|
1
|
|
|
#! /usr/bin/env python |
|
|
|
|
|
|
2
|
|
|
# |
|
3
|
|
|
# Copyright (C) 2016 Rich Lewis <[email protected]> |
|
4
|
|
|
# License: 3-clause BSD |
|
5
|
|
|
|
|
6
|
1 |
|
import os |
|
7
|
1 |
|
import zipfile |
|
8
|
1 |
|
import logging |
|
9
|
1 |
|
LOGGER = logging.getLogger(__name__) |
|
10
|
|
|
|
|
11
|
1 |
|
import pandas as pd |
|
|
|
|
|
|
12
|
1 |
|
import numpy as np |
|
|
|
|
|
|
13
|
1 |
|
import skchem |
|
14
|
|
|
|
|
15
|
1 |
|
from .base import Converter |
|
16
|
|
|
|
|
17
|
1 |
|
from ... import standardizers |
|
|
|
|
|
|
18
|
|
|
|
|
19
|
1 |
|
PATCHES = { |
|
20
|
|
|
'820-75-7': r'NNC(=O)CNC(=O)C=[N+]=[N-]', |
|
21
|
|
|
'2435-76-9': r'[N-]=[N+]=C1C=NC(=O)NC1=O', |
|
22
|
|
|
'817-99-2': r'NC(=O)CNC(=O)\C=[N+]=[N-]', |
|
23
|
|
|
'116539-70-9': r'CCCCN(CC(O)C1=C\C(=[N+]=[N-])\C(=O)C=C1)N=O', |
|
24
|
|
|
'115-02-6': r'NC(COC(=O)\C=[N+]=[N-])C(=O)O', |
|
25
|
|
|
'122341-55-3': r'NC(COC(=O)\C=[N+]=[N-])C(=O)O' |
|
26
|
|
|
} |
|
27
|
|
|
|
|
28
|
1 |
|
class MullerAmesConverter(Converter): |
|
|
|
|
|
|
29
|
|
|
|
|
30
|
1 |
|
def __init__(self, directory, output_directory, output_filename='muller_ames.h5'): |
|
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
""" |
|
33
|
|
|
Args: |
|
34
|
|
|
directory (str): |
|
35
|
|
|
Directory in which input files reside. |
|
36
|
|
|
output_directory (str): |
|
37
|
|
|
Directory in which to save the converted dataset. |
|
38
|
|
|
output_filename (str): |
|
39
|
|
|
Name of the saved dataset. Defaults to `muller_ames.h5`. |
|
40
|
|
|
|
|
41
|
|
|
Returns: |
|
42
|
|
|
tuple of str: |
|
43
|
|
|
Single-element tuple containing the path to the converted dataset. |
|
44
|
|
|
""" |
|
45
|
|
|
|
|
46
|
|
|
zip_path = os.path.join(directory, 'ci900161g_si_001.zip') |
|
47
|
|
|
output_path = os.path.join(output_directory, output_filename) |
|
48
|
|
|
|
|
49
|
|
|
with zipfile.ZipFile(zip_path) as f: |
|
|
|
|
|
|
50
|
|
|
f.extractall() |
|
51
|
|
|
|
|
52
|
|
|
# create dataframe |
|
53
|
|
|
data = pd.read_csv(os.path.join(directory, 'smiles_cas_N6512.smi'), |
|
54
|
|
|
delimiter='\t', index_col=1, |
|
55
|
|
|
converters={1: lambda s: s.strip()}, |
|
56
|
|
|
header=None, names=['structure', 'id', 'is_mutagen']) |
|
57
|
|
|
|
|
58
|
|
|
data = self.patch_data(data, PATCHES) |
|
59
|
|
|
|
|
60
|
|
|
data['structure'] = data.structure.apply(skchem.Mol.from_smiles) |
|
|
|
|
|
|
61
|
|
|
|
|
62
|
|
|
data = self.standardize(data) |
|
|
|
|
|
|
63
|
|
|
data = self.optimize(data) |
|
|
|
|
|
|
64
|
|
|
keep = self.filter(data) |
|
|
|
|
|
|
65
|
|
|
|
|
66
|
|
|
ms, ys = keep.structure, keep.is_mutagen |
|
|
|
|
|
|
67
|
|
|
|
|
68
|
|
|
indices = data.reset_index().index.difference(keep.reset_index().index) |
|
69
|
|
|
|
|
70
|
|
|
train = self.parse_splits(os.path.join('splits_train_N6512.csv')) |
|
71
|
|
|
train = self.drop_indices(train, indices) |
|
72
|
|
|
splits = self.create_split_dict(train, 'train') |
|
73
|
|
|
|
|
74
|
|
|
test = self.parse_splits(os.path.join(directory, 'splits_test_N6512.csv')) |
|
75
|
|
|
test = self.drop_indices(test, indices) |
|
76
|
|
|
splits.update(self.create_split_dict(test, 'test')) |
|
77
|
|
|
|
|
78
|
|
|
self.run(ms, ys, output_path, splits=splits) |
|
79
|
|
|
|
|
80
|
1 |
|
def patch_data(self, data, patches): |
|
|
|
|
|
|
81
|
|
|
""" Patch smiles in a DataFrame with rewritten ones that specify diazo |
|
82
|
|
|
groups in rdkit friendly way. """ |
|
83
|
|
|
|
|
84
|
|
|
LOGGER.info('Patching data...') |
|
85
|
|
|
for cas, smiles in patches.items(): |
|
86
|
|
|
data.loc[cas, 'structure'] = smiles |
|
87
|
|
|
|
|
88
|
|
|
return data |
|
89
|
|
|
|
|
90
|
1 |
|
def parse_splits(self, f_path): |
|
|
|
|
|
|
91
|
|
|
LOGGER.info('Parsing splits...') |
|
92
|
|
|
with open(f_path) as f: |
|
|
|
|
|
|
93
|
|
|
splits = [split for split in f.read().strip().splitlines()] |
|
94
|
|
|
|
|
95
|
|
|
splits = [[n for n in split.strip().split(',')] for split in splits] |
|
96
|
|
|
splits = [sorted(int(n) for n in split) for split in splits] # sorted ints |
|
97
|
|
|
return [np.array(split) - 1 for split in splits] # zero based indexing |
|
98
|
|
|
|
|
99
|
1 |
|
def drop_indices(self, splits, indices): |
|
|
|
|
|
|
100
|
|
|
LOGGER.info('Dropping failed compounds from split indices...') |
|
101
|
|
|
for i, split in enumerate(splits): |
|
102
|
|
|
split = split - sum(split > ix for ix in indices) |
|
103
|
|
|
splits[i] = np.delete(split, indices) |
|
104
|
|
|
|
|
105
|
|
|
return splits |
|
106
|
|
|
|
|
107
|
1 |
|
def create_split_dict(self, splits, name): |
|
|
|
|
|
|
108
|
|
|
return {'{}_{}'.format(name, i + 1): split \ |
|
109
|
|
|
for i, split in enumerate(splits)} |
|
110
|
|
|
|
|
111
|
1 |
|
if __name__ == '__main__': |
|
112
|
|
|
logging.basicConfig(level=logging.INFO) |
|
113
|
|
|
LOGGER.info('Converting Muller Ames Dataset...') |
|
114
|
|
|
MullerAmesConverter.convert() |
|
115
|
|
|
|
The coding style of this project requires that you add a docstring to this code element. Below, you find an example for methods:
If you would like to know more about docstrings, we recommend to read PEP-257: Docstring Conventions.