|
1
|
|
|
#! /usr/bin/env python |
|
|
|
|
|
|
2
|
|
|
# |
|
3
|
|
|
# Copyright (C) 2016 Rich Lewis <[email protected]> |
|
4
|
|
|
# License: 3-clause BSD |
|
5
|
|
|
|
|
6
|
|
|
import os |
|
7
|
|
|
import logging |
|
8
|
|
|
import itertools |
|
9
|
|
|
from collections import defaultdict |
|
10
|
|
|
|
|
11
|
|
|
import pandas as pd |
|
|
|
|
|
|
12
|
|
|
import numpy as np |
|
|
|
|
|
|
13
|
|
|
from sklearn import metrics |
|
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
from .base import Converter |
|
|
|
|
|
|
16
|
|
|
from ... import io |
|
17
|
|
|
from ... import utils |
|
18
|
|
|
|
|
19
|
|
|
LOGGER = logging.getLogger(__file__) |
|
20
|
|
|
|
|
21
|
|
|
class NMRShiftDB2Converter(Converter): |
|
|
|
|
|
|
22
|
|
|
|
|
23
|
|
|
def __init__(self, directory, output_directory, output_filename='nmrshiftdb2.h5'): |
|
24
|
|
|
|
|
25
|
|
|
output_path = os.path.join(output_directory, output_filename) |
|
26
|
|
|
input_path = os.path.join(directory, 'nmrshiftdb2.sdf') |
|
27
|
|
|
data = self.parse_data(input_path) |
|
28
|
|
|
|
|
29
|
|
|
ys = self.get_spectra(data) |
|
|
|
|
|
|
30
|
|
|
ys = self.process_spectra(ys) |
|
|
|
|
|
|
31
|
|
|
ys = self.combine_duplicates(ys) |
|
|
|
|
|
|
32
|
|
|
self.log_dists(ys) |
|
33
|
|
|
self.log_duplicates(ys) |
|
34
|
|
|
ys = self.squash_duplicates(ys) |
|
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
c13s = self.to_frame(ys.loc[ys['13c'].notnull(), '13c']) |
|
37
|
|
|
data = data[['structure']].join(c13s, how='right') |
|
38
|
|
|
|
|
39
|
|
|
data = self.standardize(data) |
|
|
|
|
|
|
40
|
|
|
data = self.filter(data) |
|
|
|
|
|
|
41
|
|
|
data = self.optimize(data) |
|
|
|
|
|
|
42
|
|
|
|
|
43
|
|
|
ms, y = data.structure, data.drop('structure', axis=1) |
|
|
|
|
|
|
44
|
|
|
self.run(ms, y, output_path=output_path) |
|
|
|
|
|
|
45
|
|
|
|
|
46
|
|
|
def parse_data(self, filepath): |
|
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
""" Reads the raw datafile. """ |
|
49
|
|
|
|
|
50
|
|
|
LOGGER.info('Reading file: %s', filepath) |
|
51
|
|
|
data = io.read_sdf(filepath, removeHs=False, warn_bad_mol=False) |
|
52
|
|
|
data.index = data['nmrshiftdb2 ID'].astype(int) |
|
53
|
|
|
data.index.name = 'nmrshiftdb2_id' |
|
54
|
|
|
data.columns = data.columns.to_series().apply(utils.free_to_snail) |
|
55
|
|
|
data = data.sort_index() |
|
56
|
|
|
LOGGER.info('Read %s molecules.', len(data)) |
|
57
|
|
|
return data |
|
58
|
|
|
|
|
59
|
|
|
def get_spectra(self, data): |
|
|
|
|
|
|
60
|
|
|
|
|
61
|
|
|
""" Retrieves spectra from raw data. """ |
|
62
|
|
|
|
|
63
|
|
|
LOGGER.info('Retrieving spectra from raw data...') |
|
64
|
|
|
isotopes = [ |
|
65
|
|
|
'1h', |
|
66
|
|
|
'11b', |
|
67
|
|
|
'13c', |
|
68
|
|
|
'15n', |
|
69
|
|
|
'17o', |
|
70
|
|
|
'19f', |
|
71
|
|
|
'29si', |
|
72
|
|
|
'31p', |
|
73
|
|
|
'33s', |
|
74
|
|
|
'73ge', |
|
75
|
|
|
'195pt' |
|
76
|
|
|
] |
|
77
|
|
|
|
|
78
|
|
|
def is_spectrum(col_name, ele='c'): |
|
|
|
|
|
|
79
|
|
|
return any(isotope in col_name for isotope in isotopes) |
|
80
|
|
|
|
|
81
|
|
|
spectrum_cols = [c for c in data if is_spectrum(c)] |
|
82
|
|
|
data = data[spectrum_cols] |
|
83
|
|
|
|
|
84
|
|
|
def index_pair(s): |
|
|
|
|
|
|
85
|
|
|
return s[0], int(s[1]) |
|
86
|
|
|
|
|
87
|
|
|
data.columns = pd.MultiIndex.from_tuples([index_pair(i.split('_')[1:]) for i in data.columns]) |
|
|
|
|
|
|
88
|
|
|
return data |
|
89
|
|
|
|
|
90
|
|
|
def process_spectra(self, data): |
|
|
|
|
|
|
91
|
|
|
|
|
92
|
|
|
""" Turn the string representations found in sdf file into a dictionary. """ |
|
93
|
|
|
|
|
94
|
|
|
def spectrum_dict(spectrum_string): |
|
|
|
|
|
|
95
|
|
|
if not isinstance(spectrum_string, str): |
|
96
|
|
|
return np.nan # no spectra are still nan |
|
97
|
|
|
if spectrum_string == '': |
|
98
|
|
|
return np.nan # empty spectra are nan |
|
99
|
|
|
sigs = spectrum_string.strip().strip('|').strip().split('|') # extract signals |
|
100
|
|
|
sig_tup = [tuple(s.split(';')) for s in sigs] # take tuples as (signal, coupling, atom) |
|
101
|
|
|
return {int(s[2]): float(s[0]) for s in sig_tup} # make spectrum a dictionary of atom to signal |
|
|
|
|
|
|
102
|
|
|
|
|
103
|
|
|
return data.applymap(spectrum_dict) |
|
104
|
|
|
|
|
105
|
|
|
def combine_duplicates(self, data): |
|
|
|
|
|
|
106
|
|
|
|
|
107
|
|
|
""" Collect duplicate spectra into one dictionary. All shifts are collected into lists. """ |
|
108
|
|
|
|
|
109
|
|
|
def aggregate_dicts(ds): |
|
|
|
|
|
|
110
|
|
|
res = defaultdict(list) |
|
111
|
|
|
for d in ds: |
|
|
|
|
|
|
112
|
|
|
if not isinstance(d, dict): continue |
|
|
|
|
|
|
113
|
|
|
for k, v in d.items(): |
|
|
|
|
|
|
114
|
|
|
res[k].append(v) |
|
115
|
|
|
return dict(res) if len(res) else np.nan |
|
116
|
|
|
|
|
117
|
|
|
return data.groupby(level=0, axis=1).apply(lambda s: s.apply(aggregate_dicts, axis=1)) |
|
118
|
|
|
|
|
119
|
|
|
def squash_duplicates(self, data): |
|
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
""" Take the mean of all the duplicates. This is where we could do a bit more checking. """ |
|
122
|
|
|
|
|
123
|
|
|
def squash(d): |
|
|
|
|
|
|
124
|
|
|
if not isinstance(d, dict): |
|
125
|
|
|
return np.nan |
|
126
|
|
|
else: |
|
127
|
|
|
return {k: np.mean(v) for k, v in d.items()} |
|
128
|
|
|
|
|
129
|
|
|
return data.applymap(squash) |
|
130
|
|
|
|
|
131
|
|
|
def to_frame(self, data): |
|
|
|
|
|
|
132
|
|
|
|
|
133
|
|
|
""" Convert a series of dictionaries to a dataframe. """ |
|
134
|
|
|
res = pd.DataFrame(data.tolist(), index=data.index) |
|
135
|
|
|
res.columns.name = 'atom_idx' |
|
136
|
|
|
return res |
|
137
|
|
|
|
|
138
|
|
|
def extract_duplicates(self, data, kind='13c'): |
|
|
|
|
|
|
139
|
|
|
|
|
140
|
|
|
""" Get all 13c duplicates. """ |
|
141
|
|
|
|
|
142
|
|
|
def is_duplicate(ele): |
|
|
|
|
|
|
143
|
|
|
if not isinstance(ele, dict): |
|
144
|
|
|
return False |
|
145
|
|
|
else: |
|
146
|
|
|
return len(list(ele.values())[0]) > 1 |
|
147
|
|
|
|
|
148
|
|
|
return data.loc[data[kind].apply(is_duplicate), kind] |
|
149
|
|
|
|
|
150
|
|
|
def log_dists(self, data): |
|
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
def n_spect(ele): |
|
|
|
|
|
|
153
|
|
|
return isinstance(ele, dict) |
|
154
|
|
|
|
|
155
|
|
|
def n_shifts(ele): |
|
|
|
|
|
|
156
|
|
|
return len(ele) if isinstance(ele, dict) else 0 |
|
157
|
|
|
|
|
158
|
|
|
def log_message(func): |
|
|
|
|
|
|
159
|
|
|
return ' '.join('{k}: {v}'.format(k=k, v=v) for k, v in data.applymap(func).sum().to_dict().items()) |
|
|
|
|
|
|
160
|
|
|
|
|
161
|
|
|
LOGGER.info('Number of spectra: %s', log_message(n_spect)) |
|
162
|
|
|
LOGGER.info('Extracted shifts: %s', log_message(n_shifts)) |
|
163
|
|
|
|
|
164
|
|
|
def log_duplicates(self, data): |
|
|
|
|
|
|
165
|
|
|
|
|
166
|
|
|
for kind in '1h', '13c': |
|
167
|
|
|
dups = self.extract_duplicates(data, kind) |
|
168
|
|
|
LOGGER.info('Number of duplicate %s spectra: %s', kind, len(dups)) |
|
169
|
|
|
res = pd.DataFrame(sum((list(itertools.combinations(l, 2)) for s in dups for k, l in s.items()), [])) |
|
|
|
|
|
|
170
|
|
|
LOGGER.info('Number of duplicate %s pairs: %f', kind, len(res)) |
|
171
|
|
|
LOGGER.info('MAE for duplicate %s: %.4f', kind, metrics.mean_absolute_error(res[0], res[1])) |
|
|
|
|
|
|
172
|
|
|
LOGGER.info('MSE for duplicate %s: %.4f', kind, metrics.mean_squared_error(res[0], res[1])) |
|
|
|
|
|
|
173
|
|
|
LOGGER.info('r2 for duplicate %s: %.4f', kind, metrics.r2_score(res[0], res[1])) |
|
174
|
|
|
|
|
175
|
|
|
def plot_duplicates(self, data): |
|
176
|
|
|
|
|
177
|
|
|
""" Plot the duplicates """ |
|
178
|
|
|
pass |
|
179
|
|
|
|
|
180
|
|
|
|
|
181
|
|
|
|
|
182
|
|
|
if __name__ == '__main__': |
|
183
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
184
|
|
|
LOGGER.info('Converting NMRShiftDB2 Dataset...') |
|
185
|
|
|
NMRShiftDB2Converter.convert() |
|
|
|
|
|
The coding style of this project requires that you add a docstring to this code element. Below, you find an example for methods:
If you would like to know more about docstrings, we recommend to read PEP-257: Docstring Conventions.