|
data = [trace1, trace2, trace3, trace4, trace5]
|
|
272
|
|
|
|
|
|
|
|
|
|
273
|
|
|
return {
|
|
274
|
|
|
'data': data,
|
|
275
|
|
|
#'layout' : {'Dash'}
|
|
276
|
|
|
'layout': go.Layout(
|
|
277
|
|
|
xaxis={'title': 'Voltage (V)'},
|
|
278
|
|
|
yaxis={'title': 'Current (A)'},
|
|
279
|
|
|
margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
|
|
280
|
|
|
# #legend={'x': 0, 'y': 1},
|
|
|
|
|
|
|
281
|
|
|
showlegend = False,
|
|
|
|
|
|
|
282
|
|
|
hovermode='closest',
|
|
283
|
|
|
)
|
|
284
|
|
|
}
|
|
285
|
|
|
|
|
286
|
|
|
|
|
287
|
|
|
|
|
288
|
|
|
# return {
|
|
289
|
|
|
# 'data': [
|
|
290
|
|
|
# {'x': [x1[peak_index[1]]], 'y': [x1[peak_index[1]]], 'type': 'point'},
|
|
291
|
|
|
# #{'x': [1, 2, 3], 'y': [2, 4, 5], 'type': 'bar', 'name': u'Montréal'},
|
|
292
|
|
|
# ],
|
|
293
|
|
|
# }
|
|
294
|
|
|
|
|
295
|
|
|
|
|
296
|
|
|
if __name__ == '__main__':
|
|
297
|
|
|
app.run_server(debug=True)
|
|
298
|
|
|
|
The coding style of this project requires that you add a docstring to this code element. Below, you find an example for methods:
If you would like to know more about docstrings, we recommend to read PEP-257: Docstring Conventions.