1
|
|
|
#! /usr/bin/env python |
2
|
|
|
# |
3
|
|
|
# Copyright (C) 2007-2009 Rich Lewis <[email protected]> |
4
|
|
|
# License: 3-clause BSD |
5
|
|
|
|
6
|
1 |
|
""" |
7
|
|
|
## skchem.descriptors.fingerprints |
8
|
|
|
|
9
|
|
|
Fingerprinting classes and associated functions are defined. |
10
|
|
|
""" |
11
|
|
|
|
12
|
1 |
|
import pandas as pd |
|
|
|
|
13
|
1 |
|
from rdkit.Chem import GetDistanceMatrix |
|
|
|
|
14
|
1 |
|
from rdkit.DataStructs import ConvertToNumpyArray |
|
|
|
|
15
|
1 |
|
from rdkit.Chem.rdMolDescriptors import ( |
|
|
|
|
16
|
|
|
GetMorganFingerprint, |
17
|
|
|
GetHashedMorganFingerprint, |
18
|
|
|
GetMorganFingerprintAsBitVect, |
19
|
|
|
GetAtomPairFingerprint, |
20
|
|
|
GetHashedAtomPairFingerprint, |
21
|
|
|
GetHashedAtomPairFingerprintAsBitVect, |
22
|
|
|
GetTopologicalTorsionFingerprint, |
23
|
|
|
GetHashedTopologicalTorsionFingerprint, |
24
|
|
|
GetHashedTopologicalTorsionFingerprintAsBitVect, |
25
|
|
|
GetMACCSKeysFingerprint, |
26
|
|
|
GetFeatureInvariants, |
27
|
|
|
GetConnectivityInvariants) |
28
|
1 |
|
from rdkit.Chem.rdReducedGraphs import GetErGFingerprint |
|
|
|
|
29
|
1 |
|
from rdkit.Chem.rdmolops import RDKFingerprint |
|
|
|
|
30
|
|
|
|
31
|
1 |
|
import numpy as np |
|
|
|
|
32
|
1 |
|
from ..base import Transformer, Featurizer |
33
|
|
|
|
34
|
|
|
|
35
|
1 |
|
class MorganFeaturizer(Transformer, Featurizer): |
|
|
|
|
36
|
|
|
""" Morgan fingerprints, implemented by RDKit. |
37
|
|
|
|
38
|
|
|
Notes: |
39
|
|
|
|
40
|
|
|
Currently, folded bits are by far the fastest implementation. |
41
|
|
|
|
42
|
|
|
Due to the speed of calculation, it is unlikely to see a speedup using |
43
|
|
|
the current parallel code, as more time is spent moving data across |
44
|
|
|
processes than for calculating in a single process. |
45
|
|
|
|
46
|
|
|
Examples: |
47
|
|
|
|
48
|
|
|
>>> import skchem |
49
|
|
|
>>> import pandas as pd |
50
|
|
|
>>> pd.options.display.max_rows = pd.options.display.max_columns = 5 |
51
|
|
|
|
52
|
|
|
>>> mf = skchem.features.MorganFeaturizer() |
53
|
|
|
>>> m = skchem.Mol.from_smiles('CCC') |
54
|
|
|
|
55
|
|
|
Can transform an individual molecule to yield a Series: |
56
|
|
|
|
57
|
|
|
>>> mf.transform(m) |
58
|
|
|
morgan_fp_idx |
59
|
|
|
0 0 |
60
|
|
|
1 0 |
61
|
|
|
.. |
62
|
|
|
2046 0 |
63
|
|
|
2047 0 |
64
|
|
|
Name: MorganFeaturizer, dtype: uint8 |
65
|
|
|
|
66
|
|
|
Can transform a list of molecules to yield a DataFrame: |
67
|
|
|
|
68
|
|
|
>>> mf.transform([m]) |
69
|
|
|
morgan_fp_idx 0 1 ... 2046 2047 |
70
|
|
|
0 0 0 ... 0 0 |
71
|
|
|
<BLANKLINE> |
72
|
|
|
[1 rows x 2048 columns] |
73
|
|
|
|
74
|
|
|
Change the number of features the fingerprint is folded down to using |
75
|
|
|
`n_feats`. |
76
|
|
|
|
77
|
|
|
>>> mf.n_feats = 1024 |
78
|
|
|
>>> mf.transform(m) |
79
|
|
|
morgan_fp_idx |
80
|
|
|
0 0 |
81
|
|
|
1 0 |
82
|
|
|
.. |
83
|
|
|
1022 0 |
84
|
|
|
1023 0 |
85
|
|
|
Name: MorganFeaturizer, dtype: uint8 |
86
|
|
|
|
87
|
|
|
Count fingerprints with `as_bits` = False |
88
|
|
|
|
89
|
|
|
>>> mf.as_bits = False |
90
|
|
|
>>> res = mf.transform(m); res[res > 0] |
91
|
|
|
morgan_fp_idx |
92
|
|
|
33 2 |
93
|
|
|
80 1 |
94
|
|
|
294 2 |
95
|
|
|
320 1 |
96
|
|
|
Name: MorganFeaturizer, dtype: int64 |
97
|
|
|
|
98
|
|
|
Pseudo-gradient with `grad` shows which atoms contributed to which |
99
|
|
|
feature. |
100
|
|
|
|
101
|
|
|
>>> mf.grad(m)[res > 0] |
102
|
|
|
atom_idx 0 1 2 |
103
|
|
|
features |
104
|
|
|
33 1 0 1 |
105
|
|
|
80 0 1 0 |
106
|
|
|
294 1 2 1 |
107
|
|
|
320 1 1 1 |
108
|
|
|
|
109
|
|
|
""" |
110
|
1 |
|
def __init__(self, radius=2, n_feats=2048, as_bits=True, |
|
|
|
|
111
|
|
|
use_features=False, use_bond_types=True, use_chirality=False, |
112
|
|
|
n_jobs=1, verbose=True): |
113
|
|
|
|
114
|
|
|
""" Initialize the fingerprinter object. |
115
|
|
|
|
116
|
|
|
Args: |
117
|
|
|
radius (int): |
118
|
|
|
The maximum radius for atom environments. |
119
|
|
|
Default is `2`. |
120
|
|
|
|
121
|
|
|
n_feats (int): |
122
|
|
|
The number of features to which to fold the fingerprint down. |
123
|
|
|
For unfolded, use `-1`. |
124
|
|
|
Default is `2048`. |
125
|
|
|
|
126
|
|
|
as_bits (bool): |
127
|
|
|
Whether to return bits (`True`) or counts (`False`). |
128
|
|
|
Default is `True`. |
129
|
|
|
|
130
|
|
|
use_features (bool): |
131
|
|
|
Whether to use map atom types to generic features (FCFP). |
132
|
|
|
Default is `False`. |
133
|
|
|
|
134
|
|
|
use_bond_types (bool): |
135
|
|
|
Whether to use bond types to differentiate environments. |
136
|
|
|
Default is `False`. |
137
|
|
|
|
138
|
|
|
use_chirality (bool): |
139
|
|
|
Whether to use chirality to differentiate environments. |
140
|
|
|
Default is `False`. |
141
|
|
|
|
142
|
|
|
n_jobs (int): |
143
|
|
|
The number of processes to run the featurizer in. |
144
|
|
|
|
145
|
|
|
verbose (bool): |
146
|
|
|
Whether to output a progress bar. |
147
|
|
|
|
148
|
|
|
""" |
149
|
|
|
|
150
|
1 |
|
super(MorganFeaturizer, self).__init__(n_jobs=n_jobs, verbose=verbose) |
151
|
1 |
|
self.radius = radius |
152
|
1 |
|
self.n_feats = n_feats |
153
|
1 |
|
self.sparse = self.n_feats < 0 |
154
|
1 |
|
self.as_bits = as_bits |
155
|
1 |
|
self.use_features = use_features |
156
|
1 |
|
self.use_bond_types = use_bond_types |
157
|
1 |
|
self.use_chirality = use_chirality |
158
|
|
|
|
159
|
1 |
View Code Duplication |
def _transform_mol(self, mol): |
|
|
|
|
160
|
|
|
|
161
|
|
|
"""Private method to transform a skchem molecule. |
162
|
|
|
|
163
|
|
|
Use `transform` for the public method, which genericizes the argument |
164
|
|
|
to iterables of mols. |
165
|
|
|
|
166
|
|
|
Args: |
167
|
|
|
mol (skchem.Mol): Molecule to calculate fingerprint for. |
168
|
|
|
|
169
|
|
|
Returns: |
170
|
|
|
np.array or dict: |
171
|
|
|
Fingerprint as an array (or a dict if sparse). |
172
|
|
|
""" |
173
|
|
|
|
174
|
1 |
|
if self.as_bits and self.n_feats > 0: |
175
|
|
|
|
176
|
1 |
|
fp = GetMorganFingerprintAsBitVect( |
|
|
|
|
177
|
|
|
mol, self.radius, nBits=self.n_feats, |
178
|
|
|
useFeatures=self.use_features, |
179
|
|
|
useBondTypes=self.use_bond_types, |
180
|
|
|
useChirality=self.use_chirality) |
181
|
|
|
|
182
|
1 |
|
res = np.array(0) |
183
|
1 |
|
ConvertToNumpyArray(fp, res) |
184
|
1 |
|
res = res.astype(np.uint8) |
185
|
|
|
|
186
|
|
|
else: |
187
|
|
|
|
188
|
1 |
|
if self.n_feats <= 0: |
189
|
|
|
|
190
|
|
|
res = GetMorganFingerprint( |
191
|
|
|
mol, self.radius, |
192
|
|
|
useFeatures=self.use_features, |
193
|
|
|
useBondTypes=self.use_bond_types, |
194
|
|
|
useChirality=self.use_chirality) |
195
|
|
|
|
196
|
|
|
res = res.GetNonzeroElements() |
197
|
|
|
if self.as_bits: |
198
|
|
|
res = {k: int(v > 0) for k, v in res.items()} |
199
|
|
|
|
200
|
|
|
else: |
201
|
1 |
|
res = GetHashedMorganFingerprint( |
202
|
|
|
mol, self.radius, nBits=self.n_feats, |
203
|
|
|
useFeatures=self.use_features, |
204
|
|
|
useBondTypes=self.use_bond_types, |
205
|
|
|
useChirality=self.use_chirality) |
206
|
|
|
|
207
|
1 |
|
res = np.array(list(res)) |
208
|
|
|
|
209
|
1 |
|
return res |
210
|
|
|
|
211
|
1 |
|
@property |
212
|
|
|
def name(self): |
|
|
|
|
213
|
|
|
return 'morg' |
214
|
|
|
|
215
|
1 |
|
@property |
216
|
|
|
def columns(self): |
217
|
1 |
|
return pd.RangeIndex(self.n_feats, name='morgan_fp_idx') |
218
|
|
|
|
219
|
1 |
|
def grad(self, mol): |
220
|
|
|
|
221
|
|
|
""" Calculate the pseudo gradient with respect to the atoms. |
222
|
|
|
|
223
|
|
|
The pseudo gradient is the number of times the atom set that particular |
224
|
|
|
bit. |
225
|
|
|
|
226
|
|
|
Args: |
227
|
|
|
mol (skchem.Mol): |
228
|
|
|
The molecule for which to calculate the pseudo gradient. |
229
|
|
|
|
230
|
|
|
Returns: |
231
|
|
|
pandas.DataFrame: |
232
|
|
|
Dataframe of pseudogradients, with columns corresponding to |
233
|
|
|
atoms, and rows corresponding to features of the fingerprint. |
234
|
|
|
""" |
235
|
|
|
|
236
|
1 |
|
cols = pd.Index(list(range(len(mol.atoms))), name='atom_idx') |
237
|
1 |
|
dist = GetDistanceMatrix(mol) |
238
|
|
|
|
239
|
1 |
|
info = {} |
240
|
|
|
|
241
|
1 |
|
if self.n_feats < 0: |
242
|
|
|
|
243
|
|
|
res = GetMorganFingerprint(mol, self.radius, |
244
|
|
|
useFeatures=self.use_features, |
245
|
|
|
useBondTypes=self.use_bond_types, |
246
|
|
|
useChirality=self.use_chirality, |
247
|
|
|
bitInfo=info).GetNonzeroElements() |
248
|
|
|
idx_list = list(res.keys()) |
249
|
|
|
idx = pd.Index(idx_list, name='features') |
250
|
|
|
grad = np.zeros((len(idx), len(cols))) |
251
|
|
|
for bit in info: |
252
|
|
|
for atom_idx, radius in info[bit]: |
253
|
|
|
grad[idx_list.index(bit)] += (dist <= radius)[atom_idx] |
254
|
|
|
|
255
|
|
|
else: |
256
|
|
|
|
257
|
1 |
|
GetHashedMorganFingerprint(mol, self.radius, nBits=self.n_feats, |
258
|
|
|
useFeatures=self.use_features, |
259
|
|
|
useBondTypes=self.use_bond_types, |
260
|
|
|
useChirality=self.use_chirality, |
261
|
|
|
bitInfo=info) |
262
|
|
|
|
263
|
1 |
|
idx = pd.Index(range(self.n_feats), name='features') |
264
|
1 |
|
grad = np.zeros((len(idx), len(cols))) |
265
|
|
|
|
266
|
1 |
|
for bit in info: |
267
|
1 |
|
for atom_idx, radius in info[bit]: |
268
|
1 |
|
grad[bit] += (dist <= radius)[atom_idx] |
269
|
|
|
|
270
|
1 |
|
grad = pd.DataFrame(grad, index=idx, columns=cols) |
271
|
|
|
|
272
|
1 |
|
if self.as_bits: |
273
|
|
|
grad = (grad > 0) |
274
|
|
|
|
275
|
1 |
|
return grad.astype(int) |
276
|
|
|
|
277
|
|
|
|
278
|
1 |
|
class AtomPairFeaturizer(Transformer, Featurizer): |
279
|
|
|
|
280
|
|
|
""" Atom Pair Fingerprints, implemented by RDKit. """ |
281
|
|
|
|
282
|
1 |
|
def __init__(self, min_length=1, max_length=30, n_feats=2048, |
|
|
|
|
283
|
|
|
as_bits=False, use_chirality=False, n_jobs=1, verbose=True): |
284
|
|
|
|
285
|
|
|
""" Instantiate an atom pair fingerprinter. |
286
|
|
|
|
287
|
|
|
Args: |
288
|
|
|
min_length (int): |
289
|
|
|
The minimum length of paths between pairs. |
290
|
|
|
Default is `1`, i.e. pairs can be bonded together. |
291
|
|
|
|
292
|
|
|
max_length (int): |
293
|
|
|
The maximum length of paths between pairs. |
294
|
|
|
Default is `30`. |
295
|
|
|
|
296
|
|
|
n_feats (int): |
297
|
|
|
The number of features to which to fold the fingerprint down. |
298
|
|
|
For unfolded, use `-1`. |
299
|
|
|
Default is `2048`. |
300
|
|
|
|
301
|
|
|
as_bits (bool): |
302
|
|
|
Whether to return bits (`True`) or counts (`False`). |
303
|
|
|
Default is `False`. |
304
|
|
|
|
305
|
|
|
use_chirality (bool): |
306
|
|
|
Whether to use chirality to differentiate environments. |
307
|
|
|
Default is `False`. |
308
|
|
|
|
309
|
|
|
n_jobs (int): |
310
|
|
|
The number of processes to run the featurizer in. |
311
|
|
|
|
312
|
|
|
verbose (bool): |
313
|
|
|
Whether to output a progress bar. |
314
|
|
|
""" |
315
|
|
|
|
316
|
|
|
super(AtomPairFeaturizer, self).__init__(n_jobs=n_jobs, |
317
|
|
|
verbose=verbose) |
318
|
|
|
self.min_length = min_length |
319
|
|
|
self.max_length = max_length |
320
|
|
|
self.n_feats = n_feats |
321
|
|
|
self.sparse = self.n_feats < 0 |
322
|
|
|
self.as_bits = as_bits |
323
|
|
|
self.use_chirality = use_chirality |
324
|
|
|
|
325
|
1 |
View Code Duplication |
def _transform_mol(self, mol): |
|
|
|
|
326
|
|
|
|
327
|
|
|
"""Private method to transform a skchem molecule. |
328
|
|
|
|
329
|
|
|
Use transform` for the public method, which genericizes the argument to |
330
|
|
|
iterables of mols. |
331
|
|
|
|
332
|
|
|
Args: |
333
|
|
|
mol (skchem.Mol): Molecule to calculate fingerprint for. |
334
|
|
|
|
335
|
|
|
Returns: |
336
|
|
|
np.array or dict: |
337
|
|
|
Fingerprint as an array (or a dict if sparse). |
338
|
|
|
""" |
339
|
|
|
|
340
|
|
|
if self.as_bits and self.n_feats > 0: |
341
|
|
|
|
342
|
|
|
fp = GetHashedAtomPairFingerprintAsBitVect( |
|
|
|
|
343
|
|
|
mol, nBits=self.n_feats, minLength=self.min_length, |
344
|
|
|
maxLength=self.max_length, includeChirality=self.use_chirality) |
345
|
|
|
|
346
|
|
|
res = np.array(0) |
347
|
|
|
ConvertToNumpyArray(fp, res) |
348
|
|
|
res = res.astype(np.uint8) |
349
|
|
|
|
350
|
|
|
else: |
351
|
|
|
|
352
|
|
|
if self.n_feats <= 0: |
353
|
|
|
|
354
|
|
|
res = GetAtomPairFingerprint( |
355
|
|
|
mol, nBits=self.n_feats, minLength=self.min_length, |
356
|
|
|
maxLength=self.max_length, |
357
|
|
|
includeChirality=self.use_chirality) |
358
|
|
|
|
359
|
|
|
res = res.GetNonzeroElements() |
360
|
|
|
if self.as_bits: |
361
|
|
|
res = {k: int(v > 0) for k, v in res.items()} |
362
|
|
|
|
363
|
|
|
else: |
364
|
|
|
res = GetHashedAtomPairFingerprint( |
365
|
|
|
mol, nBits=self.n_feats, minLength=self.min_length, |
366
|
|
|
maxLength=self.max_length, |
367
|
|
|
includeChirality=self.use_chirality) |
368
|
|
|
|
369
|
|
|
res = np.array(list(res)) |
370
|
|
|
|
371
|
|
|
return res |
372
|
|
|
|
373
|
1 |
|
@property |
374
|
|
|
def name(self): |
|
|
|
|
375
|
|
|
return 'atom_pair' |
376
|
|
|
|
377
|
1 |
|
@property |
378
|
|
|
def columns(self): |
379
|
|
|
return pd.RangeIndex(self.n_feats, name='ap_fp_idx') |
380
|
|
|
|
381
|
|
|
|
382
|
1 |
|
class TopologicalTorsionFeaturizer(Transformer, Featurizer): |
383
|
|
|
|
384
|
|
|
""" Topological Torsion fingerprints, implemented by RDKit. """ |
385
|
|
|
|
386
|
1 |
|
def __init__(self, target_size=4, n_feats=2048, as_bits=False, |
|
|
|
|
387
|
|
|
use_chirality=False, n_jobs=1, verbose=True): |
388
|
|
|
|
389
|
|
|
""" Initialize a TopologicalTorsionFeaturizer object. |
390
|
|
|
|
391
|
|
|
Args: |
392
|
|
|
target_size (int): |
393
|
|
|
# TODO |
394
|
|
|
|
395
|
|
|
n_feats (int): |
396
|
|
|
The number of features to which to fold the fingerprint down. |
397
|
|
|
For unfolded, use `-1`. |
398
|
|
|
Default is `2048`. |
399
|
|
|
|
400
|
|
|
as_bits (bool): |
401
|
|
|
Whether to return bits (`True`) or counts (`False`). |
402
|
|
|
Default is `False`. |
403
|
|
|
|
404
|
|
|
use_chirality (bool): |
405
|
|
|
Whether to use chirality to differentiate environments. |
406
|
|
|
Default is `False`. |
407
|
|
|
n_jobs (int): |
408
|
|
|
The number of processes to run the featurizer in. |
409
|
|
|
|
410
|
|
|
verbose (bool): |
411
|
|
|
Whether to output a progress bar. |
412
|
|
|
""" |
413
|
|
|
|
414
|
|
|
self.target_size = target_size |
415
|
|
|
self.n_feats = n_feats |
416
|
|
|
self.sparse = self.n_feats < 0 |
417
|
|
|
self.as_bits = as_bits |
418
|
|
|
self.use_chirality = use_chirality |
419
|
|
|
super(TopologicalTorsionFeaturizer, self).__init__(n_jobs=n_jobs, |
420
|
|
|
verbose=verbose) |
421
|
|
|
|
422
|
1 |
View Code Duplication |
def _transform_mol(self, mol): |
|
|
|
|
423
|
|
|
""" Private method to transform a skchem molecule. |
424
|
|
|
Args: |
425
|
|
|
mol (skchem.Mol): Molecule to calculate fingerprint for. |
426
|
|
|
|
427
|
|
|
Returns: |
428
|
|
|
np.array or dict: |
429
|
|
|
Fingerprint as an array (or a dict if sparse). |
430
|
|
|
""" |
431
|
|
|
|
432
|
|
|
if self.as_bits and self.n_feats > 0: |
433
|
|
|
|
434
|
|
|
fp = GetHashedTopologicalTorsionFingerprintAsBitVect( |
|
|
|
|
435
|
|
|
mol, nBits=self.n_feats, targetSize=self.target_size, |
436
|
|
|
includeChirality=self.use_chirality) |
437
|
|
|
|
438
|
|
|
res = np.array(0) |
439
|
|
|
ConvertToNumpyArray(fp, res) |
440
|
|
|
res = res.astype(np.uint8) |
441
|
|
|
|
442
|
|
|
else: |
443
|
|
|
|
444
|
|
|
if self.n_feats <= 0: |
445
|
|
|
|
446
|
|
|
res = GetTopologicalTorsionFingerprint( |
447
|
|
|
mol, nBits=self.n_feats, targetSize=self.target_size, |
448
|
|
|
includeChirality=self.use_chirality) |
449
|
|
|
|
450
|
|
|
res = res.GetNonzeroElements() |
451
|
|
|
if self.as_bits: |
452
|
|
|
res = {k: int(v > 0) for k, v in res.items()} |
453
|
|
|
|
454
|
|
|
else: |
455
|
|
|
res = GetHashedTopologicalTorsionFingerprint( |
456
|
|
|
mol, nBits=self.n_feats, targetSize=self.target_size, |
457
|
|
|
includeChirality=self.use_chirality) |
458
|
|
|
|
459
|
|
|
res = np.array(list(res)) |
460
|
|
|
|
461
|
|
|
return res |
462
|
|
|
|
463
|
1 |
|
@property |
464
|
|
|
def names(self): |
|
|
|
|
465
|
|
|
return 'top_tort' |
466
|
|
|
|
467
|
1 |
|
@property |
468
|
|
|
def columns(self): |
469
|
|
|
return pd.RangeIndex(self.n_feats, name='tt_fp_idx') |
470
|
|
|
|
471
|
|
|
|
472
|
1 |
|
class MACCSFeaturizer(Transformer, Featurizer): |
473
|
|
|
|
474
|
|
|
""" MACCS Keys Fingerprints.""" |
475
|
|
|
|
476
|
1 |
|
def __init__(self, n_jobs=1, verbose=True): |
477
|
|
|
|
478
|
|
|
""" Initialize a MACCS Featurizer. |
479
|
|
|
|
480
|
|
|
Args: |
481
|
|
|
n_jobs (int): |
482
|
|
|
The number of processes to run the featurizer in. |
483
|
|
|
|
484
|
|
|
verbose (bool): |
485
|
|
|
Whether to output a progress bar. |
486
|
|
|
""" |
487
|
|
|
|
488
|
|
|
super(MACCSFeaturizer, self).__init__(n_jobs=n_jobs, verbose=verbose) |
489
|
|
|
self.n_feats = 166 |
490
|
|
|
|
491
|
1 |
|
def _transform_mol(self, mol): |
492
|
|
|
return np.array(list(GetMACCSKeysFingerprint(mol)))[1:] |
493
|
|
|
|
494
|
1 |
|
@property |
495
|
|
|
def name(self): |
|
|
|
|
496
|
|
|
return 'maccs' |
497
|
|
|
|
498
|
1 |
|
@property |
499
|
|
|
def columns(self): |
500
|
|
|
return pd.Index( |
501
|
|
|
['ISOTOPE', '103 < ATOMIC NO. < 256', |
502
|
|
|
'GROUP IVA,VA,VIA PERIODS 4-6 (Ge...)', 'ACTINIDE', |
503
|
|
|
'GROUP IIIB,IVB (Sc...)', 'LANTHANIDE', |
504
|
|
|
'GROUP VB,VIB,VIIB (V...)', 'QAAA@1', 'GROUP VIII (Fe...)', |
505
|
|
|
'GROUP IIA (ALKALINE EARTH)', '4M RING', 'GROUP IB,IIB (Cu...)', |
506
|
|
|
'ON(C)C', 'S-S', 'OC(O)O', 'QAA@1', 'CTC', |
507
|
|
|
'GROUP IIIA (B...)', '7M RING', 'SI', 'C=C(Q)Q', '3M RING', |
508
|
|
|
'NC(O)O', 'N-O', 'NC(N)N', 'C$=C($A)$A', 'I', |
509
|
|
|
'QCH2Q', 'P', 'CQ(C)(C)A', 'QX', 'CSN', 'NS', 'CH2=A', |
510
|
|
|
'GROUP IA (ALKALI METAL)', 'S HETEROCYCLE', |
511
|
|
|
'NC(O)N', 'NC(C)N', 'OS(O)O', 'S-O', 'CTN', 'F', 'QHAQH', 'OTHER', |
512
|
|
|
'C=CN', 'BR', 'SAN', 'OQ(O)O', 'CHARGE', |
513
|
|
|
'C=C(C)C', 'CSO', 'NN', 'QHAAAQH', 'QHAAQH', 'OSO', 'ON(O)C', |
514
|
|
|
'O HETEROCYCLE', 'QSQ', 'Snot%A%A', 'S=O', |
515
|
|
|
'AS(A)A', 'A$A!A$A', 'N=O', 'A$A!S', 'C%N', 'CC(C)(C)A', 'QS', |
516
|
|
|
'QHQH (&...)', 'QQH', 'QNQ', 'NO', 'OAAO', |
517
|
|
|
'S=A', 'CH3ACH3', 'A!N$A', 'C=C(A)A', 'NAN', 'C=N', 'NAAN', |
518
|
|
|
'NAAAN', 'SA(A)A', 'ACH2QH', 'QAAAA@1', 'NH2', |
519
|
|
|
'CN(C)C', 'CH2QCH2', 'X!A$A', 'S', 'OAAAO', 'QHAACH2A', |
520
|
|
|
'QHAAACH2A', 'OC(N)C', 'QCH3', 'QN', 'NAAO', |
521
|
|
|
'5M RING', 'NAAAO', 'QAAAAA@1', 'C=C', 'ACH2N', '8M RING', 'QO', |
522
|
|
|
'CL', 'QHACH2A', 'A$A($A)$A', 'QA(Q)Q', |
523
|
|
|
'XA(A)A', 'CH3AAACH2A', 'ACH2O', 'NCO', 'NACH2A', 'AA(A)(A)A', |
524
|
|
|
'Onot%A%A', 'CH3CH2A', 'CH3ACH2A', |
525
|
|
|
'CH3AACH2A', 'NAO', 'ACH2CH2A > 1', 'N=A', |
526
|
|
|
'HETEROCYCLIC ATOM > 1 (&...)', 'N HETEROCYCLE', 'AN(A)A', |
527
|
|
|
'OCO', 'QQ', 'AROMATIC RING > 1', 'A!O!A', 'A$A!O > 1 (&...)', |
528
|
|
|
'ACH2AAACH2A', 'ACH2AACH2A', |
529
|
|
|
'QQ > 1 (&...)', 'QH > 1', 'OACH2A', 'A$A!N', 'X (HALOGEN)', |
530
|
|
|
'Nnot%A%A', 'O=A > 1', 'HETEROCYCLE', |
531
|
|
|
'QCH2A > 1 (&...)', 'OH', 'O > 3 (&...)', 'CH3 > 2 (&...)', |
532
|
|
|
'N > 1', 'A$A!O', 'Anot%A%Anot%A', |
533
|
|
|
'6M RING > 1', 'O > 2', 'ACH2CH2A', 'AQ(A)A', 'CH3 > 1', |
534
|
|
|
'A!A$A!A', 'NH', 'OC(C)C', 'QCH2A', 'C=O', |
535
|
|
|
'A!CH2!A', 'NA(A)A', 'C-O', 'C-N', 'O > 1', 'CH3', 'N', |
536
|
|
|
'AROMATIC', '6M RING', 'O', 'RING', 'FRAGMENTS'], |
537
|
|
|
name='maccs_idx') |
538
|
|
|
|
539
|
|
|
|
540
|
1 |
|
class ErGFeaturizer(Transformer, Featurizer): |
541
|
|
|
|
542
|
|
|
""" Extended Reduced Graph Fingerprints. |
543
|
|
|
|
544
|
|
|
Implemented in RDKit.""" |
545
|
|
|
|
546
|
1 |
|
def __init__(self, atom_types=0, fuzz_increment=0.3, min_path=1, |
|
|
|
|
547
|
|
|
max_path=15, n_jobs=1, verbose=True): |
548
|
|
|
|
549
|
|
|
""" Initialize an ErGFeaturizer object. |
550
|
|
|
|
551
|
|
|
# TODO complete docstring |
|
|
|
|
552
|
|
|
|
553
|
|
|
Args: |
554
|
|
|
atom_types (AtomPairsParameters): |
555
|
|
|
The atom types to use. |
556
|
|
|
|
557
|
|
|
fuzz_increment (float): |
558
|
|
|
The fuzz increment. |
559
|
|
|
|
560
|
|
|
min_path (int): |
561
|
|
|
The minimum path. |
562
|
|
|
|
563
|
|
|
max_path (int): |
564
|
|
|
The maximum path. |
565
|
|
|
|
566
|
|
|
n_jobs (int): |
567
|
|
|
The number of processes to run the featurizer in. |
568
|
|
|
|
569
|
|
|
verbose (bool): |
570
|
|
|
Whether to output a progress bar. |
571
|
|
|
""" |
572
|
|
|
|
573
|
|
|
super(ErGFeaturizer, self).__init__(n_jobs=n_jobs, verbose=verbose) |
574
|
|
|
self.atom_types = atom_types |
575
|
|
|
self.fuzz_increment = fuzz_increment |
576
|
|
|
self.min_path = min_path |
577
|
|
|
self.max_path = max_path |
578
|
|
|
self.n_feats = 315 |
579
|
|
|
|
580
|
1 |
|
def _transform_mol(self, mol): |
581
|
|
|
|
582
|
|
|
return np.array(GetErGFingerprint(mol)) |
583
|
|
|
|
584
|
1 |
|
@property |
585
|
|
|
def name(self): |
|
|
|
|
586
|
|
|
return 'erg' |
587
|
|
|
|
588
|
1 |
|
@property |
589
|
|
|
def columns(self): |
590
|
|
|
return pd.RangeIndex(self.n_feats, name='erg_fp_idx') |
591
|
|
|
|
592
|
|
|
|
593
|
1 |
|
class FeatureInvariantsFeaturizer(Transformer, Featurizer): |
594
|
|
|
|
595
|
|
|
""" Feature invariants fingerprints. """ |
596
|
|
|
|
597
|
1 |
|
def __init__(self, n_jobs=1, verbose=True): |
598
|
|
|
|
599
|
|
|
""" Initialize a FeatureInvariantsFeaturizer. |
600
|
|
|
|
601
|
|
|
Args: |
602
|
|
|
verbose (bool): |
603
|
|
|
Whether to output a progress bar. |
604
|
|
|
""" |
605
|
|
|
super(FeatureInvariantsFeaturizer, self).__init__(n_jobs=n_jobs, |
606
|
|
|
verbose=verbose) |
607
|
|
|
raise NotImplementedError |
608
|
|
|
|
609
|
1 |
|
def _transform_mol(self, mol): |
610
|
|
|
|
611
|
|
|
return np.array(GetFeatureInvariants(mol)) |
612
|
|
|
|
613
|
1 |
|
@property |
614
|
|
|
def name(self): |
|
|
|
|
615
|
|
|
return 'feat_inv' |
616
|
|
|
|
617
|
1 |
|
@property |
618
|
|
|
def columns(self): |
619
|
|
|
return None |
620
|
|
|
|
621
|
|
|
|
622
|
1 |
|
class ConnectivityInvariantsFeaturizer(Transformer, Featurizer): |
623
|
|
|
|
624
|
|
|
""" Connectivity invariants fingerprints """ |
625
|
|
|
|
626
|
1 |
|
def __init__(self, include_ring_membership=True, n_jobs=1, |
627
|
|
|
verbose=True): |
628
|
|
|
|
629
|
|
|
""" Initialize a ConnectivityInvariantsFeaturizer. |
630
|
|
|
|
631
|
|
|
Args: |
632
|
|
|
include_ring_membership (bool): |
633
|
|
|
Whether ring membership is considered when generating the |
634
|
|
|
invariants. |
635
|
|
|
|
636
|
|
|
n_jobs (int): |
637
|
|
|
The number of processes to run the featurizer in. |
638
|
|
|
|
639
|
|
|
verbose (bool): |
640
|
|
|
Whether to output a progress bar. |
641
|
|
|
""" |
642
|
|
|
super(ConnectivityInvariantsFeaturizer, self).__init__(self, |
643
|
|
|
n_jobs=n_jobs, |
644
|
|
|
verbose=verbose) |
645
|
|
|
self.include_ring_membership = include_ring_membership |
646
|
|
|
raise NotImplementedError # this is a sparse descriptor |
647
|
|
|
|
648
|
1 |
|
def _transform_mol(self, mol): |
649
|
|
|
|
650
|
|
|
return np.array(GetConnectivityInvariants(mol)) |
651
|
|
|
|
652
|
1 |
|
@property |
653
|
|
|
def name(self): |
|
|
|
|
654
|
|
|
return 'conn_inv' |
655
|
|
|
|
656
|
1 |
|
@property |
657
|
|
|
def columns(self): |
658
|
|
|
return None |
659
|
|
|
|
660
|
|
|
|
661
|
1 |
|
class RDKFeaturizer(Transformer, Featurizer): |
|
|
|
|
662
|
|
|
|
663
|
|
|
""" RDKit fingerprint """ |
664
|
|
|
|
665
|
1 |
|
def __init__(self, min_path=1, max_path=7, n_feats=2048, n_bits_per_hash=2, |
|
|
|
|
666
|
|
|
use_hs=True, target_density=0.0, min_size=128, |
667
|
|
|
branched_paths=True, use_bond_types=True, n_jobs=1, |
668
|
|
|
verbose=True): |
669
|
|
|
|
670
|
|
|
""" RDK fingerprints |
671
|
|
|
|
672
|
|
|
Args: |
673
|
|
|
min_path (int): |
674
|
|
|
minimum number of bonds to include in the subgraphs. |
675
|
|
|
|
676
|
|
|
max_path (int): |
677
|
|
|
maximum number of bonds to include in the subgraphs. |
678
|
|
|
|
679
|
|
|
n_feats (int): |
680
|
|
|
The number of features to which to fold the fingerprint down. |
681
|
|
|
For unfolded, use `-1`. |
682
|
|
|
|
683
|
|
|
n_bits_per_hash (int) |
684
|
|
|
number of bits to set per path. |
685
|
|
|
|
686
|
|
|
use_hs (bool): |
687
|
|
|
include paths involving Hs in the fingerprint if the molecule |
688
|
|
|
has explicit Hs. |
689
|
|
|
|
690
|
|
|
target_density (float): |
691
|
|
|
fold the fingerprint until this minimum density has been |
692
|
|
|
reached. |
693
|
|
|
|
694
|
|
|
min_size (int): |
695
|
|
|
the minimum size the fingerprint will be folded to when trying |
696
|
|
|
to reach tgtDensity. |
697
|
|
|
|
698
|
|
|
branched_paths (bool): |
699
|
|
|
if set both branched and unbranched paths will be used in the |
700
|
|
|
fingerprint. |
701
|
|
|
|
702
|
|
|
use_bond_types (bool): |
703
|
|
|
if set both bond orders will be used in the path hashes. |
704
|
|
|
|
705
|
|
|
n_jobs (int): |
706
|
|
|
The number of processes to run the featurizer in. |
707
|
|
|
|
708
|
|
|
verbose (bool): |
709
|
|
|
Whether to output a progress bar. |
710
|
|
|
|
711
|
|
|
""" |
712
|
|
|
|
713
|
|
|
super(RDKFeaturizer, self).__init__(n_jobs=n_jobs, verbose=verbose) |
714
|
|
|
|
715
|
|
|
self.min_path = min_path |
716
|
|
|
self.max_path = max_path |
717
|
|
|
self.n_feats = n_feats |
718
|
|
|
self.n_bits_per_hash = n_bits_per_hash |
719
|
|
|
self.use_hs = use_hs |
720
|
|
|
self.target_density = target_density |
721
|
|
|
self.min_size = min_size |
722
|
|
|
self.branched_paths = branched_paths |
723
|
|
|
self.use_bond_types = use_bond_types |
724
|
|
|
|
725
|
1 |
|
def _transform_mol(self, mol): |
726
|
|
|
|
727
|
|
|
return np.array(list(RDKFingerprint(mol, minPath=self.min_path, |
728
|
|
|
maxPath=self.max_path, |
729
|
|
|
fpSize=self.n_feats, |
730
|
|
|
nBitsPerHash=self.n_bits_per_hash, |
731
|
|
|
useHs=self.use_hs, |
732
|
|
|
tgtDensity=self.target_density, |
733
|
|
|
minSize=self.min_size, |
734
|
|
|
branchedPaths=self.branched_paths, |
735
|
|
|
useBondOrder=self.use_bond_types))) |
736
|
|
|
|
737
|
1 |
|
@property |
738
|
|
|
def name(self): |
|
|
|
|
739
|
|
|
return 'rdkfp' |
740
|
|
|
|
741
|
1 |
|
@property |
742
|
|
|
def columns(self): |
743
|
|
|
return pd.RangeIndex(self.n_feats, name='rdk_fp_idx') |
744
|
|
|
|
This can be caused by one of the following:
1. Missing Dependencies
This error could indicate a configuration issue of Pylint. Make sure that your libraries are available by adding the necessary commands.
2. Missing __init__.py files
This error could also result from missing
__init__.py
files in your module folders. Make sure that you place one file in each sub-folder.