|
1
|
|
|
#! /usr/bin/env python |
|
2
|
|
|
# |
|
3
|
|
|
# Copyright (C) 2016 Rich Lewis <[email protected]> |
|
4
|
|
|
# License: 3-clause BSD |
|
5
|
|
|
|
|
6
|
|
|
import warnings |
|
7
|
|
|
import logging |
|
8
|
|
|
import os |
|
9
|
|
|
from collections import namedtuple |
|
10
|
|
|
|
|
11
|
|
|
import numpy as np |
|
12
|
|
|
import pandas as pd |
|
13
|
|
|
import h5py |
|
14
|
|
|
from fuel.datasets import H5PYDataset |
|
15
|
|
|
|
|
16
|
|
|
from ... import forcefields |
|
17
|
|
|
from ... import filters |
|
18
|
|
|
from ... import descriptors |
|
19
|
|
|
from ... import cross_validation |
|
20
|
|
|
from ... import standardizers |
|
21
|
|
|
|
|
22
|
|
|
logger = logging.getLogger(__name__) |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
Feature = namedtuple('Feature', ['fper', 'key', 'axis_names']) |
|
26
|
|
|
|
|
27
|
|
|
DEFAULT_FEATURES = ( |
|
28
|
|
|
Feature(fper=descriptors.MorganFingerprinter(), |
|
29
|
|
|
key='X_morg', |
|
30
|
|
|
axis_names=['batch', 'features']), |
|
31
|
|
|
Feature(fper=descriptors.PhysicochemicalFingerprinter(), |
|
32
|
|
|
key='X_pc', |
|
33
|
|
|
axis_names=['batch', 'features']), |
|
34
|
|
|
Feature(fper=descriptors.AtomFeatureCalculator(max_atoms=100), |
|
35
|
|
|
key='A', |
|
36
|
|
|
axis_names=['batch', 'atom_idx', 'features']), |
|
37
|
|
|
Feature(fper=descriptors.GraphDistanceCalculator(max_atoms=100), |
|
38
|
|
|
key='G', |
|
39
|
|
|
axis_names=['batch', 'atom_idx', 'atom_idx']), |
|
40
|
|
|
Feature(fper=descriptors.SpaceDistanceCalculator(max_atoms=100), |
|
41
|
|
|
key='G_d', |
|
42
|
|
|
axis_names=['batch', 'atom_idx', 'atom_idx']), |
|
43
|
|
|
Feature(fper=descriptors.ChemAxonFeatureCalculator(feat_set='optimal'), |
|
44
|
|
|
key='X_cx', |
|
45
|
|
|
axis_names=['batch', 'features']), |
|
46
|
|
|
Feature(fper=descriptors.ChemAxonAtomFeatureCalculator(feat_set='all', max_atoms=), |
|
|
|
|
|
|
47
|
|
|
key='A_cx', |
|
48
|
|
|
axis_names=['batch', 'atom_idx', 'features']) |
|
49
|
|
|
) |
|
50
|
|
|
|
|
51
|
|
|
DEFAULT_FILTERS = ( |
|
52
|
|
|
filters.OrganicFilter(), |
|
53
|
|
|
filters.AtomNumberFilter(above=5, below=100, include_hydrogens=True), |
|
54
|
|
|
filters.MassFilter(below=1000) |
|
55
|
|
|
) |
|
56
|
|
|
|
|
57
|
|
|
DEFAULT_STANDARDIZER = standardizers.ChemAxonStandardizer(keep_failed=True, warn_on_fail=False) |
|
58
|
|
|
|
|
59
|
|
|
DEFAULT_FORCEFIELD = forcefields.UFF(add_hs=True, warn_on_fail=False) |
|
60
|
|
|
|
|
61
|
|
|
class Converter(object): |
|
62
|
|
|
""" Create a fuel dataset from molecules and targets. |
|
63
|
|
|
|
|
64
|
|
|
Args: |
|
65
|
|
|
ms (pd.Series): |
|
66
|
|
|
The molecules of the dataset. |
|
67
|
|
|
ys (pd.Series or pd.DataFrame): |
|
68
|
|
|
The target labels of the dataset. |
|
69
|
|
|
output_path (str): |
|
70
|
|
|
The path to which the dataset should be saved. |
|
71
|
|
|
features (list[Feature]): |
|
72
|
|
|
The features to calculate. Defaults are provided. |
|
73
|
|
|
splits (dict): |
|
74
|
|
|
A dictionary of different splits provided. |
|
75
|
|
|
The keys should be the split name, and values an array of indices. |
|
76
|
|
|
Alternatively, if `contiguous_splits` is `True`, the keys should be |
|
77
|
|
|
the split name, and the values a tuple of start and stop. |
|
78
|
|
|
If `None`, use `skchem.cross_validation.SimThresholdSplit` |
|
79
|
|
|
""" |
|
80
|
|
|
|
|
81
|
|
|
|
|
82
|
|
|
def __init__(self, directory, output_directory, output_filename='default.h5'): |
|
83
|
|
|
raise NotImplemented |
|
84
|
|
|
|
|
85
|
|
|
def run(self, ms, y, output_path, |
|
86
|
|
|
features=DEFAULT_FEATURES, splits=None, contiguous=False): |
|
87
|
|
|
|
|
88
|
|
|
self.contiguous = contiguous |
|
89
|
|
|
self.output_path = output_path |
|
90
|
|
|
self.features = features |
|
91
|
|
|
self.feature_names = [feat.key for feat in self.features] + ['y'] |
|
92
|
|
|
|
|
93
|
|
|
self.create_file(output_path) |
|
94
|
|
|
|
|
95
|
|
|
if not splits: |
|
96
|
|
|
splits, idx = self.create_splits(ms) |
|
97
|
|
|
ms, y = ms.ix[idx], y.ix[idx] |
|
98
|
|
|
|
|
99
|
|
|
split_dict = self.process_splits(splits) |
|
100
|
|
|
|
|
101
|
|
|
self.save_splits(split_dict) |
|
102
|
|
|
self.save_molecules(ms) |
|
103
|
|
|
self.save_targets(y) |
|
104
|
|
|
self.save_features(ms) |
|
105
|
|
|
|
|
106
|
|
|
def create_file(self, path): |
|
107
|
|
|
logger.info('Creating h5 file at %s...', self.output_path) |
|
108
|
|
|
self.data_file = h5py.File(path, 'w') |
|
109
|
|
|
return self.data_file |
|
110
|
|
|
|
|
111
|
|
|
def filter(self, data, filters=DEFAULT_FILTERS): |
|
112
|
|
|
|
|
113
|
|
|
""" Filter the compounds according to the usual filters. """ |
|
114
|
|
|
n_initial = len(data) |
|
115
|
|
|
logger.info('Filtering %s compounds', n_initial) |
|
116
|
|
|
|
|
117
|
|
|
for filt in DEFAULT_FILTERS: |
|
118
|
|
|
data = filt.filter(data) |
|
119
|
|
|
|
|
120
|
|
|
logger.info('Filtered out %s compounds', n_initial - len(data)) |
|
121
|
|
|
|
|
122
|
|
|
return data |
|
123
|
|
|
|
|
124
|
|
|
def standardize(self, data, standardizer=DEFAULT_STANDARDIZER): |
|
125
|
|
|
|
|
126
|
|
|
""" Standardize the compounds. """ |
|
127
|
|
|
logger.info('Standardizing %s compounds', len(data)) |
|
128
|
|
|
return standardizer.transform(data) |
|
129
|
|
|
|
|
130
|
|
|
def optimize(self, data, optimizer=DEFAULT_FORCEFIELD): |
|
131
|
|
|
|
|
132
|
|
|
""" Opimize 3D geometry of the comopunds. """ |
|
133
|
|
|
|
|
134
|
|
|
logger.info('Optimizing the geometry of %s compounds with %s', len(data), DEFAULT_FORCEFIELD.__class__) |
|
135
|
|
|
return optimizer.transform(data) |
|
136
|
|
|
|
|
137
|
|
|
def save_molecules(self, mols): |
|
138
|
|
|
|
|
139
|
|
|
""" Save the molecules to the data file. """ |
|
140
|
|
|
|
|
141
|
|
|
logger.info('Writing molecules to file...') |
|
142
|
|
|
logger.debug('Writing %s molecules to %s', len(mols), self.data_file.filename) |
|
143
|
|
|
with warnings.catch_warnings(): |
|
144
|
|
|
warnings.simplefilter('ignore') |
|
145
|
|
|
mols.to_hdf(self.data_file.filename, 'structure') |
|
146
|
|
|
mols.apply(lambda m: m.to_smiles().encode('utf-8')).to_hdf(self.data_file.filename, 'smiles') |
|
147
|
|
|
|
|
148
|
|
|
def save_targets(self, y): |
|
149
|
|
|
|
|
150
|
|
|
""" Save the targets to the data file. """ |
|
151
|
|
|
y_name = getattr(y, 'name', None) |
|
152
|
|
|
if not y_name: |
|
153
|
|
|
y_name = getattr(y.columns, 'name', None) |
|
154
|
|
|
if not y_name: |
|
155
|
|
|
y_name = 'targets' |
|
156
|
|
|
|
|
157
|
|
|
logger.info('Writing %s', y_name) |
|
158
|
|
|
logger.debug('Writing targets of shape %s to %s', y.shape, self.data_file.filename) |
|
159
|
|
|
|
|
160
|
|
|
with warnings.catch_warnings(): |
|
161
|
|
|
warnings.simplefilter('ignore') |
|
162
|
|
|
y.to_hdf(self.data_file.filename, '/targets/' + y_name) |
|
163
|
|
|
|
|
164
|
|
|
if isinstance(y, pd.Series): |
|
165
|
|
|
self.data_file['y'] = h5py.SoftLink('/targets/{}/values'.format(y_name)) |
|
166
|
|
|
self.data_file['y'].dims[0].label = 'batch' |
|
167
|
|
|
|
|
168
|
|
|
elif isinstance(y, pd.DataFrame): |
|
169
|
|
|
self.data_file['y'] = h5py.SoftLink('/targets/{}/block0_values'.format(y_name)) |
|
170
|
|
|
self.data_file['y'].dims[0].label = 'batch' |
|
171
|
|
|
self.data_file['y'].dims[0].label = 'task' |
|
172
|
|
|
|
|
173
|
|
|
def save_features(self, ms): |
|
174
|
|
|
|
|
175
|
|
|
""" Save all features for the dataset. """ |
|
176
|
|
|
logger.debug('Saving features') |
|
177
|
|
|
for feat in self.features: |
|
178
|
|
|
self._save_feature(ms, feat) |
|
179
|
|
|
|
|
180
|
|
|
def _save_feature(self, ms, feat): |
|
181
|
|
|
|
|
182
|
|
|
""" Calculate and save a feature to the data file. """ |
|
183
|
|
|
logger.info('Calculating %s', feat.key) |
|
184
|
|
|
|
|
185
|
|
|
fps = feat.fper.transform(ms) |
|
186
|
|
|
if len(feat.axis_names) > 2: |
|
187
|
|
|
fps = fps.transpose(2, 1, 0) # panel serialize backwards for some reason... |
|
188
|
|
|
logger.debug('Writing features with shape %s to %s', fps.shape, self.data_file.filename) |
|
189
|
|
|
with warnings.catch_warnings(): |
|
190
|
|
|
warnings.simplefilter('ignore') |
|
191
|
|
|
fps.to_hdf(self.data_file.filename, 'features/{}'.format(feat.key)) |
|
192
|
|
|
self.data_file[feat.key] = h5py.SoftLink('/features/{}/block0_values'.format(feat.key)) |
|
193
|
|
|
self.data_file[feat.key].dims[0].label = feat.axis_names[0] |
|
194
|
|
|
self.data_file[feat.key].dims[1].label = feat.axis_names[1] |
|
195
|
|
|
if len(feat.axis_names) > 2: |
|
196
|
|
|
self.data_file[feat.key].dims[2].label = feat.axis_names[2] |
|
197
|
|
|
|
|
198
|
|
|
def create_splits(self, ms, contiguous=True): |
|
199
|
|
|
|
|
200
|
|
|
""" Create a split dict for fuel from mols, using SimThresholdSplit. |
|
201
|
|
|
|
|
202
|
|
|
Args: |
|
203
|
|
|
ms (pd.Series): |
|
204
|
|
|
The molecules to use to design the splits. |
|
205
|
|
|
contiguous (bool): |
|
206
|
|
|
Whether the split should be contiguous. This allows for more |
|
207
|
|
|
efficient loading times. This usually is the appropriate if |
|
208
|
|
|
there are no other splits for the dataset, and will reorder |
|
209
|
|
|
the dataset. |
|
210
|
|
|
Returns: |
|
211
|
|
|
(dict, idx) |
|
212
|
|
|
The split dict, and the index to align the data with. |
|
213
|
|
|
""" |
|
214
|
|
|
|
|
215
|
|
|
logger.info('Creating Similarity Threshold splits...') |
|
216
|
|
|
cv = cross_validation.SimThresholdSplit(ms, memory_optimized=True) |
|
217
|
|
|
train, valid, test = cv.split((70, 15, 15)) |
|
218
|
|
|
|
|
219
|
|
|
def bool_to_index(ser): |
|
220
|
|
|
return np.nonzero(ser.values)[0] |
|
221
|
|
|
|
|
222
|
|
|
if self.contiguous: |
|
223
|
|
|
dset = pd.Series(0, ms.index) |
|
224
|
|
|
dset[train] = 0 |
|
225
|
|
|
dset[valid] = 1 |
|
226
|
|
|
dset[test] = 2 |
|
227
|
|
|
dset = dset.sort_values() |
|
228
|
|
|
idx = dset.index |
|
229
|
|
|
train_split = bool_to_index(dset == 0) |
|
230
|
|
|
valid_split = bool_to_index(dset == 1) |
|
231
|
|
|
test_split = bool_to_index(dset == 2) |
|
232
|
|
|
|
|
233
|
|
|
def min_max(split): |
|
234
|
|
|
return min(split), max(split) + 1 |
|
235
|
|
|
|
|
236
|
|
|
splits = { |
|
237
|
|
|
'train': min_max(train_split), |
|
238
|
|
|
'valid': min_max(valid_split), |
|
239
|
|
|
'test': min_max(test_split) |
|
240
|
|
|
} |
|
241
|
|
|
|
|
242
|
|
|
else: |
|
243
|
|
|
|
|
244
|
|
|
idx = ms.index |
|
245
|
|
|
|
|
246
|
|
|
splits = { |
|
247
|
|
|
'train': bool_to_index(train), |
|
248
|
|
|
'valid': bool_to_index(valid), |
|
249
|
|
|
'test': bool_to_index(test) |
|
250
|
|
|
} |
|
251
|
|
|
|
|
252
|
|
|
return splits, idx |
|
253
|
|
|
|
|
254
|
|
|
def process_splits(self, splits, contiguous=False): |
|
255
|
|
|
|
|
256
|
|
|
""" Create a split dict for fuel from provided indexes. """ |
|
257
|
|
|
|
|
258
|
|
|
logger.info('Creating split array.') |
|
259
|
|
|
|
|
260
|
|
|
split_dict = {} |
|
261
|
|
|
|
|
262
|
|
|
if self.contiguous: |
|
263
|
|
|
logger.debug('Contiguous splits.') |
|
264
|
|
|
for split_name, (start, stop) in splits.items(): |
|
265
|
|
|
split_dict[split_name] = {feat: (start, stop, h5py.Reference()) for feat in self.feature_names} |
|
266
|
|
|
else: |
|
267
|
|
|
for split_name, split in splits.items(): |
|
268
|
|
|
split_indices_name = '{}_indices'.format(split_name).encode('utf-8') |
|
269
|
|
|
logger.debug('Saving %s to %s', split_indices_name, self.data_file.filename) |
|
270
|
|
|
self.data_file[split_indices_name] = split |
|
271
|
|
|
split_ref = self.data_file[split_indices_name].ref |
|
272
|
|
|
split_dict[split_name] = {feat: (-1, -1, split_ref) for feat in self.feature_names} |
|
273
|
|
|
|
|
274
|
|
|
return split_dict |
|
275
|
|
|
|
|
276
|
|
|
def save_splits(self, split_dict): |
|
277
|
|
|
|
|
278
|
|
|
""" Save the splits to the data file. """ |
|
279
|
|
|
|
|
280
|
|
|
logger.info('Producing dataset splits...') |
|
281
|
|
|
split = H5PYDataset.create_split_array(split_dict) |
|
282
|
|
|
logger.debug('split: %s', split) |
|
283
|
|
|
logger.info('Saving splits...') |
|
284
|
|
|
with warnings.catch_warnings(): |
|
285
|
|
|
warnings.simplefilter('ignore') |
|
286
|
|
|
self.data_file.attrs['split'] = split |
|
287
|
|
|
|
|
288
|
|
|
@classmethod |
|
289
|
|
|
def convert(cls, **kwargs): |
|
290
|
|
|
kwargs.setdefault('directory', os.getcwd()) |
|
291
|
|
|
kwargs.setdefault('output_directory', os.getcwd()) |
|
292
|
|
|
|
|
293
|
|
|
return cls(**kwargs).output_path, |
|
294
|
|
|
|
|
295
|
|
|
@classmethod |
|
296
|
|
|
def fill_subparser(cls, subparser): |
|
297
|
|
|
return cls.convert |
|
298
|
|
|
|