|
1
|
|
|
<?php |
|
2
|
|
|
/** |
|
3
|
|
|
* PHPExcel |
|
4
|
|
|
* |
|
5
|
|
|
* Copyright (c) 2006 - 2012 PHPExcel |
|
6
|
|
|
* |
|
7
|
|
|
* This library is free software; you can redistribute it and/or |
|
8
|
|
|
* modify it under the terms of the GNU Lesser General Public |
|
9
|
|
|
* License as published by the Free Software Foundation; either |
|
10
|
|
|
* version 2.1 of the License, or (at your option) any later version. |
|
11
|
|
|
* |
|
12
|
|
|
* This library is distributed in the hope that it will be useful, |
|
13
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
14
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
15
|
|
|
* Lesser General Public License for more details. |
|
16
|
|
|
* |
|
17
|
|
|
* You should have received a copy of the GNU Lesser General Public |
|
18
|
|
|
* License along with this library; if not, write to the Free Software |
|
19
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
20
|
|
|
* |
|
21
|
|
|
* @category PHPExcel |
|
22
|
|
|
* @package PHPExcel_Calculation |
|
23
|
|
|
* @copyright Copyright (c) 2006 - 2012 PHPExcel (http://www.codeplex.com/PHPExcel) |
|
24
|
|
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL |
|
25
|
|
|
* @version 1.7.7, 2012-05-19 |
|
26
|
|
|
*/ |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
/** PHPExcel root directory */ |
|
30
|
|
View Code Duplication |
if (!defined('PHPEXCEL_ROOT')) { |
|
31
|
|
|
/** |
|
32
|
|
|
* @ignore |
|
33
|
|
|
*/ |
|
34
|
|
|
define('PHPEXCEL_ROOT', dirname(__FILE__) . '/../../'); |
|
35
|
|
|
require(PHPEXCEL_ROOT . 'PHPExcel/Autoloader.php'); |
|
36
|
|
|
} |
|
37
|
|
|
|
|
38
|
|
|
|
|
39
|
|
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/trendClass.php'; |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
|
|
/** LOG_GAMMA_X_MAX_VALUE */ |
|
43
|
|
|
define('LOG_GAMMA_X_MAX_VALUE', 2.55e305); |
|
44
|
|
|
|
|
45
|
|
|
/** XMININ */ |
|
46
|
|
|
define('XMININ', 2.23e-308); |
|
47
|
|
|
|
|
48
|
|
|
/** EPS */ |
|
49
|
|
|
define('EPS', 2.22e-16); |
|
50
|
|
|
|
|
51
|
|
|
/** SQRT2PI */ |
|
52
|
|
|
define('SQRT2PI', 2.5066282746310005024157652848110452530069867406099); |
|
53
|
|
|
|
|
54
|
|
|
|
|
55
|
|
|
/** |
|
56
|
|
|
* PHPExcel_Calculation_Statistical |
|
57
|
|
|
* |
|
58
|
|
|
* @category PHPExcel |
|
59
|
|
|
* @package PHPExcel_Calculation |
|
60
|
|
|
* @copyright Copyright (c) 2006 - 2012 PHPExcel (http://www.codeplex.com/PHPExcel) |
|
61
|
|
|
*/ |
|
62
|
|
|
class PHPExcel_Calculation_Statistical { |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
private static function _checkTrendArrays(&$array1,&$array2) { |
|
66
|
|
|
if (!is_array($array1)) { $array1 = array($array1); } |
|
67
|
|
|
if (!is_array($array2)) { $array2 = array($array2); } |
|
68
|
|
|
|
|
69
|
|
|
$array1 = PHPExcel_Calculation_Functions::flattenArray($array1); |
|
70
|
|
|
$array2 = PHPExcel_Calculation_Functions::flattenArray($array2); |
|
71
|
|
View Code Duplication |
foreach($array1 as $key => $value) { |
|
72
|
|
|
if ((is_bool($value)) || (is_string($value)) || (is_null($value))) { |
|
73
|
|
|
unset($array1[$key]); |
|
74
|
|
|
unset($array2[$key]); |
|
75
|
|
|
} |
|
76
|
|
|
} |
|
77
|
|
View Code Duplication |
foreach($array2 as $key => $value) { |
|
78
|
|
|
if ((is_bool($value)) || (is_string($value)) || (is_null($value))) { |
|
79
|
|
|
unset($array1[$key]); |
|
80
|
|
|
unset($array2[$key]); |
|
81
|
|
|
} |
|
82
|
|
|
} |
|
83
|
|
|
$array1 = array_merge($array1); |
|
84
|
|
|
$array2 = array_merge($array2); |
|
85
|
|
|
|
|
86
|
|
|
return True; |
|
87
|
|
|
} // function _checkTrendArrays() |
|
88
|
|
|
|
|
89
|
|
|
|
|
90
|
|
|
/** |
|
91
|
|
|
* Beta function. |
|
92
|
|
|
* |
|
93
|
|
|
* @author Jaco van Kooten |
|
94
|
|
|
* |
|
95
|
|
|
* @param p require p>0 |
|
96
|
|
|
* @param q require q>0 |
|
97
|
|
|
* @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow |
|
|
|
|
|
|
98
|
|
|
*/ |
|
99
|
|
|
private static function _beta($p, $q) { |
|
|
|
|
|
|
100
|
|
|
if ($p <= 0.0 || $q <= 0.0 || ($p + $q) > LOG_GAMMA_X_MAX_VALUE) { |
|
101
|
|
|
return 0.0; |
|
102
|
|
|
} else { |
|
103
|
|
|
return exp(self::_logBeta($p, $q)); |
|
104
|
|
|
} |
|
105
|
|
|
} // function _beta() |
|
106
|
|
|
|
|
107
|
|
|
|
|
108
|
|
|
/** |
|
109
|
|
|
* Incomplete beta function |
|
110
|
|
|
* |
|
111
|
|
|
* @author Jaco van Kooten |
|
112
|
|
|
* @author Paul Meagher |
|
113
|
|
|
* |
|
114
|
|
|
* The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992). |
|
115
|
|
|
* @param x require 0<=x<=1 |
|
116
|
|
|
* @param p require p>0 |
|
117
|
|
|
* @param q require q>0 |
|
118
|
|
|
* @return 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow |
|
|
|
|
|
|
119
|
|
|
*/ |
|
120
|
|
|
private static function _incompleteBeta($x, $p, $q) { |
|
121
|
|
|
if ($x <= 0.0) { |
|
122
|
|
|
return 0.0; |
|
123
|
|
|
} elseif ($x >= 1.0) { |
|
124
|
|
|
return 1.0; |
|
125
|
|
|
} elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) { |
|
126
|
|
|
return 0.0; |
|
127
|
|
|
} |
|
128
|
|
|
$beta_gam = exp((0 - self::_logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x)); |
|
129
|
|
|
if ($x < ($p + 1.0) / ($p + $q + 2.0)) { |
|
130
|
|
|
return $beta_gam * self::_betaFraction($x, $p, $q) / $p; |
|
131
|
|
|
} else { |
|
132
|
|
|
return 1.0 - ($beta_gam * self::_betaFraction(1 - $x, $q, $p) / $q); |
|
133
|
|
|
} |
|
134
|
|
|
} // function _incompleteBeta() |
|
135
|
|
|
|
|
136
|
|
|
|
|
137
|
|
|
// Function cache for _logBeta function |
|
138
|
|
|
private static $_logBetaCache_p = 0.0; |
|
139
|
|
|
private static $_logBetaCache_q = 0.0; |
|
140
|
|
|
private static $_logBetaCache_result = 0.0; |
|
141
|
|
|
|
|
142
|
|
|
/** |
|
143
|
|
|
* The natural logarithm of the beta function. |
|
144
|
|
|
* |
|
145
|
|
|
* @param p require p>0 |
|
146
|
|
|
* @param q require q>0 |
|
147
|
|
|
* @return 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow |
|
|
|
|
|
|
148
|
|
|
* @author Jaco van Kooten |
|
149
|
|
|
*/ |
|
150
|
|
|
private static function _logBeta($p, $q) { |
|
151
|
|
|
if ($p != self::$_logBetaCache_p || $q != self::$_logBetaCache_q) { |
|
152
|
|
|
self::$_logBetaCache_p = $p; |
|
153
|
|
|
self::$_logBetaCache_q = $q; |
|
154
|
|
|
if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > LOG_GAMMA_X_MAX_VALUE)) { |
|
155
|
|
|
self::$_logBetaCache_result = 0.0; |
|
156
|
|
|
} else { |
|
157
|
|
|
self::$_logBetaCache_result = self::_logGamma($p) + self::_logGamma($q) - self::_logGamma($p + $q); |
|
158
|
|
|
} |
|
159
|
|
|
} |
|
160
|
|
|
return self::$_logBetaCache_result; |
|
161
|
|
|
} // function _logBeta() |
|
162
|
|
|
|
|
163
|
|
|
|
|
164
|
|
|
/** |
|
165
|
|
|
* Evaluates of continued fraction part of incomplete beta function. |
|
166
|
|
|
* Based on an idea from Numerical Recipes (W.H. Press et al, 1992). |
|
167
|
|
|
* @author Jaco van Kooten |
|
168
|
|
|
*/ |
|
169
|
|
|
private static function _betaFraction($x, $p, $q) { |
|
170
|
|
|
$c = 1.0; |
|
171
|
|
|
$sum_pq = $p + $q; |
|
172
|
|
|
$p_plus = $p + 1.0; |
|
173
|
|
|
$p_minus = $p - 1.0; |
|
174
|
|
|
$h = 1.0 - $sum_pq * $x / $p_plus; |
|
175
|
|
|
if (abs($h) < XMININ) { |
|
176
|
|
|
$h = XMININ; |
|
177
|
|
|
} |
|
178
|
|
|
$h = 1.0 / $h; |
|
179
|
|
|
$frac = $h; |
|
180
|
|
|
$m = 1; |
|
181
|
|
|
$delta = 0.0; |
|
182
|
|
|
while ($m <= MAX_ITERATIONS && abs($delta-1.0) > PRECISION ) { |
|
183
|
|
|
$m2 = 2 * $m; |
|
184
|
|
|
// even index for d |
|
185
|
|
|
$d = $m * ($q - $m) * $x / ( ($p_minus + $m2) * ($p + $m2)); |
|
186
|
|
|
$h = 1.0 + $d * $h; |
|
187
|
|
|
if (abs($h) < XMININ) { |
|
188
|
|
|
$h = XMININ; |
|
189
|
|
|
} |
|
190
|
|
|
$h = 1.0 / $h; |
|
191
|
|
|
$c = 1.0 + $d / $c; |
|
192
|
|
|
if (abs($c) < XMININ) { |
|
193
|
|
|
$c = XMININ; |
|
194
|
|
|
} |
|
195
|
|
|
$frac *= $h * $c; |
|
196
|
|
|
// odd index for d |
|
197
|
|
|
$d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2)); |
|
198
|
|
|
$h = 1.0 + $d * $h; |
|
199
|
|
|
if (abs($h) < XMININ) { |
|
200
|
|
|
$h = XMININ; |
|
201
|
|
|
} |
|
202
|
|
|
$h = 1.0 / $h; |
|
203
|
|
|
$c = 1.0 + $d / $c; |
|
204
|
|
|
if (abs($c) < XMININ) { |
|
205
|
|
|
$c = XMININ; |
|
206
|
|
|
} |
|
207
|
|
|
$delta = $h * $c; |
|
208
|
|
|
$frac *= $delta; |
|
209
|
|
|
++$m; |
|
210
|
|
|
} |
|
211
|
|
|
return $frac; |
|
212
|
|
|
} // function _betaFraction() |
|
213
|
|
|
|
|
214
|
|
|
|
|
215
|
|
|
/** |
|
216
|
|
|
* logGamma function |
|
217
|
|
|
* |
|
218
|
|
|
* @version 1.1 |
|
219
|
|
|
* @author Jaco van Kooten |
|
220
|
|
|
* |
|
221
|
|
|
* Original author was Jaco van Kooten. Ported to PHP by Paul Meagher. |
|
222
|
|
|
* |
|
223
|
|
|
* The natural logarithm of the gamma function. <br /> |
|
224
|
|
|
* Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz <br /> |
|
225
|
|
|
* Applied Mathematics Division <br /> |
|
226
|
|
|
* Argonne National Laboratory <br /> |
|
227
|
|
|
* Argonne, IL 60439 <br /> |
|
228
|
|
|
* <p> |
|
229
|
|
|
* References: |
|
230
|
|
|
* <ol> |
|
231
|
|
|
* <li>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural |
|
232
|
|
|
* Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.</li> |
|
233
|
|
|
* <li>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.</li> |
|
234
|
|
|
* <li>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.</li> |
|
235
|
|
|
* </ol> |
|
236
|
|
|
* </p> |
|
237
|
|
|
* <p> |
|
238
|
|
|
* From the original documentation: |
|
239
|
|
|
* </p> |
|
240
|
|
|
* <p> |
|
241
|
|
|
* This routine calculates the LOG(GAMMA) function for a positive real argument X. |
|
242
|
|
|
* Computation is based on an algorithm outlined in references 1 and 2. |
|
243
|
|
|
* The program uses rational functions that theoretically approximate LOG(GAMMA) |
|
244
|
|
|
* to at least 18 significant decimal digits. The approximation for X > 12 is from |
|
245
|
|
|
* reference 3, while approximations for X < 12.0 are similar to those in reference |
|
246
|
|
|
* 1, but are unpublished. The accuracy achieved depends on the arithmetic system, |
|
247
|
|
|
* the compiler, the intrinsic functions, and proper selection of the |
|
248
|
|
|
* machine-dependent constants. |
|
249
|
|
|
* </p> |
|
250
|
|
|
* <p> |
|
251
|
|
|
* Error returns: <br /> |
|
252
|
|
|
* The program returns the value XINF for X .LE. 0.0 or when overflow would occur. |
|
253
|
|
|
* The computation is believed to be free of underflow and overflow. |
|
254
|
|
|
* </p> |
|
255
|
|
|
* @return MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305 |
|
256
|
|
|
*/ |
|
257
|
|
|
|
|
258
|
|
|
// Function cache for logGamma |
|
259
|
|
|
private static $_logGammaCache_result = 0.0; |
|
260
|
|
|
private static $_logGammaCache_x = 0.0; |
|
261
|
|
|
|
|
262
|
|
|
private static function _logGamma($x) { |
|
263
|
|
|
// Log Gamma related constants |
|
264
|
|
|
static $lg_d1 = -0.5772156649015328605195174; |
|
265
|
|
|
static $lg_d2 = 0.4227843350984671393993777; |
|
266
|
|
|
static $lg_d4 = 1.791759469228055000094023; |
|
267
|
|
|
|
|
268
|
|
|
static $lg_p1 = array( 4.945235359296727046734888, |
|
269
|
|
|
201.8112620856775083915565, |
|
270
|
|
|
2290.838373831346393026739, |
|
271
|
|
|
11319.67205903380828685045, |
|
272
|
|
|
28557.24635671635335736389, |
|
273
|
|
|
38484.96228443793359990269, |
|
274
|
|
|
26377.48787624195437963534, |
|
275
|
|
|
7225.813979700288197698961 ); |
|
276
|
|
|
static $lg_p2 = array( 4.974607845568932035012064, |
|
277
|
|
|
542.4138599891070494101986, |
|
278
|
|
|
15506.93864978364947665077, |
|
279
|
|
|
184793.2904445632425417223, |
|
280
|
|
|
1088204.76946882876749847, |
|
281
|
|
|
3338152.967987029735917223, |
|
282
|
|
|
5106661.678927352456275255, |
|
283
|
|
|
3074109.054850539556250927 ); |
|
284
|
|
|
static $lg_p4 = array( 14745.02166059939948905062, |
|
285
|
|
|
2426813.369486704502836312, |
|
286
|
|
|
121475557.4045093227939592, |
|
287
|
|
|
2663432449.630976949898078, |
|
288
|
|
|
29403789566.34553899906876, |
|
289
|
|
|
170266573776.5398868392998, |
|
290
|
|
|
492612579337.743088758812, |
|
291
|
|
|
560625185622.3951465078242 ); |
|
292
|
|
|
|
|
293
|
|
|
static $lg_q1 = array( 67.48212550303777196073036, |
|
294
|
|
|
1113.332393857199323513008, |
|
295
|
|
|
7738.757056935398733233834, |
|
296
|
|
|
27639.87074403340708898585, |
|
297
|
|
|
54993.10206226157329794414, |
|
298
|
|
|
61611.22180066002127833352, |
|
299
|
|
|
36351.27591501940507276287, |
|
300
|
|
|
8785.536302431013170870835 ); |
|
301
|
|
|
static $lg_q2 = array( 183.0328399370592604055942, |
|
302
|
|
|
7765.049321445005871323047, |
|
303
|
|
|
133190.3827966074194402448, |
|
304
|
|
|
1136705.821321969608938755, |
|
305
|
|
|
5267964.117437946917577538, |
|
306
|
|
|
13467014.54311101692290052, |
|
307
|
|
|
17827365.30353274213975932, |
|
308
|
|
|
9533095.591844353613395747 ); |
|
309
|
|
|
static $lg_q4 = array( 2690.530175870899333379843, |
|
310
|
|
|
639388.5654300092398984238, |
|
311
|
|
|
41355999.30241388052042842, |
|
312
|
|
|
1120872109.61614794137657, |
|
313
|
|
|
14886137286.78813811542398, |
|
314
|
|
|
101680358627.2438228077304, |
|
315
|
|
|
341747634550.7377132798597, |
|
316
|
|
|
446315818741.9713286462081 ); |
|
317
|
|
|
|
|
318
|
|
|
static $lg_c = array( -0.001910444077728, |
|
319
|
|
|
8.4171387781295e-4, |
|
320
|
|
|
-5.952379913043012e-4, |
|
321
|
|
|
7.93650793500350248e-4, |
|
322
|
|
|
-0.002777777777777681622553, |
|
323
|
|
|
0.08333333333333333331554247, |
|
324
|
|
|
0.0057083835261 ); |
|
325
|
|
|
|
|
326
|
|
|
// Rough estimate of the fourth root of logGamma_xBig |
|
327
|
|
|
static $lg_frtbig = 2.25e76; |
|
328
|
|
|
static $pnt68 = 0.6796875; |
|
329
|
|
|
|
|
330
|
|
|
|
|
331
|
|
|
if ($x == self::$_logGammaCache_x) { |
|
332
|
|
|
return self::$_logGammaCache_result; |
|
333
|
|
|
} |
|
334
|
|
|
$y = $x; |
|
335
|
|
|
if ($y > 0.0 && $y <= LOG_GAMMA_X_MAX_VALUE) { |
|
336
|
|
|
if ($y <= EPS) { |
|
337
|
|
|
$res = -log(y); |
|
338
|
|
|
} elseif ($y <= 1.5) { |
|
339
|
|
|
// --------------------- |
|
340
|
|
|
// EPS .LT. X .LE. 1.5 |
|
341
|
|
|
// --------------------- |
|
342
|
|
|
if ($y < $pnt68) { |
|
343
|
|
|
$corr = -log($y); |
|
344
|
|
|
$xm1 = $y; |
|
345
|
|
|
} else { |
|
346
|
|
|
$corr = 0.0; |
|
347
|
|
|
$xm1 = $y - 1.0; |
|
348
|
|
|
} |
|
349
|
|
|
if ($y <= 0.5 || $y >= $pnt68) { |
|
350
|
|
|
$xden = 1.0; |
|
351
|
|
|
$xnum = 0.0; |
|
352
|
|
|
for ($i = 0; $i < 8; ++$i) { |
|
353
|
|
|
$xnum = $xnum * $xm1 + $lg_p1[$i]; |
|
354
|
|
|
$xden = $xden * $xm1 + $lg_q1[$i]; |
|
355
|
|
|
} |
|
356
|
|
|
$res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden)); |
|
357
|
|
View Code Duplication |
} else { |
|
358
|
|
|
$xm2 = $y - 1.0; |
|
359
|
|
|
$xden = 1.0; |
|
360
|
|
|
$xnum = 0.0; |
|
361
|
|
|
for ($i = 0; $i < 8; ++$i) { |
|
362
|
|
|
$xnum = $xnum * $xm2 + $lg_p2[$i]; |
|
363
|
|
|
$xden = $xden * $xm2 + $lg_q2[$i]; |
|
364
|
|
|
} |
|
365
|
|
|
$res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); |
|
366
|
|
|
} |
|
367
|
|
View Code Duplication |
} elseif ($y <= 4.0) { |
|
368
|
|
|
// --------------------- |
|
369
|
|
|
// 1.5 .LT. X .LE. 4.0 |
|
370
|
|
|
// --------------------- |
|
371
|
|
|
$xm2 = $y - 2.0; |
|
372
|
|
|
$xden = 1.0; |
|
373
|
|
|
$xnum = 0.0; |
|
374
|
|
|
for ($i = 0; $i < 8; ++$i) { |
|
375
|
|
|
$xnum = $xnum * $xm2 + $lg_p2[$i]; |
|
376
|
|
|
$xden = $xden * $xm2 + $lg_q2[$i]; |
|
377
|
|
|
} |
|
378
|
|
|
$res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); |
|
379
|
|
|
} elseif ($y <= 12.0) { |
|
380
|
|
|
// ---------------------- |
|
381
|
|
|
// 4.0 .LT. X .LE. 12.0 |
|
382
|
|
|
// ---------------------- |
|
383
|
|
|
$xm4 = $y - 4.0; |
|
384
|
|
|
$xden = -1.0; |
|
385
|
|
|
$xnum = 0.0; |
|
386
|
|
|
for ($i = 0; $i < 8; ++$i) { |
|
387
|
|
|
$xnum = $xnum * $xm4 + $lg_p4[$i]; |
|
388
|
|
|
$xden = $xden * $xm4 + $lg_q4[$i]; |
|
389
|
|
|
} |
|
390
|
|
|
$res = $lg_d4 + $xm4 * ($xnum / $xden); |
|
391
|
|
|
} else { |
|
392
|
|
|
// --------------------------------- |
|
393
|
|
|
// Evaluate for argument .GE. 12.0 |
|
394
|
|
|
// --------------------------------- |
|
395
|
|
|
$res = 0.0; |
|
396
|
|
|
if ($y <= $lg_frtbig) { |
|
397
|
|
|
$res = $lg_c[6]; |
|
398
|
|
|
$ysq = $y * $y; |
|
399
|
|
|
for ($i = 0; $i < 6; ++$i) |
|
400
|
|
|
$res = $res / $ysq + $lg_c[$i]; |
|
401
|
|
|
} |
|
402
|
|
|
$res /= $y; |
|
403
|
|
|
$corr = log($y); |
|
404
|
|
|
$res = $res + log(SQRT2PI) - 0.5 * $corr; |
|
405
|
|
|
$res += $y * ($corr - 1.0); |
|
406
|
|
|
} |
|
407
|
|
|
} else { |
|
408
|
|
|
// -------------------------- |
|
409
|
|
|
// Return for bad arguments |
|
410
|
|
|
// -------------------------- |
|
411
|
|
|
$res = MAX_VALUE; |
|
412
|
|
|
} |
|
413
|
|
|
// ------------------------------ |
|
414
|
|
|
// Final adjustments and return |
|
415
|
|
|
// ------------------------------ |
|
416
|
|
|
self::$_logGammaCache_x = $x; |
|
417
|
|
|
self::$_logGammaCache_result = $res; |
|
418
|
|
|
return $res; |
|
419
|
|
|
} // function _logGamma() |
|
420
|
|
|
|
|
421
|
|
|
|
|
422
|
|
|
// |
|
423
|
|
|
// Private implementation of the incomplete Gamma function |
|
424
|
|
|
// |
|
425
|
|
|
private static function _incompleteGamma($a,$x) { |
|
426
|
|
|
static $max = 32; |
|
427
|
|
|
$summer = 0; |
|
428
|
|
|
for ($n=0; $n<=$max; ++$n) { |
|
429
|
|
|
$divisor = $a; |
|
430
|
|
|
for ($i=1; $i<=$n; ++$i) { |
|
431
|
|
|
$divisor *= ($a + $i); |
|
432
|
|
|
} |
|
433
|
|
|
$summer += (pow($x,$n) / $divisor); |
|
434
|
|
|
} |
|
435
|
|
|
return pow($x,$a) * exp(0-$x) * $summer; |
|
436
|
|
|
} // function _incompleteGamma() |
|
437
|
|
|
|
|
438
|
|
|
|
|
439
|
|
|
// |
|
440
|
|
|
// Private implementation of the Gamma function |
|
441
|
|
|
// |
|
442
|
|
|
private static function _gamma($data) { |
|
443
|
|
|
if ($data == 0.0) return 0; |
|
444
|
|
|
|
|
445
|
|
|
static $p0 = 1.000000000190015; |
|
446
|
|
|
static $p = array ( 1 => 76.18009172947146, |
|
447
|
|
|
2 => -86.50532032941677, |
|
448
|
|
|
3 => 24.01409824083091, |
|
449
|
|
|
4 => -1.231739572450155, |
|
450
|
|
|
5 => 1.208650973866179e-3, |
|
451
|
|
|
6 => -5.395239384953e-6 |
|
452
|
|
|
); |
|
453
|
|
|
|
|
454
|
|
|
$y = $x = $data; |
|
455
|
|
|
$tmp = $x + 5.5; |
|
456
|
|
|
$tmp -= ($x + 0.5) * log($tmp); |
|
457
|
|
|
|
|
458
|
|
|
$summer = $p0; |
|
459
|
|
|
for ($j=1;$j<=6;++$j) { |
|
460
|
|
|
$summer += ($p[$j] / ++$y); |
|
461
|
|
|
} |
|
462
|
|
|
return exp(0 - $tmp + log(SQRT2PI * $summer / $x)); |
|
463
|
|
|
} // function _gamma() |
|
464
|
|
|
|
|
465
|
|
|
|
|
466
|
|
|
/*************************************************************************** |
|
467
|
|
|
* inverse_ncdf.php |
|
468
|
|
|
* ------------------- |
|
469
|
|
|
* begin : Friday, January 16, 2004 |
|
470
|
|
|
* copyright : (C) 2004 Michael Nickerson |
|
471
|
|
|
* email : [email protected] |
|
472
|
|
|
* |
|
473
|
|
|
***************************************************************************/ |
|
474
|
|
|
private static function _inverse_ncdf($p) { |
|
475
|
|
|
// Inverse ncdf approximation by Peter J. Acklam, implementation adapted to |
|
476
|
|
|
// PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as |
|
477
|
|
|
// a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html |
|
478
|
|
|
// I have not checked the accuracy of this implementation. Be aware that PHP |
|
479
|
|
|
// will truncate the coeficcients to 14 digits. |
|
480
|
|
|
|
|
481
|
|
|
// You have permission to use and distribute this function freely for |
|
482
|
|
|
// whatever purpose you want, but please show common courtesy and give credit |
|
483
|
|
|
// where credit is due. |
|
484
|
|
|
|
|
485
|
|
|
// Input paramater is $p - probability - where 0 < p < 1. |
|
486
|
|
|
|
|
487
|
|
|
// Coefficients in rational approximations |
|
488
|
|
|
static $a = array( 1 => -3.969683028665376e+01, |
|
489
|
|
|
2 => 2.209460984245205e+02, |
|
490
|
|
|
3 => -2.759285104469687e+02, |
|
491
|
|
|
4 => 1.383577518672690e+02, |
|
492
|
|
|
5 => -3.066479806614716e+01, |
|
493
|
|
|
6 => 2.506628277459239e+00 |
|
494
|
|
|
); |
|
495
|
|
|
|
|
496
|
|
|
static $b = array( 1 => -5.447609879822406e+01, |
|
497
|
|
|
2 => 1.615858368580409e+02, |
|
498
|
|
|
3 => -1.556989798598866e+02, |
|
499
|
|
|
4 => 6.680131188771972e+01, |
|
500
|
|
|
5 => -1.328068155288572e+01 |
|
501
|
|
|
); |
|
502
|
|
|
|
|
503
|
|
|
static $c = array( 1 => -7.784894002430293e-03, |
|
504
|
|
|
2 => -3.223964580411365e-01, |
|
505
|
|
|
3 => -2.400758277161838e+00, |
|
506
|
|
|
4 => -2.549732539343734e+00, |
|
507
|
|
|
5 => 4.374664141464968e+00, |
|
508
|
|
|
6 => 2.938163982698783e+00 |
|
509
|
|
|
); |
|
510
|
|
|
|
|
511
|
|
|
static $d = array( 1 => 7.784695709041462e-03, |
|
512
|
|
|
2 => 3.224671290700398e-01, |
|
513
|
|
|
3 => 2.445134137142996e+00, |
|
514
|
|
|
4 => 3.754408661907416e+00 |
|
515
|
|
|
); |
|
516
|
|
|
|
|
517
|
|
|
// Define lower and upper region break-points. |
|
518
|
|
|
$p_low = 0.02425; //Use lower region approx. below this |
|
519
|
|
|
$p_high = 1 - $p_low; //Use upper region approx. above this |
|
520
|
|
|
|
|
521
|
|
|
if (0 < $p && $p < $p_low) { |
|
522
|
|
|
// Rational approximation for lower region. |
|
523
|
|
|
$q = sqrt(-2 * log($p)); |
|
524
|
|
|
return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / |
|
525
|
|
|
(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); |
|
526
|
|
|
} elseif ($p_low <= $p && $p <= $p_high) { |
|
527
|
|
|
// Rational approximation for central region. |
|
528
|
|
|
$q = $p - 0.5; |
|
529
|
|
|
$r = $q * $q; |
|
530
|
|
|
return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q / |
|
531
|
|
|
((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1); |
|
532
|
|
|
} elseif ($p_high < $p && $p < 1) { |
|
533
|
|
|
// Rational approximation for upper region. |
|
534
|
|
|
$q = sqrt(-2 * log(1 - $p)); |
|
535
|
|
|
return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / |
|
536
|
|
|
(((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); |
|
537
|
|
|
} |
|
538
|
|
|
// If 0 < p < 1, return a null value |
|
539
|
|
|
return PHPExcel_Calculation_Functions::NULL(); |
|
540
|
|
|
} // function _inverse_ncdf() |
|
541
|
|
|
|
|
542
|
|
|
|
|
543
|
|
|
private static function _inverse_ncdf2($prob) { |
|
|
|
|
|
|
544
|
|
|
// Approximation of inverse standard normal CDF developed by |
|
545
|
|
|
// B. Moro, "The Full Monte," Risk 8(2), Feb 1995, 57-58. |
|
546
|
|
|
|
|
547
|
|
|
$a1 = 2.50662823884; |
|
548
|
|
|
$a2 = -18.61500062529; |
|
549
|
|
|
$a3 = 41.39119773534; |
|
550
|
|
|
$a4 = -25.44106049637; |
|
551
|
|
|
|
|
552
|
|
|
$b1 = -8.4735109309; |
|
553
|
|
|
$b2 = 23.08336743743; |
|
554
|
|
|
$b3 = -21.06224101826; |
|
555
|
|
|
$b4 = 3.13082909833; |
|
556
|
|
|
|
|
557
|
|
|
$c1 = 0.337475482272615; |
|
558
|
|
|
$c2 = 0.976169019091719; |
|
559
|
|
|
$c3 = 0.160797971491821; |
|
560
|
|
|
$c4 = 2.76438810333863E-02; |
|
561
|
|
|
$c5 = 3.8405729373609E-03; |
|
562
|
|
|
$c6 = 3.951896511919E-04; |
|
563
|
|
|
$c7 = 3.21767881768E-05; |
|
564
|
|
|
$c8 = 2.888167364E-07; |
|
565
|
|
|
$c9 = 3.960315187E-07; |
|
566
|
|
|
|
|
567
|
|
|
$y = $prob - 0.5; |
|
568
|
|
|
if (abs($y) < 0.42) { |
|
569
|
|
|
$z = ($y * $y); |
|
570
|
|
|
$z = $y * ((($a4 * $z + $a3) * $z + $a2) * $z + $a1) / (((($b4 * $z + $b3) * $z + $b2) * $z + $b1) * $z + 1); |
|
571
|
|
|
} else { |
|
572
|
|
|
if ($y > 0) { |
|
573
|
|
|
$z = log(-log(1 - $prob)); |
|
574
|
|
|
} else { |
|
575
|
|
|
$z = log(-log($prob)); |
|
576
|
|
|
} |
|
577
|
|
|
$z = $c1 + $z * ($c2 + $z * ($c3 + $z * ($c4 + $z * ($c5 + $z * ($c6 + $z * ($c7 + $z * ($c8 + $z * $c9))))))); |
|
578
|
|
|
if ($y < 0) { |
|
579
|
|
|
$z = -$z; |
|
580
|
|
|
} |
|
581
|
|
|
} |
|
582
|
|
|
return $z; |
|
583
|
|
|
} // function _inverse_ncdf2() |
|
584
|
|
|
|
|
585
|
|
|
|
|
586
|
|
|
private static function _inverse_ncdf3($p) { |
|
|
|
|
|
|
587
|
|
|
// ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3. |
|
588
|
|
|
// Produces the normal deviate Z corresponding to a given lower |
|
589
|
|
|
// tail area of P; Z is accurate to about 1 part in 10**16. |
|
590
|
|
|
// |
|
591
|
|
|
// This is a PHP version of the original FORTRAN code that can |
|
592
|
|
|
// be found at http://lib.stat.cmu.edu/apstat/ |
|
593
|
|
|
$split1 = 0.425; |
|
594
|
|
|
$split2 = 5; |
|
595
|
|
|
$const1 = 0.180625; |
|
596
|
|
|
$const2 = 1.6; |
|
597
|
|
|
|
|
598
|
|
|
// coefficients for p close to 0.5 |
|
599
|
|
|
$a0 = 3.3871328727963666080; |
|
600
|
|
|
$a1 = 1.3314166789178437745E+2; |
|
601
|
|
|
$a2 = 1.9715909503065514427E+3; |
|
602
|
|
|
$a3 = 1.3731693765509461125E+4; |
|
603
|
|
|
$a4 = 4.5921953931549871457E+4; |
|
604
|
|
|
$a5 = 6.7265770927008700853E+4; |
|
605
|
|
|
$a6 = 3.3430575583588128105E+4; |
|
606
|
|
|
$a7 = 2.5090809287301226727E+3; |
|
607
|
|
|
|
|
608
|
|
|
$b1 = 4.2313330701600911252E+1; |
|
609
|
|
|
$b2 = 6.8718700749205790830E+2; |
|
610
|
|
|
$b3 = 5.3941960214247511077E+3; |
|
611
|
|
|
$b4 = 2.1213794301586595867E+4; |
|
612
|
|
|
$b5 = 3.9307895800092710610E+4; |
|
613
|
|
|
$b6 = 2.8729085735721942674E+4; |
|
614
|
|
|
$b7 = 5.2264952788528545610E+3; |
|
615
|
|
|
|
|
616
|
|
|
// coefficients for p not close to 0, 0.5 or 1. |
|
617
|
|
|
$c0 = 1.42343711074968357734; |
|
618
|
|
|
$c1 = 4.63033784615654529590; |
|
619
|
|
|
$c2 = 5.76949722146069140550; |
|
620
|
|
|
$c3 = 3.64784832476320460504; |
|
621
|
|
|
$c4 = 1.27045825245236838258; |
|
622
|
|
|
$c5 = 2.41780725177450611770E-1; |
|
623
|
|
|
$c6 = 2.27238449892691845833E-2; |
|
624
|
|
|
$c7 = 7.74545014278341407640E-4; |
|
625
|
|
|
|
|
626
|
|
|
$d1 = 2.05319162663775882187; |
|
627
|
|
|
$d2 = 1.67638483018380384940; |
|
628
|
|
|
$d3 = 6.89767334985100004550E-1; |
|
629
|
|
|
$d4 = 1.48103976427480074590E-1; |
|
630
|
|
|
$d5 = 1.51986665636164571966E-2; |
|
631
|
|
|
$d6 = 5.47593808499534494600E-4; |
|
632
|
|
|
$d7 = 1.05075007164441684324E-9; |
|
633
|
|
|
|
|
634
|
|
|
// coefficients for p near 0 or 1. |
|
635
|
|
|
$e0 = 6.65790464350110377720; |
|
636
|
|
|
$e1 = 5.46378491116411436990; |
|
637
|
|
|
$e2 = 1.78482653991729133580; |
|
638
|
|
|
$e3 = 2.96560571828504891230E-1; |
|
639
|
|
|
$e4 = 2.65321895265761230930E-2; |
|
640
|
|
|
$e5 = 1.24266094738807843860E-3; |
|
641
|
|
|
$e6 = 2.71155556874348757815E-5; |
|
642
|
|
|
$e7 = 2.01033439929228813265E-7; |
|
643
|
|
|
|
|
644
|
|
|
$f1 = 5.99832206555887937690E-1; |
|
645
|
|
|
$f2 = 1.36929880922735805310E-1; |
|
646
|
|
|
$f3 = 1.48753612908506148525E-2; |
|
647
|
|
|
$f4 = 7.86869131145613259100E-4; |
|
648
|
|
|
$f5 = 1.84631831751005468180E-5; |
|
649
|
|
|
$f6 = 1.42151175831644588870E-7; |
|
650
|
|
|
$f7 = 2.04426310338993978564E-15; |
|
651
|
|
|
|
|
652
|
|
|
$q = $p - 0.5; |
|
653
|
|
|
|
|
654
|
|
|
// computation for p close to 0.5 |
|
655
|
|
|
if (abs($q) <= split1) { |
|
656
|
|
|
$R = $const1 - $q * $q; |
|
657
|
|
|
$z = $q * ((((((($a7 * $R + $a6) * $R + $a5) * $R + $a4) * $R + $a3) * $R + $a2) * $R + $a1) * $R + $a0) / |
|
658
|
|
|
((((((($b7 * $R + $b6) * $R + $b5) * $R + $b4) * $R + $b3) * $R + $b2) * $R + $b1) * $R + 1); |
|
659
|
|
|
} else { |
|
660
|
|
|
if ($q < 0) { |
|
661
|
|
|
$R = $p; |
|
662
|
|
|
} else { |
|
663
|
|
|
$R = 1 - $p; |
|
664
|
|
|
} |
|
665
|
|
|
$R = pow(-log($R),2); |
|
666
|
|
|
|
|
667
|
|
|
// computation for p not close to 0, 0.5 or 1. |
|
668
|
|
|
If ($R <= $split2) { |
|
669
|
|
|
$R = $R - $const2; |
|
670
|
|
|
$z = ((((((($c7 * $R + $c6) * $R + $c5) * $R + $c4) * $R + $c3) * $R + $c2) * $R + $c1) * $R + $c0) / |
|
671
|
|
|
((((((($d7 * $R + $d6) * $R + $d5) * $R + $d4) * $R + $d3) * $R + $d2) * $R + $d1) * $R + 1); |
|
672
|
|
|
} else { |
|
673
|
|
|
// computation for p near 0 or 1. |
|
674
|
|
|
$R = $R - $split2; |
|
675
|
|
|
$z = ((((((($e7 * $R + $e6) * $R + $e5) * $R + $e4) * $R + $e3) * $R + $e2) * $R + $e1) * $R + $e0) / |
|
676
|
|
|
((((((($f7 * $R + $f6) * $R + $f5) * $R + $f4) * $R + $f3) * $R + $f2) * $R + $f1) * $R + 1); |
|
677
|
|
|
} |
|
678
|
|
|
if ($q < 0) { |
|
679
|
|
|
$z = -$z; |
|
680
|
|
|
} |
|
681
|
|
|
} |
|
682
|
|
|
return $z; |
|
683
|
|
|
} // function _inverse_ncdf3() |
|
684
|
|
|
|
|
685
|
|
|
|
|
686
|
|
|
/** |
|
687
|
|
|
* AVEDEV |
|
688
|
|
|
* |
|
689
|
|
|
* Returns the average of the absolute deviations of data points from their mean. |
|
690
|
|
|
* AVEDEV is a measure of the variability in a data set. |
|
691
|
|
|
* |
|
692
|
|
|
* Excel Function: |
|
693
|
|
|
* AVEDEV(value1[,value2[, ...]]) |
|
694
|
|
|
* |
|
695
|
|
|
* @access public |
|
696
|
|
|
* @category Statistical Functions |
|
697
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
698
|
|
|
* @return float |
|
699
|
|
|
*/ |
|
700
|
|
View Code Duplication |
public static function AVEDEV() { |
|
701
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
702
|
|
|
|
|
703
|
|
|
// Return value |
|
704
|
|
|
$returnValue = null; |
|
705
|
|
|
|
|
706
|
|
|
$aMean = self::AVERAGE($aArgs); |
|
707
|
|
|
if ($aMean != PHPExcel_Calculation_Functions::DIV0()) { |
|
708
|
|
|
$aCount = 0; |
|
709
|
|
|
foreach ($aArgs as $k => $arg) { |
|
710
|
|
|
if ((is_bool($arg)) && |
|
711
|
|
|
((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
|
712
|
|
|
$arg = (integer) $arg; |
|
713
|
|
|
} |
|
714
|
|
|
// Is it a numeric value? |
|
715
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
716
|
|
|
if (is_null($returnValue)) { |
|
717
|
|
|
$returnValue = abs($arg - $aMean); |
|
718
|
|
|
} else { |
|
719
|
|
|
$returnValue += abs($arg - $aMean); |
|
720
|
|
|
} |
|
721
|
|
|
++$aCount; |
|
722
|
|
|
} |
|
723
|
|
|
} |
|
724
|
|
|
|
|
725
|
|
|
// Return |
|
726
|
|
|
if ($aCount == 0) { |
|
727
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
728
|
|
|
} |
|
729
|
|
|
return $returnValue / $aCount; |
|
730
|
|
|
} |
|
731
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
732
|
|
|
} // function AVEDEV() |
|
733
|
|
|
|
|
734
|
|
|
|
|
735
|
|
|
/** |
|
736
|
|
|
* AVERAGE |
|
737
|
|
|
* |
|
738
|
|
|
* Returns the average (arithmetic mean) of the arguments |
|
739
|
|
|
* |
|
740
|
|
|
* Excel Function: |
|
741
|
|
|
* AVERAGE(value1[,value2[, ...]]) |
|
742
|
|
|
* |
|
743
|
|
|
* @access public |
|
744
|
|
|
* @category Statistical Functions |
|
745
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
746
|
|
|
* @return float |
|
747
|
|
|
*/ |
|
748
|
|
|
public static function AVERAGE() { |
|
749
|
|
|
$returnValue = $aCount = 0; |
|
750
|
|
|
|
|
751
|
|
|
// Loop through arguments |
|
752
|
|
|
foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) { |
|
753
|
|
|
if ((is_bool($arg)) && |
|
754
|
|
|
((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
|
755
|
|
|
$arg = (integer) $arg; |
|
756
|
|
|
} |
|
757
|
|
|
// Is it a numeric value? |
|
758
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
759
|
|
|
if (is_null($returnValue)) { |
|
760
|
|
|
$returnValue = $arg; |
|
761
|
|
|
} else { |
|
762
|
|
|
$returnValue += $arg; |
|
763
|
|
|
} |
|
764
|
|
|
++$aCount; |
|
765
|
|
|
} |
|
766
|
|
|
} |
|
767
|
|
|
|
|
768
|
|
|
// Return |
|
769
|
|
|
if ($aCount > 0) { |
|
770
|
|
|
return $returnValue / $aCount; |
|
771
|
|
|
} else { |
|
772
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
773
|
|
|
} |
|
774
|
|
|
} // function AVERAGE() |
|
775
|
|
|
|
|
776
|
|
|
|
|
777
|
|
|
/** |
|
778
|
|
|
* AVERAGEA |
|
779
|
|
|
* |
|
780
|
|
|
* Returns the average of its arguments, including numbers, text, and logical values |
|
781
|
|
|
* |
|
782
|
|
|
* Excel Function: |
|
783
|
|
|
* AVERAGEA(value1[,value2[, ...]]) |
|
784
|
|
|
* |
|
785
|
|
|
* @access public |
|
786
|
|
|
* @category Statistical Functions |
|
787
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
788
|
|
|
* @return float |
|
789
|
|
|
*/ |
|
790
|
|
|
public static function AVERAGEA() { |
|
791
|
|
|
// Return value |
|
792
|
|
|
$returnValue = null; |
|
793
|
|
|
|
|
794
|
|
|
$aCount = 0; |
|
795
|
|
|
// Loop through arguments |
|
796
|
|
|
foreach (PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()) as $k => $arg) { |
|
797
|
|
|
if ((is_bool($arg)) && |
|
|
|
|
|
|
798
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
799
|
|
|
} else { |
|
800
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
|
801
|
|
|
if (is_bool($arg)) { |
|
802
|
|
|
$arg = (integer) $arg; |
|
803
|
|
|
} elseif (is_string($arg)) { |
|
804
|
|
|
$arg = 0; |
|
805
|
|
|
} |
|
806
|
|
|
if (is_null($returnValue)) { |
|
807
|
|
|
$returnValue = $arg; |
|
808
|
|
|
} else { |
|
809
|
|
|
$returnValue += $arg; |
|
810
|
|
|
} |
|
811
|
|
|
++$aCount; |
|
812
|
|
|
} |
|
813
|
|
|
} |
|
814
|
|
|
} |
|
815
|
|
|
|
|
816
|
|
|
// Return |
|
817
|
|
|
if ($aCount > 0) { |
|
818
|
|
|
return $returnValue / $aCount; |
|
819
|
|
|
} else { |
|
820
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
821
|
|
|
} |
|
822
|
|
|
} // function AVERAGEA() |
|
823
|
|
|
|
|
824
|
|
|
|
|
825
|
|
|
/** |
|
826
|
|
|
* AVERAGEIF |
|
827
|
|
|
* |
|
828
|
|
|
* Returns the average value from a range of cells that contain numbers within the list of arguments |
|
829
|
|
|
* |
|
830
|
|
|
* Excel Function: |
|
831
|
|
|
* AVERAGEIF(value1[,value2[, ...]],condition) |
|
832
|
|
|
* |
|
833
|
|
|
* @access public |
|
834
|
|
|
* @category Mathematical and Trigonometric Functions |
|
835
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
836
|
|
|
* @param string $condition The criteria that defines which cells will be checked. |
|
837
|
|
|
* @return float |
|
838
|
|
|
*/ |
|
839
|
|
|
public static function AVERAGEIF($aArgs,$condition,$averageArgs = array()) { |
|
840
|
|
|
// Return value |
|
841
|
|
|
$returnValue = 0; |
|
842
|
|
|
|
|
843
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
|
844
|
|
|
$averageArgs = PHPExcel_Calculation_Functions::flattenArray($averageArgs); |
|
845
|
|
|
if (empty($averageArgs)) { |
|
846
|
|
|
$averageArgs = $aArgs; |
|
847
|
|
|
} |
|
848
|
|
|
$condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
|
849
|
|
|
// Loop through arguments |
|
850
|
|
|
$aCount = 0; |
|
851
|
|
|
foreach ($aArgs as $key => $arg) { |
|
852
|
|
|
if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
|
853
|
|
|
$testCondition = '='.$arg.$condition; |
|
854
|
|
|
if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
|
855
|
|
|
if ((is_null($returnValue)) || ($arg > $returnValue)) { |
|
856
|
|
|
$returnValue += $arg; |
|
857
|
|
|
++$aCount; |
|
858
|
|
|
} |
|
859
|
|
|
} |
|
860
|
|
|
} |
|
861
|
|
|
|
|
862
|
|
|
// Return |
|
863
|
|
|
if ($aCount > 0) { |
|
864
|
|
|
return $returnValue / $aCount; |
|
865
|
|
|
} else { |
|
866
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
867
|
|
|
} |
|
868
|
|
|
} // function AVERAGEIF() |
|
869
|
|
|
|
|
870
|
|
|
|
|
871
|
|
|
/** |
|
872
|
|
|
* BETADIST |
|
873
|
|
|
* |
|
874
|
|
|
* Returns the beta distribution. |
|
875
|
|
|
* |
|
876
|
|
|
* @param float $value Value at which you want to evaluate the distribution |
|
877
|
|
|
* @param float $alpha Parameter to the distribution |
|
878
|
|
|
* @param float $beta Parameter to the distribution |
|
879
|
|
|
* @param boolean $cumulative |
|
|
|
|
|
|
880
|
|
|
* @return float |
|
881
|
|
|
* |
|
882
|
|
|
*/ |
|
883
|
|
|
public static function BETADIST($value,$alpha,$beta,$rMin=0,$rMax=1) { |
|
884
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
885
|
|
|
$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
|
886
|
|
|
$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
|
887
|
|
|
$rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin); |
|
888
|
|
|
$rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax); |
|
889
|
|
|
|
|
890
|
|
|
if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { |
|
891
|
|
|
if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) { |
|
892
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
893
|
|
|
} |
|
894
|
|
|
if ($rMin > $rMax) { |
|
895
|
|
|
$tmp = $rMin; |
|
896
|
|
|
$rMin = $rMax; |
|
897
|
|
|
$rMax = $tmp; |
|
898
|
|
|
} |
|
899
|
|
|
$value -= $rMin; |
|
900
|
|
|
$value /= ($rMax - $rMin); |
|
901
|
|
|
return self::_incompleteBeta($value,$alpha,$beta); |
|
902
|
|
|
} |
|
903
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
904
|
|
|
} // function BETADIST() |
|
905
|
|
|
|
|
906
|
|
|
|
|
907
|
|
|
/** |
|
908
|
|
|
* BETAINV |
|
909
|
|
|
* |
|
910
|
|
|
* Returns the inverse of the beta distribution. |
|
911
|
|
|
* |
|
912
|
|
|
* @param float $probability Probability at which you want to evaluate the distribution |
|
913
|
|
|
* @param float $alpha Parameter to the distribution |
|
914
|
|
|
* @param float $beta Parameter to the distribution |
|
915
|
|
|
* @param boolean $cumulative |
|
|
|
|
|
|
916
|
|
|
* @return float |
|
917
|
|
|
* |
|
918
|
|
|
*/ |
|
919
|
|
|
public static function BETAINV($probability,$alpha,$beta,$rMin=0,$rMax=1) { |
|
920
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
921
|
|
|
$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
|
922
|
|
|
$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
|
923
|
|
|
$rMin = PHPExcel_Calculation_Functions::flattenSingleValue($rMin); |
|
924
|
|
|
$rMax = PHPExcel_Calculation_Functions::flattenSingleValue($rMax); |
|
925
|
|
|
|
|
926
|
|
|
if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { |
|
927
|
|
View Code Duplication |
if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) { |
|
928
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
929
|
|
|
} |
|
930
|
|
|
if ($rMin > $rMax) { |
|
931
|
|
|
$tmp = $rMin; |
|
932
|
|
|
$rMin = $rMax; |
|
933
|
|
|
$rMax = $tmp; |
|
934
|
|
|
} |
|
935
|
|
|
$a = 0; |
|
936
|
|
|
$b = 2; |
|
937
|
|
|
|
|
938
|
|
|
$i = 0; |
|
939
|
|
|
while ((($b - $a) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
|
940
|
|
|
$guess = ($a + $b) / 2; |
|
941
|
|
|
$result = self::BETADIST($guess, $alpha, $beta); |
|
942
|
|
|
if (($result == $probability) || ($result == 0)) { |
|
943
|
|
|
$b = $a; |
|
944
|
|
|
} elseif ($result > $probability) { |
|
945
|
|
|
$b = $guess; |
|
946
|
|
|
} else { |
|
947
|
|
|
$a = $guess; |
|
948
|
|
|
} |
|
949
|
|
|
} |
|
950
|
|
|
if ($i == MAX_ITERATIONS) { |
|
951
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
952
|
|
|
} |
|
953
|
|
|
return round($rMin + $guess * ($rMax - $rMin),12); |
|
|
|
|
|
|
954
|
|
|
} |
|
955
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
956
|
|
|
} // function BETAINV() |
|
957
|
|
|
|
|
958
|
|
|
|
|
959
|
|
|
/** |
|
960
|
|
|
* BINOMDIST |
|
961
|
|
|
* |
|
962
|
|
|
* Returns the individual term binomial distribution probability. Use BINOMDIST in problems with |
|
963
|
|
|
* a fixed number of tests or trials, when the outcomes of any trial are only success or failure, |
|
964
|
|
|
* when trials are independent, and when the probability of success is constant throughout the |
|
965
|
|
|
* experiment. For example, BINOMDIST can calculate the probability that two of the next three |
|
966
|
|
|
* babies born are male. |
|
967
|
|
|
* |
|
968
|
|
|
* @param float $value Number of successes in trials |
|
969
|
|
|
* @param float $trials Number of trials |
|
970
|
|
|
* @param float $probability Probability of success on each trial |
|
971
|
|
|
* @param boolean $cumulative |
|
972
|
|
|
* @return float |
|
973
|
|
|
* |
|
974
|
|
|
* @todo Cumulative distribution function |
|
975
|
|
|
* |
|
976
|
|
|
*/ |
|
977
|
|
|
public static function BINOMDIST($value, $trials, $probability, $cumulative) { |
|
978
|
|
|
$value = floor(PHPExcel_Calculation_Functions::flattenSingleValue($value)); |
|
979
|
|
|
$trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials)); |
|
980
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
981
|
|
|
|
|
982
|
|
|
if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) { |
|
983
|
|
|
if (($value < 0) || ($value > $trials)) { |
|
984
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
985
|
|
|
} |
|
986
|
|
|
if (($probability < 0) || ($probability > 1)) { |
|
987
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
988
|
|
|
} |
|
989
|
|
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
|
990
|
|
|
if ($cumulative) { |
|
991
|
|
|
$summer = 0; |
|
992
|
|
|
for ($i = 0; $i <= $value; ++$i) { |
|
993
|
|
|
$summer += PHPExcel_Calculation_MathTrig::COMBIN($trials,$i) * pow($probability,$i) * pow(1 - $probability,$trials - $i); |
|
994
|
|
|
} |
|
995
|
|
|
return $summer; |
|
996
|
|
|
} else { |
|
997
|
|
|
return PHPExcel_Calculation_MathTrig::COMBIN($trials,$value) * pow($probability,$value) * pow(1 - $probability,$trials - $value) ; |
|
998
|
|
|
} |
|
999
|
|
|
} |
|
1000
|
|
|
} |
|
1001
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1002
|
|
|
} // function BINOMDIST() |
|
1003
|
|
|
|
|
1004
|
|
|
|
|
1005
|
|
|
/** |
|
1006
|
|
|
* CHIDIST |
|
1007
|
|
|
* |
|
1008
|
|
|
* Returns the one-tailed probability of the chi-squared distribution. |
|
1009
|
|
|
* |
|
1010
|
|
|
* @param float $value Value for the function |
|
1011
|
|
|
* @param float $degrees degrees of freedom |
|
1012
|
|
|
* @return float |
|
1013
|
|
|
*/ |
|
1014
|
|
|
public static function CHIDIST($value, $degrees) { |
|
1015
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
1016
|
|
|
$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
|
1017
|
|
|
|
|
1018
|
|
|
if ((is_numeric($value)) && (is_numeric($degrees))) { |
|
1019
|
|
|
if ($degrees < 1) { |
|
1020
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1021
|
|
|
} |
|
1022
|
|
|
if ($value < 0) { |
|
1023
|
|
|
if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) { |
|
1024
|
|
|
return 1; |
|
1025
|
|
|
} |
|
1026
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1027
|
|
|
} |
|
1028
|
|
|
return 1 - (self::_incompleteGamma($degrees/2,$value/2) / self::_gamma($degrees/2)); |
|
1029
|
|
|
} |
|
1030
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1031
|
|
|
} // function CHIDIST() |
|
1032
|
|
|
|
|
1033
|
|
|
|
|
1034
|
|
|
/** |
|
1035
|
|
|
* CHIINV |
|
1036
|
|
|
* |
|
1037
|
|
|
* Returns the one-tailed probability of the chi-squared distribution. |
|
1038
|
|
|
* |
|
1039
|
|
|
* @param float $probability Probability for the function |
|
1040
|
|
|
* @param float $degrees degrees of freedom |
|
1041
|
|
|
* @return float |
|
1042
|
|
|
*/ |
|
1043
|
|
View Code Duplication |
public static function CHIINV($probability, $degrees) { |
|
1044
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
1045
|
|
|
$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
|
1046
|
|
|
|
|
1047
|
|
|
if ((is_numeric($probability)) && (is_numeric($degrees))) { |
|
1048
|
|
|
|
|
1049
|
|
|
$xLo = 100; |
|
1050
|
|
|
$xHi = 0; |
|
1051
|
|
|
|
|
1052
|
|
|
$x = $xNew = 1; |
|
1053
|
|
|
$dx = 1; |
|
1054
|
|
|
$i = 0; |
|
1055
|
|
|
|
|
1056
|
|
|
while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
|
1057
|
|
|
// Apply Newton-Raphson step |
|
1058
|
|
|
$result = self::CHIDIST($x, $degrees); |
|
1059
|
|
|
$error = $result - $probability; |
|
1060
|
|
|
if ($error == 0.0) { |
|
1061
|
|
|
$dx = 0; |
|
1062
|
|
|
} elseif ($error < 0.0) { |
|
1063
|
|
|
$xLo = $x; |
|
1064
|
|
|
} else { |
|
1065
|
|
|
$xHi = $x; |
|
1066
|
|
|
} |
|
1067
|
|
|
// Avoid division by zero |
|
1068
|
|
|
if ($result != 0.0) { |
|
1069
|
|
|
$dx = $error / $result; |
|
1070
|
|
|
$xNew = $x - $dx; |
|
1071
|
|
|
} |
|
1072
|
|
|
// If the NR fails to converge (which for example may be the |
|
1073
|
|
|
// case if the initial guess is too rough) we apply a bisection |
|
1074
|
|
|
// step to determine a more narrow interval around the root. |
|
1075
|
|
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { |
|
1076
|
|
|
$xNew = ($xLo + $xHi) / 2; |
|
1077
|
|
|
$dx = $xNew - $x; |
|
1078
|
|
|
} |
|
1079
|
|
|
$x = $xNew; |
|
1080
|
|
|
} |
|
1081
|
|
|
if ($i == MAX_ITERATIONS) { |
|
1082
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1083
|
|
|
} |
|
1084
|
|
|
return round($x,12); |
|
1085
|
|
|
} |
|
1086
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1087
|
|
|
} // function CHIINV() |
|
1088
|
|
|
|
|
1089
|
|
|
|
|
1090
|
|
|
/** |
|
1091
|
|
|
* CONFIDENCE |
|
1092
|
|
|
* |
|
1093
|
|
|
* Returns the confidence interval for a population mean |
|
1094
|
|
|
* |
|
1095
|
|
|
* @param float $alpha |
|
1096
|
|
|
* @param float $stdDev Standard Deviation |
|
1097
|
|
|
* @param float $size |
|
1098
|
|
|
* @return float |
|
1099
|
|
|
* |
|
1100
|
|
|
*/ |
|
1101
|
|
|
public static function CONFIDENCE($alpha,$stdDev,$size) { |
|
1102
|
|
|
$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
|
1103
|
|
|
$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
|
1104
|
|
|
$size = floor(PHPExcel_Calculation_Functions::flattenSingleValue($size)); |
|
1105
|
|
|
|
|
1106
|
|
|
if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) { |
|
1107
|
|
|
if (($alpha <= 0) || ($alpha >= 1)) { |
|
1108
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1109
|
|
|
} |
|
1110
|
|
|
if (($stdDev <= 0) || ($size < 1)) { |
|
1111
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1112
|
|
|
} |
|
1113
|
|
|
return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size); |
|
1114
|
|
|
} |
|
1115
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1116
|
|
|
} // function CONFIDENCE() |
|
1117
|
|
|
|
|
1118
|
|
|
|
|
1119
|
|
|
/** |
|
1120
|
|
|
* CORREL |
|
1121
|
|
|
* |
|
1122
|
|
|
* Returns covariance, the average of the products of deviations for each data point pair. |
|
1123
|
|
|
* |
|
1124
|
|
|
* @param array of mixed Data Series Y |
|
1125
|
|
|
* @param array of mixed Data Series X |
|
1126
|
|
|
* @return float |
|
1127
|
|
|
*/ |
|
1128
|
|
|
public static function CORREL($yValues,$xValues=null) { |
|
1129
|
|
|
if ((is_null($xValues)) || (!is_array($yValues)) || (!is_array($xValues))) { |
|
1130
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1131
|
|
|
} |
|
1132
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
1133
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1134
|
|
|
} |
|
1135
|
|
|
$yValueCount = count($yValues); |
|
1136
|
|
|
$xValueCount = count($xValues); |
|
1137
|
|
|
|
|
1138
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
1139
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1140
|
|
|
} elseif ($yValueCount == 1) { |
|
1141
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
1142
|
|
|
} |
|
1143
|
|
|
|
|
1144
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
1145
|
|
|
return $bestFitLinear->getCorrelation(); |
|
1146
|
|
|
} // function CORREL() |
|
1147
|
|
|
|
|
1148
|
|
|
|
|
1149
|
|
|
/** |
|
1150
|
|
|
* COUNT |
|
1151
|
|
|
* |
|
1152
|
|
|
* Counts the number of cells that contain numbers within the list of arguments |
|
1153
|
|
|
* |
|
1154
|
|
|
* Excel Function: |
|
1155
|
|
|
* COUNT(value1[,value2[, ...]]) |
|
1156
|
|
|
* |
|
1157
|
|
|
* @access public |
|
1158
|
|
|
* @category Statistical Functions |
|
1159
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1160
|
|
|
* @return int |
|
1161
|
|
|
*/ |
|
1162
|
|
|
public static function COUNT() { |
|
1163
|
|
|
// Return value |
|
1164
|
|
|
$returnValue = 0; |
|
1165
|
|
|
|
|
1166
|
|
|
// Loop through arguments |
|
1167
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
1168
|
|
|
foreach ($aArgs as $k => $arg) { |
|
1169
|
|
|
if ((is_bool($arg)) && |
|
1170
|
|
|
((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
|
1171
|
|
|
$arg = (integer) $arg; |
|
1172
|
|
|
} |
|
1173
|
|
|
// Is it a numeric value? |
|
1174
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
1175
|
|
|
++$returnValue; |
|
1176
|
|
|
} |
|
1177
|
|
|
} |
|
1178
|
|
|
|
|
1179
|
|
|
// Return |
|
1180
|
|
|
return $returnValue; |
|
1181
|
|
|
} // function COUNT() |
|
1182
|
|
|
|
|
1183
|
|
|
|
|
1184
|
|
|
/** |
|
1185
|
|
|
* COUNTA |
|
1186
|
|
|
* |
|
1187
|
|
|
* Counts the number of cells that are not empty within the list of arguments |
|
1188
|
|
|
* |
|
1189
|
|
|
* Excel Function: |
|
1190
|
|
|
* COUNTA(value1[,value2[, ...]]) |
|
1191
|
|
|
* |
|
1192
|
|
|
* @access public |
|
1193
|
|
|
* @category Statistical Functions |
|
1194
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1195
|
|
|
* @return int |
|
1196
|
|
|
*/ |
|
1197
|
|
View Code Duplication |
public static function COUNTA() { |
|
1198
|
|
|
// Return value |
|
1199
|
|
|
$returnValue = 0; |
|
1200
|
|
|
|
|
1201
|
|
|
// Loop through arguments |
|
1202
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
1203
|
|
|
foreach ($aArgs as $arg) { |
|
1204
|
|
|
// Is it a numeric, boolean or string value? |
|
1205
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
|
1206
|
|
|
++$returnValue; |
|
1207
|
|
|
} |
|
1208
|
|
|
} |
|
1209
|
|
|
|
|
1210
|
|
|
// Return |
|
1211
|
|
|
return $returnValue; |
|
1212
|
|
|
} // function COUNTA() |
|
1213
|
|
|
|
|
1214
|
|
|
|
|
1215
|
|
|
/** |
|
1216
|
|
|
* COUNTBLANK |
|
1217
|
|
|
* |
|
1218
|
|
|
* Counts the number of empty cells within the list of arguments |
|
1219
|
|
|
* |
|
1220
|
|
|
* Excel Function: |
|
1221
|
|
|
* COUNTBLANK(value1[,value2[, ...]]) |
|
1222
|
|
|
* |
|
1223
|
|
|
* @access public |
|
1224
|
|
|
* @category Statistical Functions |
|
1225
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1226
|
|
|
* @return int |
|
1227
|
|
|
*/ |
|
1228
|
|
View Code Duplication |
public static function COUNTBLANK() { |
|
1229
|
|
|
// Return value |
|
1230
|
|
|
$returnValue = 0; |
|
1231
|
|
|
|
|
1232
|
|
|
// Loop through arguments |
|
1233
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
1234
|
|
|
foreach ($aArgs as $arg) { |
|
1235
|
|
|
// Is it a blank cell? |
|
1236
|
|
|
if ((is_null($arg)) || ((is_string($arg)) && ($arg == ''))) { |
|
1237
|
|
|
++$returnValue; |
|
1238
|
|
|
} |
|
1239
|
|
|
} |
|
1240
|
|
|
|
|
1241
|
|
|
// Return |
|
1242
|
|
|
return $returnValue; |
|
1243
|
|
|
} // function COUNTBLANK() |
|
1244
|
|
|
|
|
1245
|
|
|
|
|
1246
|
|
|
/** |
|
1247
|
|
|
* COUNTIF |
|
1248
|
|
|
* |
|
1249
|
|
|
* Counts the number of cells that contain numbers within the list of arguments |
|
1250
|
|
|
* |
|
1251
|
|
|
* Excel Function: |
|
1252
|
|
|
* COUNTIF(value1[,value2[, ...]],condition) |
|
1253
|
|
|
* |
|
1254
|
|
|
* @access public |
|
1255
|
|
|
* @category Statistical Functions |
|
1256
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1257
|
|
|
* @param string $condition The criteria that defines which cells will be counted. |
|
1258
|
|
|
* @return int |
|
1259
|
|
|
*/ |
|
1260
|
|
|
public static function COUNTIF($aArgs,$condition) { |
|
1261
|
|
|
// Return value |
|
1262
|
|
|
$returnValue = 0; |
|
1263
|
|
|
|
|
1264
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
|
1265
|
|
|
$condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
|
1266
|
|
|
// Loop through arguments |
|
1267
|
|
|
foreach ($aArgs as $arg) { |
|
1268
|
|
|
if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
|
1269
|
|
|
$testCondition = '='.$arg.$condition; |
|
1270
|
|
|
if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
|
1271
|
|
|
// Is it a value within our criteria |
|
1272
|
|
|
++$returnValue; |
|
1273
|
|
|
} |
|
1274
|
|
|
} |
|
1275
|
|
|
|
|
1276
|
|
|
// Return |
|
1277
|
|
|
return $returnValue; |
|
1278
|
|
|
} // function COUNTIF() |
|
1279
|
|
|
|
|
1280
|
|
|
|
|
1281
|
|
|
/** |
|
1282
|
|
|
* COVAR |
|
1283
|
|
|
* |
|
1284
|
|
|
* Returns covariance, the average of the products of deviations for each data point pair. |
|
1285
|
|
|
* |
|
1286
|
|
|
* @param array of mixed Data Series Y |
|
1287
|
|
|
* @param array of mixed Data Series X |
|
1288
|
|
|
* @return float |
|
1289
|
|
|
*/ |
|
1290
|
|
View Code Duplication |
public static function COVAR($yValues,$xValues) { |
|
1291
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
1292
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1293
|
|
|
} |
|
1294
|
|
|
$yValueCount = count($yValues); |
|
1295
|
|
|
$xValueCount = count($xValues); |
|
1296
|
|
|
|
|
1297
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
1298
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1299
|
|
|
} elseif ($yValueCount == 1) { |
|
1300
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
1301
|
|
|
} |
|
1302
|
|
|
|
|
1303
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
1304
|
|
|
return $bestFitLinear->getCovariance(); |
|
1305
|
|
|
} // function COVAR() |
|
1306
|
|
|
|
|
1307
|
|
|
|
|
1308
|
|
|
/** |
|
1309
|
|
|
* CRITBINOM |
|
1310
|
|
|
* |
|
1311
|
|
|
* Returns the smallest value for which the cumulative binomial distribution is greater |
|
1312
|
|
|
* than or equal to a criterion value |
|
1313
|
|
|
* |
|
1314
|
|
|
* See http://support.microsoft.com/kb/828117/ for details of the algorithm used |
|
1315
|
|
|
* |
|
1316
|
|
|
* @param float $trials number of Bernoulli trials |
|
1317
|
|
|
* @param float $probability probability of a success on each trial |
|
1318
|
|
|
* @param float $alpha criterion value |
|
1319
|
|
|
* @return int |
|
1320
|
|
|
* |
|
1321
|
|
|
* @todo Warning. This implementation differs from the algorithm detailed on the MS |
|
1322
|
|
|
* web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess |
|
1323
|
|
|
* This eliminates a potential endless loop error, but may have an adverse affect on the |
|
1324
|
|
|
* accuracy of the function (although all my tests have so far returned correct results). |
|
1325
|
|
|
* |
|
1326
|
|
|
*/ |
|
1327
|
|
|
public static function CRITBINOM($trials, $probability, $alpha) { |
|
1328
|
|
|
$trials = floor(PHPExcel_Calculation_Functions::flattenSingleValue($trials)); |
|
1329
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
1330
|
|
|
$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
|
1331
|
|
|
|
|
1332
|
|
|
if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) { |
|
1333
|
|
|
if ($trials < 0) { |
|
1334
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1335
|
|
|
} |
|
1336
|
|
|
if (($probability < 0) || ($probability > 1)) { |
|
1337
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1338
|
|
|
} |
|
1339
|
|
|
if (($alpha < 0) || ($alpha > 1)) { |
|
1340
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1341
|
|
|
} |
|
1342
|
|
|
if ($alpha <= 0.5) { |
|
1343
|
|
|
$t = sqrt(log(1 / ($alpha * $alpha))); |
|
1344
|
|
|
$trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t)); |
|
1345
|
|
|
} else { |
|
1346
|
|
|
$t = sqrt(log(1 / pow(1 - $alpha,2))); |
|
1347
|
|
|
$trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t); |
|
1348
|
|
|
} |
|
1349
|
|
|
$Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability))); |
|
1350
|
|
|
if ($Guess < 0) { |
|
1351
|
|
|
$Guess = 0; |
|
1352
|
|
|
} elseif ($Guess > $trials) { |
|
1353
|
|
|
$Guess = $trials; |
|
1354
|
|
|
} |
|
1355
|
|
|
|
|
1356
|
|
|
$TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0; |
|
1357
|
|
|
$EssentiallyZero = 10e-12; |
|
1358
|
|
|
|
|
1359
|
|
|
$m = floor($trials * $probability); |
|
1360
|
|
|
++$TotalUnscaledProbability; |
|
1361
|
|
|
if ($m == $Guess) { ++$UnscaledPGuess; } |
|
1362
|
|
|
if ($m <= $Guess) { ++$UnscaledCumPGuess; } |
|
1363
|
|
|
|
|
1364
|
|
|
$PreviousValue = 1; |
|
1365
|
|
|
$Done = False; |
|
1366
|
|
|
$k = $m + 1; |
|
1367
|
|
View Code Duplication |
while ((!$Done) && ($k <= $trials)) { |
|
1368
|
|
|
$CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability)); |
|
1369
|
|
|
$TotalUnscaledProbability += $CurrentValue; |
|
1370
|
|
|
if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; } |
|
1371
|
|
|
if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; } |
|
1372
|
|
|
if ($CurrentValue <= $EssentiallyZero) { $Done = True; } |
|
1373
|
|
|
$PreviousValue = $CurrentValue; |
|
1374
|
|
|
++$k; |
|
1375
|
|
|
} |
|
1376
|
|
|
|
|
1377
|
|
|
$PreviousValue = 1; |
|
1378
|
|
|
$Done = False; |
|
1379
|
|
|
$k = $m - 1; |
|
1380
|
|
View Code Duplication |
while ((!$Done) && ($k >= 0)) { |
|
1381
|
|
|
$CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability); |
|
1382
|
|
|
$TotalUnscaledProbability += $CurrentValue; |
|
1383
|
|
|
if ($k == $Guess) { $UnscaledPGuess += $CurrentValue; } |
|
1384
|
|
|
if ($k <= $Guess) { $UnscaledCumPGuess += $CurrentValue; } |
|
1385
|
|
|
if ($CurrentValue <= $EssentiallyZero) { $Done = True; } |
|
1386
|
|
|
$PreviousValue = $CurrentValue; |
|
1387
|
|
|
--$k; |
|
1388
|
|
|
} |
|
1389
|
|
|
|
|
1390
|
|
|
$PGuess = $UnscaledPGuess / $TotalUnscaledProbability; |
|
1391
|
|
|
$CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability; |
|
1392
|
|
|
|
|
1393
|
|
|
// $CumPGuessMinus1 = $CumPGuess - $PGuess; |
|
1394
|
|
|
$CumPGuessMinus1 = $CumPGuess - 1; |
|
1395
|
|
|
|
|
1396
|
|
|
while (True) { |
|
1397
|
|
|
if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) { |
|
1398
|
|
|
return $Guess; |
|
1399
|
|
|
} elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) { |
|
1400
|
|
|
$PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability); |
|
1401
|
|
|
$CumPGuessMinus1 = $CumPGuess; |
|
1402
|
|
|
$CumPGuess = $CumPGuess + $PGuessPlus1; |
|
1403
|
|
|
$PGuess = $PGuessPlus1; |
|
1404
|
|
|
++$Guess; |
|
1405
|
|
|
} elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) { |
|
1406
|
|
|
$PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability; |
|
1407
|
|
|
$CumPGuess = $CumPGuessMinus1; |
|
1408
|
|
|
$CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess; |
|
1409
|
|
|
$PGuess = $PGuessMinus1; |
|
1410
|
|
|
--$Guess; |
|
1411
|
|
|
} |
|
1412
|
|
|
} |
|
1413
|
|
|
} |
|
1414
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1415
|
|
|
} // function CRITBINOM() |
|
1416
|
|
|
|
|
1417
|
|
|
|
|
1418
|
|
|
/** |
|
1419
|
|
|
* DEVSQ |
|
1420
|
|
|
* |
|
1421
|
|
|
* Returns the sum of squares of deviations of data points from their sample mean. |
|
1422
|
|
|
* |
|
1423
|
|
|
* Excel Function: |
|
1424
|
|
|
* DEVSQ(value1[,value2[, ...]]) |
|
1425
|
|
|
* |
|
1426
|
|
|
* @access public |
|
1427
|
|
|
* @category Statistical Functions |
|
1428
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1429
|
|
|
* @return float |
|
1430
|
|
|
*/ |
|
1431
|
|
View Code Duplication |
public static function DEVSQ() { |
|
1432
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
1433
|
|
|
|
|
1434
|
|
|
// Return value |
|
1435
|
|
|
$returnValue = null; |
|
1436
|
|
|
|
|
1437
|
|
|
$aMean = self::AVERAGE($aArgs); |
|
1438
|
|
|
if ($aMean != PHPExcel_Calculation_Functions::DIV0()) { |
|
1439
|
|
|
$aCount = -1; |
|
1440
|
|
|
foreach ($aArgs as $k => $arg) { |
|
1441
|
|
|
// Is it a numeric value? |
|
1442
|
|
|
if ((is_bool($arg)) && |
|
1443
|
|
|
((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
|
1444
|
|
|
$arg = (integer) $arg; |
|
1445
|
|
|
} |
|
1446
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
1447
|
|
|
if (is_null($returnValue)) { |
|
1448
|
|
|
$returnValue = pow(($arg - $aMean),2); |
|
1449
|
|
|
} else { |
|
1450
|
|
|
$returnValue += pow(($arg - $aMean),2); |
|
1451
|
|
|
} |
|
1452
|
|
|
++$aCount; |
|
1453
|
|
|
} |
|
1454
|
|
|
} |
|
1455
|
|
|
|
|
1456
|
|
|
// Return |
|
1457
|
|
|
if (is_null($returnValue)) { |
|
1458
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1459
|
|
|
} else { |
|
1460
|
|
|
return $returnValue; |
|
1461
|
|
|
} |
|
1462
|
|
|
} |
|
1463
|
|
|
return self::NA(); |
|
|
|
|
|
|
1464
|
|
|
} // function DEVSQ() |
|
1465
|
|
|
|
|
1466
|
|
|
|
|
1467
|
|
|
/** |
|
1468
|
|
|
* EXPONDIST |
|
1469
|
|
|
* |
|
1470
|
|
|
* Returns the exponential distribution. Use EXPONDIST to model the time between events, |
|
1471
|
|
|
* such as how long an automated bank teller takes to deliver cash. For example, you can |
|
1472
|
|
|
* use EXPONDIST to determine the probability that the process takes at most 1 minute. |
|
1473
|
|
|
* |
|
1474
|
|
|
* @param float $value Value of the function |
|
1475
|
|
|
* @param float $lambda The parameter value |
|
1476
|
|
|
* @param boolean $cumulative |
|
1477
|
|
|
* @return float |
|
1478
|
|
|
*/ |
|
1479
|
|
|
public static function EXPONDIST($value, $lambda, $cumulative) { |
|
1480
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
1481
|
|
|
$lambda = PHPExcel_Calculation_Functions::flattenSingleValue($lambda); |
|
1482
|
|
|
$cumulative = PHPExcel_Calculation_Functions::flattenSingleValue($cumulative); |
|
1483
|
|
|
|
|
1484
|
|
|
if ((is_numeric($value)) && (is_numeric($lambda))) { |
|
1485
|
|
|
if (($value < 0) || ($lambda < 0)) { |
|
1486
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1487
|
|
|
} |
|
1488
|
|
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
|
1489
|
|
|
if ($cumulative) { |
|
1490
|
|
|
return 1 - exp(0-$value*$lambda); |
|
1491
|
|
|
} else { |
|
1492
|
|
|
return $lambda * exp(0-$value*$lambda); |
|
1493
|
|
|
} |
|
1494
|
|
|
} |
|
1495
|
|
|
} |
|
1496
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1497
|
|
|
} // function EXPONDIST() |
|
1498
|
|
|
|
|
1499
|
|
|
|
|
1500
|
|
|
/** |
|
1501
|
|
|
* FISHER |
|
1502
|
|
|
* |
|
1503
|
|
|
* Returns the Fisher transformation at x. This transformation produces a function that |
|
1504
|
|
|
* is normally distributed rather than skewed. Use this function to perform hypothesis |
|
1505
|
|
|
* testing on the correlation coefficient. |
|
1506
|
|
|
* |
|
1507
|
|
|
* @param float $value |
|
1508
|
|
|
* @return float |
|
1509
|
|
|
*/ |
|
1510
|
|
|
public static function FISHER($value) { |
|
1511
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
1512
|
|
|
|
|
1513
|
|
|
if (is_numeric($value)) { |
|
1514
|
|
|
if (($value <= -1) || ($value >= 1)) { |
|
1515
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1516
|
|
|
} |
|
1517
|
|
|
return 0.5 * log((1+$value)/(1-$value)); |
|
1518
|
|
|
} |
|
1519
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1520
|
|
|
} // function FISHER() |
|
1521
|
|
|
|
|
1522
|
|
|
|
|
1523
|
|
|
/** |
|
1524
|
|
|
* FISHERINV |
|
1525
|
|
|
* |
|
1526
|
|
|
* Returns the inverse of the Fisher transformation. Use this transformation when |
|
1527
|
|
|
* analyzing correlations between ranges or arrays of data. If y = FISHER(x), then |
|
1528
|
|
|
* FISHERINV(y) = x. |
|
1529
|
|
|
* |
|
1530
|
|
|
* @param float $value |
|
1531
|
|
|
* @return float |
|
1532
|
|
|
*/ |
|
1533
|
|
|
public static function FISHERINV($value) { |
|
1534
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
1535
|
|
|
|
|
1536
|
|
|
if (is_numeric($value)) { |
|
1537
|
|
|
return (exp(2 * $value) - 1) / (exp(2 * $value) + 1); |
|
1538
|
|
|
} |
|
1539
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1540
|
|
|
} // function FISHERINV() |
|
1541
|
|
|
|
|
1542
|
|
|
|
|
1543
|
|
|
/** |
|
1544
|
|
|
* FORECAST |
|
1545
|
|
|
* |
|
1546
|
|
|
* Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value. |
|
1547
|
|
|
* |
|
1548
|
|
|
* @param float Value of X for which we want to find Y |
|
1549
|
|
|
* @param array of mixed Data Series Y |
|
1550
|
|
|
* @param array of mixed Data Series X |
|
1551
|
|
|
* @return float |
|
1552
|
|
|
*/ |
|
1553
|
|
|
public static function FORECAST($xValue,$yValues,$xValues) { |
|
1554
|
|
|
$xValue = PHPExcel_Calculation_Functions::flattenSingleValue($xValue); |
|
1555
|
|
|
if (!is_numeric($xValue)) { |
|
1556
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1557
|
|
|
} |
|
1558
|
|
|
|
|
1559
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
1560
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1561
|
|
|
} |
|
1562
|
|
|
$yValueCount = count($yValues); |
|
1563
|
|
|
$xValueCount = count($xValues); |
|
1564
|
|
|
|
|
1565
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
1566
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1567
|
|
|
} elseif ($yValueCount == 1) { |
|
1568
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
1569
|
|
|
} |
|
1570
|
|
|
|
|
1571
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
1572
|
|
|
return $bestFitLinear->getValueOfYForX($xValue); |
|
1573
|
|
|
} // function FORECAST() |
|
1574
|
|
|
|
|
1575
|
|
|
|
|
1576
|
|
|
/** |
|
1577
|
|
|
* GAMMADIST |
|
1578
|
|
|
* |
|
1579
|
|
|
* Returns the gamma distribution. |
|
1580
|
|
|
* |
|
1581
|
|
|
* @param float $value Value at which you want to evaluate the distribution |
|
1582
|
|
|
* @param float $a Parameter to the distribution |
|
1583
|
|
|
* @param float $b Parameter to the distribution |
|
1584
|
|
|
* @param boolean $cumulative |
|
1585
|
|
|
* @return float |
|
1586
|
|
|
* |
|
1587
|
|
|
*/ |
|
1588
|
|
|
public static function GAMMADIST($value,$a,$b,$cumulative) { |
|
1589
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
1590
|
|
|
$a = PHPExcel_Calculation_Functions::flattenSingleValue($a); |
|
1591
|
|
|
$b = PHPExcel_Calculation_Functions::flattenSingleValue($b); |
|
1592
|
|
|
|
|
1593
|
|
|
if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) { |
|
1594
|
|
|
if (($value < 0) || ($a <= 0) || ($b <= 0)) { |
|
1595
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1596
|
|
|
} |
|
1597
|
|
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
|
1598
|
|
|
if ($cumulative) { |
|
1599
|
|
|
return self::_incompleteGamma($a,$value / $b) / self::_gamma($a); |
|
1600
|
|
|
} else { |
|
1601
|
|
|
return (1 / (pow($b,$a) * self::_gamma($a))) * pow($value,$a-1) * exp(0-($value / $b)); |
|
1602
|
|
|
} |
|
1603
|
|
|
} |
|
1604
|
|
|
} |
|
1605
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1606
|
|
|
} // function GAMMADIST() |
|
1607
|
|
|
|
|
1608
|
|
|
|
|
1609
|
|
|
/** |
|
1610
|
|
|
* GAMMAINV |
|
1611
|
|
|
* |
|
1612
|
|
|
* Returns the inverse of the beta distribution. |
|
1613
|
|
|
* |
|
1614
|
|
|
* @param float $probability Probability at which you want to evaluate the distribution |
|
1615
|
|
|
* @param float $alpha Parameter to the distribution |
|
1616
|
|
|
* @param float $beta Parameter to the distribution |
|
1617
|
|
|
* @return float |
|
1618
|
|
|
* |
|
1619
|
|
|
*/ |
|
1620
|
|
|
public static function GAMMAINV($probability,$alpha,$beta) { |
|
1621
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
1622
|
|
|
$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
|
1623
|
|
|
$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
|
1624
|
|
|
|
|
1625
|
|
|
if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) { |
|
1626
|
|
View Code Duplication |
if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) { |
|
1627
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1628
|
|
|
} |
|
1629
|
|
|
|
|
1630
|
|
|
$xLo = 0; |
|
1631
|
|
|
$xHi = $alpha * $beta * 5; |
|
1632
|
|
|
|
|
1633
|
|
|
$x = $xNew = 1; |
|
1634
|
|
|
$error = $pdf = 0; |
|
1635
|
|
|
$dx = 1024; |
|
1636
|
|
|
$i = 0; |
|
1637
|
|
|
|
|
1638
|
|
|
while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
|
1639
|
|
|
// Apply Newton-Raphson step |
|
1640
|
|
|
$error = self::GAMMADIST($x, $alpha, $beta, True) - $probability; |
|
1641
|
|
|
if ($error < 0.0) { |
|
1642
|
|
|
$xLo = $x; |
|
1643
|
|
|
} else { |
|
1644
|
|
|
$xHi = $x; |
|
1645
|
|
|
} |
|
1646
|
|
|
$pdf = self::GAMMADIST($x, $alpha, $beta, False); |
|
1647
|
|
|
// Avoid division by zero |
|
1648
|
|
|
if ($pdf != 0.0) { |
|
1649
|
|
|
$dx = $error / $pdf; |
|
1650
|
|
|
$xNew = $x - $dx; |
|
1651
|
|
|
} |
|
1652
|
|
|
// If the NR fails to converge (which for example may be the |
|
1653
|
|
|
// case if the initial guess is too rough) we apply a bisection |
|
1654
|
|
|
// step to determine a more narrow interval around the root. |
|
1655
|
|
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) { |
|
1656
|
|
|
$xNew = ($xLo + $xHi) / 2; |
|
1657
|
|
|
$dx = $xNew - $x; |
|
1658
|
|
|
} |
|
1659
|
|
|
$x = $xNew; |
|
1660
|
|
|
} |
|
1661
|
|
|
if ($i == MAX_ITERATIONS) { |
|
1662
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1663
|
|
|
} |
|
1664
|
|
|
return $x; |
|
1665
|
|
|
} |
|
1666
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1667
|
|
|
} // function GAMMAINV() |
|
1668
|
|
|
|
|
1669
|
|
|
|
|
1670
|
|
|
/** |
|
1671
|
|
|
* GAMMALN |
|
1672
|
|
|
* |
|
1673
|
|
|
* Returns the natural logarithm of the gamma function. |
|
1674
|
|
|
* |
|
1675
|
|
|
* @param float $value |
|
1676
|
|
|
* @return float |
|
1677
|
|
|
*/ |
|
1678
|
|
View Code Duplication |
public static function GAMMALN($value) { |
|
1679
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
1680
|
|
|
|
|
1681
|
|
|
if (is_numeric($value)) { |
|
1682
|
|
|
if ($value <= 0) { |
|
1683
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1684
|
|
|
} |
|
1685
|
|
|
return log(self::_gamma($value)); |
|
1686
|
|
|
} |
|
1687
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1688
|
|
|
} // function GAMMALN() |
|
1689
|
|
|
|
|
1690
|
|
|
|
|
1691
|
|
|
/** |
|
1692
|
|
|
* GEOMEAN |
|
1693
|
|
|
* |
|
1694
|
|
|
* Returns the geometric mean of an array or range of positive data. For example, you |
|
1695
|
|
|
* can use GEOMEAN to calculate average growth rate given compound interest with |
|
1696
|
|
|
* variable rates. |
|
1697
|
|
|
* |
|
1698
|
|
|
* Excel Function: |
|
1699
|
|
|
* GEOMEAN(value1[,value2[, ...]]) |
|
1700
|
|
|
* |
|
1701
|
|
|
* @access public |
|
1702
|
|
|
* @category Statistical Functions |
|
1703
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1704
|
|
|
* @return float |
|
1705
|
|
|
*/ |
|
1706
|
|
|
public static function GEOMEAN() { |
|
1707
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
1708
|
|
|
|
|
1709
|
|
|
$aMean = PHPExcel_Calculation_MathTrig::PRODUCT($aArgs); |
|
1710
|
|
|
if (is_numeric($aMean) && ($aMean > 0)) { |
|
1711
|
|
|
$aCount = self::COUNT($aArgs) ; |
|
1712
|
|
|
if (self::MIN($aArgs) > 0) { |
|
1713
|
|
|
return pow($aMean, (1 / $aCount)); |
|
1714
|
|
|
} |
|
1715
|
|
|
} |
|
1716
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1717
|
|
|
} // GEOMEAN() |
|
1718
|
|
|
|
|
1719
|
|
|
|
|
1720
|
|
|
/** |
|
1721
|
|
|
* GROWTH |
|
1722
|
|
|
* |
|
1723
|
|
|
* Returns values along a predicted emponential trend |
|
1724
|
|
|
* |
|
1725
|
|
|
* @param array of mixed Data Series Y |
|
1726
|
|
|
* @param array of mixed Data Series X |
|
1727
|
|
|
* @param array of mixed Values of X for which we want to find Y |
|
1728
|
|
|
* @param boolean A logical value specifying whether to force the intersect to equal 0. |
|
1729
|
|
|
* @return array of float |
|
1730
|
|
|
*/ |
|
1731
|
|
View Code Duplication |
public static function GROWTH($yValues,$xValues=array(),$newValues=array(),$const=True) { |
|
1732
|
|
|
$yValues = PHPExcel_Calculation_Functions::flattenArray($yValues); |
|
1733
|
|
|
$xValues = PHPExcel_Calculation_Functions::flattenArray($xValues); |
|
1734
|
|
|
$newValues = PHPExcel_Calculation_Functions::flattenArray($newValues); |
|
1735
|
|
|
$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
|
1736
|
|
|
|
|
1737
|
|
|
$bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const); |
|
1738
|
|
|
if (empty($newValues)) { |
|
1739
|
|
|
$newValues = $bestFitExponential->getXValues(); |
|
1740
|
|
|
} |
|
1741
|
|
|
|
|
1742
|
|
|
$returnArray = array(); |
|
1743
|
|
|
foreach($newValues as $xValue) { |
|
1744
|
|
|
$returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue); |
|
1745
|
|
|
} |
|
1746
|
|
|
|
|
1747
|
|
|
return $returnArray; |
|
1748
|
|
|
} // function GROWTH() |
|
1749
|
|
|
|
|
1750
|
|
|
|
|
1751
|
|
|
/** |
|
1752
|
|
|
* HARMEAN |
|
1753
|
|
|
* |
|
1754
|
|
|
* Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the |
|
1755
|
|
|
* arithmetic mean of reciprocals. |
|
1756
|
|
|
* |
|
1757
|
|
|
* Excel Function: |
|
1758
|
|
|
* HARMEAN(value1[,value2[, ...]]) |
|
1759
|
|
|
* |
|
1760
|
|
|
* @access public |
|
1761
|
|
|
* @category Statistical Functions |
|
1762
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1763
|
|
|
* @return float |
|
1764
|
|
|
*/ |
|
1765
|
|
|
public static function HARMEAN() { |
|
1766
|
|
|
// Return value |
|
1767
|
|
|
$returnValue = PHPExcel_Calculation_Functions::NA(); |
|
1768
|
|
|
|
|
1769
|
|
|
// Loop through arguments |
|
1770
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
1771
|
|
|
if (self::MIN($aArgs) < 0) { |
|
1772
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1773
|
|
|
} |
|
1774
|
|
|
$aCount = 0; |
|
1775
|
|
|
foreach ($aArgs as $arg) { |
|
1776
|
|
|
// Is it a numeric value? |
|
1777
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
1778
|
|
|
if ($arg <= 0) { |
|
1779
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1780
|
|
|
} |
|
1781
|
|
|
if (is_null($returnValue)) { |
|
1782
|
|
|
$returnValue = (1 / $arg); |
|
1783
|
|
|
} else { |
|
1784
|
|
|
$returnValue += (1 / $arg); |
|
1785
|
|
|
} |
|
1786
|
|
|
++$aCount; |
|
1787
|
|
|
} |
|
1788
|
|
|
} |
|
1789
|
|
|
|
|
1790
|
|
|
// Return |
|
1791
|
|
|
if ($aCount > 0) { |
|
1792
|
|
|
return 1 / ($returnValue / $aCount); |
|
1793
|
|
|
} else { |
|
1794
|
|
|
return $returnValue; |
|
1795
|
|
|
} |
|
1796
|
|
|
} // function HARMEAN() |
|
1797
|
|
|
|
|
1798
|
|
|
|
|
1799
|
|
|
/** |
|
1800
|
|
|
* HYPGEOMDIST |
|
1801
|
|
|
* |
|
1802
|
|
|
* Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of |
|
1803
|
|
|
* sample successes, given the sample size, population successes, and population size. |
|
1804
|
|
|
* |
|
1805
|
|
|
* @param float $sampleSuccesses Number of successes in the sample |
|
1806
|
|
|
* @param float $sampleNumber Size of the sample |
|
1807
|
|
|
* @param float $populationSuccesses Number of successes in the population |
|
1808
|
|
|
* @param float $populationNumber Population size |
|
1809
|
|
|
* @return float |
|
1810
|
|
|
* |
|
1811
|
|
|
*/ |
|
1812
|
|
|
public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) { |
|
1813
|
|
|
$sampleSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleSuccesses)); |
|
1814
|
|
|
$sampleNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($sampleNumber)); |
|
1815
|
|
|
$populationSuccesses = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationSuccesses)); |
|
1816
|
|
|
$populationNumber = floor(PHPExcel_Calculation_Functions::flattenSingleValue($populationNumber)); |
|
1817
|
|
|
|
|
1818
|
|
|
if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) { |
|
1819
|
|
|
if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) { |
|
1820
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1821
|
|
|
} |
|
1822
|
|
|
if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) { |
|
1823
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1824
|
|
|
} |
|
1825
|
|
|
if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) { |
|
1826
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1827
|
|
|
} |
|
1828
|
|
|
return PHPExcel_Calculation_MathTrig::COMBIN($populationSuccesses,$sampleSuccesses) * |
|
1829
|
|
|
PHPExcel_Calculation_MathTrig::COMBIN($populationNumber - $populationSuccesses,$sampleNumber - $sampleSuccesses) / |
|
1830
|
|
|
PHPExcel_Calculation_MathTrig::COMBIN($populationNumber,$sampleNumber); |
|
1831
|
|
|
} |
|
1832
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1833
|
|
|
} // function HYPGEOMDIST() |
|
1834
|
|
|
|
|
1835
|
|
|
|
|
1836
|
|
|
/** |
|
1837
|
|
|
* INTERCEPT |
|
1838
|
|
|
* |
|
1839
|
|
|
* Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. |
|
1840
|
|
|
* |
|
1841
|
|
|
* @param array of mixed Data Series Y |
|
1842
|
|
|
* @param array of mixed Data Series X |
|
1843
|
|
|
* @return float |
|
1844
|
|
|
*/ |
|
1845
|
|
View Code Duplication |
public static function INTERCEPT($yValues,$xValues) { |
|
1846
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
1847
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1848
|
|
|
} |
|
1849
|
|
|
$yValueCount = count($yValues); |
|
1850
|
|
|
$xValueCount = count($xValues); |
|
1851
|
|
|
|
|
1852
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
1853
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1854
|
|
|
} elseif ($yValueCount == 1) { |
|
1855
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
1856
|
|
|
} |
|
1857
|
|
|
|
|
1858
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
1859
|
|
|
return $bestFitLinear->getIntersect(); |
|
1860
|
|
|
} // function INTERCEPT() |
|
1861
|
|
|
|
|
1862
|
|
|
|
|
1863
|
|
|
/** |
|
1864
|
|
|
* KURT |
|
1865
|
|
|
* |
|
1866
|
|
|
* Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness |
|
1867
|
|
|
* or flatness of a distribution compared with the normal distribution. Positive |
|
1868
|
|
|
* kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a |
|
1869
|
|
|
* relatively flat distribution. |
|
1870
|
|
|
* |
|
1871
|
|
|
* @param array Data Series |
|
1872
|
|
|
* @return float |
|
1873
|
|
|
*/ |
|
1874
|
|
|
public static function KURT() { |
|
1875
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
1876
|
|
|
$mean = self::AVERAGE($aArgs); |
|
1877
|
|
|
$stdDev = self::STDEV($aArgs); |
|
1878
|
|
|
|
|
1879
|
|
|
if ($stdDev > 0) { |
|
1880
|
|
|
$count = $summer = 0; |
|
1881
|
|
|
// Loop through arguments |
|
1882
|
|
View Code Duplication |
foreach ($aArgs as $k => $arg) { |
|
1883
|
|
|
if ((is_bool($arg)) && |
|
|
|
|
|
|
1884
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
1885
|
|
|
} else { |
|
1886
|
|
|
// Is it a numeric value? |
|
1887
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
1888
|
|
|
$summer += pow((($arg - $mean) / $stdDev),4) ; |
|
1889
|
|
|
++$count; |
|
1890
|
|
|
} |
|
1891
|
|
|
} |
|
1892
|
|
|
} |
|
1893
|
|
|
|
|
1894
|
|
|
// Return |
|
1895
|
|
|
if ($count > 3) { |
|
1896
|
|
|
return $summer * ($count * ($count+1) / (($count-1) * ($count-2) * ($count-3))) - (3 * pow($count-1,2) / (($count-2) * ($count-3))); |
|
1897
|
|
|
} |
|
1898
|
|
|
} |
|
1899
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
1900
|
|
|
} // function KURT() |
|
1901
|
|
|
|
|
1902
|
|
|
|
|
1903
|
|
|
/** |
|
1904
|
|
|
* LARGE |
|
1905
|
|
|
* |
|
1906
|
|
|
* Returns the nth largest value in a data set. You can use this function to |
|
1907
|
|
|
* select a value based on its relative standing. |
|
1908
|
|
|
* |
|
1909
|
|
|
* Excel Function: |
|
1910
|
|
|
* LARGE(value1[,value2[, ...]],entry) |
|
1911
|
|
|
* |
|
1912
|
|
|
* @access public |
|
1913
|
|
|
* @category Statistical Functions |
|
1914
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
1915
|
|
|
* @param int $entry Position (ordered from the largest) in the array or range of data to return |
|
|
|
|
|
|
1916
|
|
|
* @return float |
|
1917
|
|
|
* |
|
1918
|
|
|
*/ |
|
1919
|
|
View Code Duplication |
public static function LARGE() { |
|
1920
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
1921
|
|
|
|
|
1922
|
|
|
// Calculate |
|
1923
|
|
|
$entry = floor(array_pop($aArgs)); |
|
1924
|
|
|
|
|
1925
|
|
|
if ((is_numeric($entry)) && (!is_string($entry))) { |
|
1926
|
|
|
$mArgs = array(); |
|
1927
|
|
|
foreach ($aArgs as $arg) { |
|
1928
|
|
|
// Is it a numeric value? |
|
1929
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
1930
|
|
|
$mArgs[] = $arg; |
|
1931
|
|
|
} |
|
1932
|
|
|
} |
|
1933
|
|
|
$count = self::COUNT($mArgs); |
|
1934
|
|
|
$entry = floor(--$entry); |
|
1935
|
|
|
if (($entry < 0) || ($entry >= $count) || ($count == 0)) { |
|
1936
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
1937
|
|
|
} |
|
1938
|
|
|
rsort($mArgs); |
|
1939
|
|
|
return $mArgs[$entry]; |
|
1940
|
|
|
} |
|
1941
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1942
|
|
|
} // function LARGE() |
|
1943
|
|
|
|
|
1944
|
|
|
|
|
1945
|
|
|
/** |
|
1946
|
|
|
* LINEST |
|
1947
|
|
|
* |
|
1948
|
|
|
* Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data, |
|
1949
|
|
|
* and then returns an array that describes the line. |
|
1950
|
|
|
* |
|
1951
|
|
|
* @param array of mixed Data Series Y |
|
1952
|
|
|
* @param array of mixed Data Series X |
|
1953
|
|
|
* @param boolean A logical value specifying whether to force the intersect to equal 0. |
|
1954
|
|
|
* @param boolean A logical value specifying whether to return additional regression statistics. |
|
1955
|
|
|
* @return array |
|
1956
|
|
|
*/ |
|
1957
|
|
|
public static function LINEST($yValues,$xValues=null,$const=True,$stats=False) { |
|
1958
|
|
|
$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
|
1959
|
|
|
$stats = (is_null($stats)) ? False : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats); |
|
1960
|
|
|
if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues))); |
|
1961
|
|
|
|
|
1962
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
1963
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
1964
|
|
|
} |
|
1965
|
|
|
$yValueCount = count($yValues); |
|
1966
|
|
|
$xValueCount = count($xValues); |
|
1967
|
|
|
|
|
1968
|
|
|
|
|
1969
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
1970
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
1971
|
|
|
} elseif ($yValueCount == 1) { |
|
1972
|
|
|
return 0; |
|
1973
|
|
|
} |
|
1974
|
|
|
|
|
1975
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const); |
|
1976
|
|
View Code Duplication |
if ($stats) { |
|
1977
|
|
|
return array( array( $bestFitLinear->getSlope(), |
|
1978
|
|
|
$bestFitLinear->getSlopeSE(), |
|
1979
|
|
|
$bestFitLinear->getGoodnessOfFit(), |
|
1980
|
|
|
$bestFitLinear->getF(), |
|
1981
|
|
|
$bestFitLinear->getSSRegression(), |
|
1982
|
|
|
), |
|
1983
|
|
|
array( $bestFitLinear->getIntersect(), |
|
1984
|
|
|
$bestFitLinear->getIntersectSE(), |
|
1985
|
|
|
$bestFitLinear->getStdevOfResiduals(), |
|
1986
|
|
|
$bestFitLinear->getDFResiduals(), |
|
1987
|
|
|
$bestFitLinear->getSSResiduals() |
|
1988
|
|
|
) |
|
1989
|
|
|
); |
|
1990
|
|
|
} else { |
|
1991
|
|
|
return array( $bestFitLinear->getSlope(), |
|
1992
|
|
|
$bestFitLinear->getIntersect() |
|
1993
|
|
|
); |
|
1994
|
|
|
} |
|
1995
|
|
|
} // function LINEST() |
|
1996
|
|
|
|
|
1997
|
|
|
|
|
1998
|
|
|
/** |
|
1999
|
|
|
* LOGEST |
|
2000
|
|
|
* |
|
2001
|
|
|
* Calculates an exponential curve that best fits the X and Y data series, |
|
2002
|
|
|
* and then returns an array that describes the line. |
|
2003
|
|
|
* |
|
2004
|
|
|
* @param array of mixed Data Series Y |
|
2005
|
|
|
* @param array of mixed Data Series X |
|
2006
|
|
|
* @param boolean A logical value specifying whether to force the intersect to equal 0. |
|
2007
|
|
|
* @param boolean A logical value specifying whether to return additional regression statistics. |
|
2008
|
|
|
* @return array |
|
2009
|
|
|
*/ |
|
2010
|
|
|
public static function LOGEST($yValues,$xValues=null,$const=True,$stats=False) { |
|
2011
|
|
|
$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
|
2012
|
|
|
$stats = (is_null($stats)) ? False : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($stats); |
|
2013
|
|
|
if (is_null($xValues)) $xValues = range(1,count(PHPExcel_Calculation_Functions::flattenArray($yValues))); |
|
2014
|
|
|
|
|
2015
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
2016
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2017
|
|
|
} |
|
2018
|
|
|
$yValueCount = count($yValues); |
|
2019
|
|
|
$xValueCount = count($xValues); |
|
2020
|
|
|
|
|
2021
|
|
|
foreach($yValues as $value) { |
|
2022
|
|
|
if ($value <= 0.0) { |
|
2023
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2024
|
|
|
} |
|
2025
|
|
|
} |
|
2026
|
|
|
|
|
2027
|
|
|
|
|
2028
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
2029
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
2030
|
|
|
} elseif ($yValueCount == 1) { |
|
2031
|
|
|
return 1; |
|
2032
|
|
|
} |
|
2033
|
|
|
|
|
2034
|
|
|
$bestFitExponential = trendClass::calculate(trendClass::TREND_EXPONENTIAL,$yValues,$xValues,$const); |
|
2035
|
|
View Code Duplication |
if ($stats) { |
|
2036
|
|
|
return array( array( $bestFitExponential->getSlope(), |
|
2037
|
|
|
$bestFitExponential->getSlopeSE(), |
|
2038
|
|
|
$bestFitExponential->getGoodnessOfFit(), |
|
2039
|
|
|
$bestFitExponential->getF(), |
|
2040
|
|
|
$bestFitExponential->getSSRegression(), |
|
2041
|
|
|
), |
|
2042
|
|
|
array( $bestFitExponential->getIntersect(), |
|
2043
|
|
|
$bestFitExponential->getIntersectSE(), |
|
2044
|
|
|
$bestFitExponential->getStdevOfResiduals(), |
|
2045
|
|
|
$bestFitExponential->getDFResiduals(), |
|
2046
|
|
|
$bestFitExponential->getSSResiduals() |
|
2047
|
|
|
) |
|
2048
|
|
|
); |
|
2049
|
|
|
} else { |
|
2050
|
|
|
return array( $bestFitExponential->getSlope(), |
|
2051
|
|
|
$bestFitExponential->getIntersect() |
|
2052
|
|
|
); |
|
2053
|
|
|
} |
|
2054
|
|
|
} // function LOGEST() |
|
2055
|
|
|
|
|
2056
|
|
|
|
|
2057
|
|
|
/** |
|
2058
|
|
|
* LOGINV |
|
2059
|
|
|
* |
|
2060
|
|
|
* Returns the inverse of the normal cumulative distribution |
|
2061
|
|
|
* |
|
2062
|
|
|
* @param float $value |
|
|
|
|
|
|
2063
|
|
|
* @return float |
|
2064
|
|
|
* |
|
2065
|
|
|
* @todo Try implementing P J Acklam's refinement algorithm for greater |
|
2066
|
|
|
* accuracy if I can get my head round the mathematics |
|
2067
|
|
|
* (as described at) http://home.online.no/~pjacklam/notes/invnorm/ |
|
2068
|
|
|
*/ |
|
2069
|
|
View Code Duplication |
public static function LOGINV($probability, $mean, $stdDev) { |
|
2070
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
2071
|
|
|
$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
|
2072
|
|
|
$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
|
2073
|
|
|
|
|
2074
|
|
|
if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
|
2075
|
|
|
if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) { |
|
2076
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2077
|
|
|
} |
|
2078
|
|
|
return exp($mean + $stdDev * self::NORMSINV($probability)); |
|
2079
|
|
|
} |
|
2080
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2081
|
|
|
} // function LOGINV() |
|
2082
|
|
|
|
|
2083
|
|
|
|
|
2084
|
|
|
/** |
|
2085
|
|
|
* LOGNORMDIST |
|
2086
|
|
|
* |
|
2087
|
|
|
* Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed |
|
2088
|
|
|
* with parameters mean and standard_dev. |
|
2089
|
|
|
* |
|
2090
|
|
|
* @param float $value |
|
2091
|
|
|
* @return float |
|
2092
|
|
|
*/ |
|
2093
|
|
|
public static function LOGNORMDIST($value, $mean, $stdDev) { |
|
2094
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2095
|
|
|
$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
|
2096
|
|
|
$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
|
2097
|
|
|
|
|
2098
|
|
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
|
2099
|
|
|
if (($value <= 0) || ($stdDev <= 0)) { |
|
2100
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2101
|
|
|
} |
|
2102
|
|
|
return self::NORMSDIST((log($value) - $mean) / $stdDev); |
|
2103
|
|
|
} |
|
2104
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2105
|
|
|
} // function LOGNORMDIST() |
|
2106
|
|
|
|
|
2107
|
|
|
|
|
2108
|
|
|
/** |
|
2109
|
|
|
* MAX |
|
2110
|
|
|
* |
|
2111
|
|
|
* MAX returns the value of the element of the values passed that has the highest value, |
|
2112
|
|
|
* with negative numbers considered smaller than positive numbers. |
|
2113
|
|
|
* |
|
2114
|
|
|
* Excel Function: |
|
2115
|
|
|
* MAX(value1[,value2[, ...]]) |
|
2116
|
|
|
* |
|
2117
|
|
|
* @access public |
|
2118
|
|
|
* @category Statistical Functions |
|
2119
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2120
|
|
|
* @return float |
|
2121
|
|
|
*/ |
|
2122
|
|
View Code Duplication |
public static function MAX() { |
|
2123
|
|
|
// Return value |
|
2124
|
|
|
$returnValue = null; |
|
2125
|
|
|
|
|
2126
|
|
|
// Loop through arguments |
|
2127
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2128
|
|
|
foreach ($aArgs as $arg) { |
|
2129
|
|
|
// Is it a numeric value? |
|
2130
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2131
|
|
|
if ((is_null($returnValue)) || ($arg > $returnValue)) { |
|
2132
|
|
|
$returnValue = $arg; |
|
2133
|
|
|
} |
|
2134
|
|
|
} |
|
2135
|
|
|
} |
|
2136
|
|
|
|
|
2137
|
|
|
// Return |
|
2138
|
|
|
if(is_null($returnValue)) { |
|
2139
|
|
|
return 0; |
|
2140
|
|
|
} |
|
2141
|
|
|
return $returnValue; |
|
2142
|
|
|
} // function MAX() |
|
2143
|
|
|
|
|
2144
|
|
|
|
|
2145
|
|
|
/** |
|
2146
|
|
|
* MAXA |
|
2147
|
|
|
* |
|
2148
|
|
|
* Returns the greatest value in a list of arguments, including numbers, text, and logical values |
|
2149
|
|
|
* |
|
2150
|
|
|
* Excel Function: |
|
2151
|
|
|
* MAXA(value1[,value2[, ...]]) |
|
2152
|
|
|
* |
|
2153
|
|
|
* @access public |
|
2154
|
|
|
* @category Statistical Functions |
|
2155
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2156
|
|
|
* @return float |
|
2157
|
|
|
*/ |
|
2158
|
|
View Code Duplication |
public static function MAXA() { |
|
2159
|
|
|
// Return value |
|
2160
|
|
|
$returnValue = null; |
|
2161
|
|
|
|
|
2162
|
|
|
// Loop through arguments |
|
2163
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2164
|
|
|
foreach ($aArgs as $arg) { |
|
2165
|
|
|
// Is it a numeric value? |
|
2166
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
|
2167
|
|
|
if (is_bool($arg)) { |
|
2168
|
|
|
$arg = (integer) $arg; |
|
2169
|
|
|
} elseif (is_string($arg)) { |
|
2170
|
|
|
$arg = 0; |
|
2171
|
|
|
} |
|
2172
|
|
|
if ((is_null($returnValue)) || ($arg > $returnValue)) { |
|
2173
|
|
|
$returnValue = $arg; |
|
2174
|
|
|
} |
|
2175
|
|
|
} |
|
2176
|
|
|
} |
|
2177
|
|
|
|
|
2178
|
|
|
// Return |
|
2179
|
|
|
if(is_null($returnValue)) { |
|
2180
|
|
|
return 0; |
|
2181
|
|
|
} |
|
2182
|
|
|
return $returnValue; |
|
2183
|
|
|
} // function MAXA() |
|
2184
|
|
|
|
|
2185
|
|
|
|
|
2186
|
|
|
/** |
|
2187
|
|
|
* MAXIF |
|
2188
|
|
|
* |
|
2189
|
|
|
* Counts the maximum value within a range of cells that contain numbers within the list of arguments |
|
2190
|
|
|
* |
|
2191
|
|
|
* Excel Function: |
|
2192
|
|
|
* MAXIF(value1[,value2[, ...]],condition) |
|
2193
|
|
|
* |
|
2194
|
|
|
* @access public |
|
2195
|
|
|
* @category Mathematical and Trigonometric Functions |
|
2196
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2197
|
|
|
* @param string $condition The criteria that defines which cells will be checked. |
|
2198
|
|
|
* @return float |
|
2199
|
|
|
*/ |
|
2200
|
|
View Code Duplication |
public static function MAXIF($aArgs,$condition,$sumArgs = array()) { |
|
2201
|
|
|
// Return value |
|
2202
|
|
|
$returnValue = null; |
|
2203
|
|
|
|
|
2204
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
|
2205
|
|
|
$sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs); |
|
2206
|
|
|
if (empty($sumArgs)) { |
|
2207
|
|
|
$sumArgs = $aArgs; |
|
2208
|
|
|
} |
|
2209
|
|
|
$condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
|
2210
|
|
|
// Loop through arguments |
|
2211
|
|
|
foreach ($aArgs as $key => $arg) { |
|
2212
|
|
|
if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
|
2213
|
|
|
$testCondition = '='.$arg.$condition; |
|
2214
|
|
|
if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
|
2215
|
|
|
if ((is_null($returnValue)) || ($arg > $returnValue)) { |
|
2216
|
|
|
$returnValue = $arg; |
|
2217
|
|
|
} |
|
2218
|
|
|
} |
|
2219
|
|
|
} |
|
2220
|
|
|
|
|
2221
|
|
|
// Return |
|
2222
|
|
|
return $returnValue; |
|
2223
|
|
|
} // function MAXIF() |
|
2224
|
|
|
|
|
2225
|
|
|
|
|
2226
|
|
|
/** |
|
2227
|
|
|
* MEDIAN |
|
2228
|
|
|
* |
|
2229
|
|
|
* Returns the median of the given numbers. The median is the number in the middle of a set of numbers. |
|
2230
|
|
|
* |
|
2231
|
|
|
* Excel Function: |
|
2232
|
|
|
* MEDIAN(value1[,value2[, ...]]) |
|
2233
|
|
|
* |
|
2234
|
|
|
* @access public |
|
2235
|
|
|
* @category Statistical Functions |
|
2236
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2237
|
|
|
* @return float |
|
2238
|
|
|
*/ |
|
2239
|
|
|
public static function MEDIAN() { |
|
2240
|
|
|
// Return value |
|
2241
|
|
|
$returnValue = PHPExcel_Calculation_Functions::NaN(); |
|
2242
|
|
|
|
|
2243
|
|
|
$mArgs = array(); |
|
2244
|
|
|
// Loop through arguments |
|
2245
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2246
|
|
|
foreach ($aArgs as $arg) { |
|
2247
|
|
|
// Is it a numeric value? |
|
2248
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2249
|
|
|
$mArgs[] = $arg; |
|
2250
|
|
|
} |
|
2251
|
|
|
} |
|
2252
|
|
|
|
|
2253
|
|
|
$mValueCount = count($mArgs); |
|
2254
|
|
|
if ($mValueCount > 0) { |
|
2255
|
|
|
sort($mArgs,SORT_NUMERIC); |
|
2256
|
|
|
$mValueCount = $mValueCount / 2; |
|
2257
|
|
|
if ($mValueCount == floor($mValueCount)) { |
|
2258
|
|
|
$returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2; |
|
2259
|
|
|
} else { |
|
2260
|
|
|
$mValueCount == floor($mValueCount); |
|
2261
|
|
|
$returnValue = $mArgs[$mValueCount]; |
|
2262
|
|
|
} |
|
2263
|
|
|
} |
|
2264
|
|
|
|
|
2265
|
|
|
// Return |
|
2266
|
|
|
return $returnValue; |
|
2267
|
|
|
} // function MEDIAN() |
|
2268
|
|
|
|
|
2269
|
|
|
|
|
2270
|
|
|
/** |
|
2271
|
|
|
* MIN |
|
2272
|
|
|
* |
|
2273
|
|
|
* MIN returns the value of the element of the values passed that has the smallest value, |
|
2274
|
|
|
* with negative numbers considered smaller than positive numbers. |
|
2275
|
|
|
* |
|
2276
|
|
|
* Excel Function: |
|
2277
|
|
|
* MIN(value1[,value2[, ...]]) |
|
2278
|
|
|
* |
|
2279
|
|
|
* @access public |
|
2280
|
|
|
* @category Statistical Functions |
|
2281
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2282
|
|
|
* @return float |
|
2283
|
|
|
*/ |
|
2284
|
|
View Code Duplication |
public static function MIN() { |
|
2285
|
|
|
// Return value |
|
2286
|
|
|
$returnValue = null; |
|
2287
|
|
|
|
|
2288
|
|
|
// Loop through arguments |
|
2289
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2290
|
|
|
foreach ($aArgs as $arg) { |
|
2291
|
|
|
// Is it a numeric value? |
|
2292
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2293
|
|
|
if ((is_null($returnValue)) || ($arg < $returnValue)) { |
|
2294
|
|
|
$returnValue = $arg; |
|
2295
|
|
|
} |
|
2296
|
|
|
} |
|
2297
|
|
|
} |
|
2298
|
|
|
|
|
2299
|
|
|
// Return |
|
2300
|
|
|
if(is_null($returnValue)) { |
|
2301
|
|
|
return 0; |
|
2302
|
|
|
} |
|
2303
|
|
|
return $returnValue; |
|
2304
|
|
|
} // function MIN() |
|
2305
|
|
|
|
|
2306
|
|
|
|
|
2307
|
|
|
/** |
|
2308
|
|
|
* MINA |
|
2309
|
|
|
* |
|
2310
|
|
|
* Returns the smallest value in a list of arguments, including numbers, text, and logical values |
|
2311
|
|
|
* |
|
2312
|
|
|
* Excel Function: |
|
2313
|
|
|
* MINA(value1[,value2[, ...]]) |
|
2314
|
|
|
* |
|
2315
|
|
|
* @access public |
|
2316
|
|
|
* @category Statistical Functions |
|
2317
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2318
|
|
|
* @return float |
|
2319
|
|
|
*/ |
|
2320
|
|
View Code Duplication |
public static function MINA() { |
|
2321
|
|
|
// Return value |
|
2322
|
|
|
$returnValue = null; |
|
2323
|
|
|
|
|
2324
|
|
|
// Loop through arguments |
|
2325
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2326
|
|
|
foreach ($aArgs as $arg) { |
|
2327
|
|
|
// Is it a numeric value? |
|
2328
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { |
|
2329
|
|
|
if (is_bool($arg)) { |
|
2330
|
|
|
$arg = (integer) $arg; |
|
2331
|
|
|
} elseif (is_string($arg)) { |
|
2332
|
|
|
$arg = 0; |
|
2333
|
|
|
} |
|
2334
|
|
|
if ((is_null($returnValue)) || ($arg < $returnValue)) { |
|
2335
|
|
|
$returnValue = $arg; |
|
2336
|
|
|
} |
|
2337
|
|
|
} |
|
2338
|
|
|
} |
|
2339
|
|
|
|
|
2340
|
|
|
// Return |
|
2341
|
|
|
if(is_null($returnValue)) { |
|
2342
|
|
|
return 0; |
|
2343
|
|
|
} |
|
2344
|
|
|
return $returnValue; |
|
2345
|
|
|
} // function MINA() |
|
2346
|
|
|
|
|
2347
|
|
|
|
|
2348
|
|
|
/** |
|
2349
|
|
|
* MINIF |
|
2350
|
|
|
* |
|
2351
|
|
|
* Returns the minimum value within a range of cells that contain numbers within the list of arguments |
|
2352
|
|
|
* |
|
2353
|
|
|
* Excel Function: |
|
2354
|
|
|
* MINIF(value1[,value2[, ...]],condition) |
|
2355
|
|
|
* |
|
2356
|
|
|
* @access public |
|
2357
|
|
|
* @category Mathematical and Trigonometric Functions |
|
2358
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2359
|
|
|
* @param string $condition The criteria that defines which cells will be checked. |
|
2360
|
|
|
* @return float |
|
2361
|
|
|
*/ |
|
2362
|
|
View Code Duplication |
public static function MINIF($aArgs,$condition,$sumArgs = array()) { |
|
2363
|
|
|
// Return value |
|
2364
|
|
|
$returnValue = null; |
|
2365
|
|
|
|
|
2366
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray($aArgs); |
|
2367
|
|
|
$sumArgs = PHPExcel_Calculation_Functions::flattenArray($sumArgs); |
|
2368
|
|
|
if (empty($sumArgs)) { |
|
2369
|
|
|
$sumArgs = $aArgs; |
|
2370
|
|
|
} |
|
2371
|
|
|
$condition = PHPExcel_Calculation_Functions::_ifCondition($condition); |
|
2372
|
|
|
// Loop through arguments |
|
2373
|
|
|
foreach ($aArgs as $key => $arg) { |
|
2374
|
|
|
if (!is_numeric($arg)) { $arg = PHPExcel_Calculation::_wrapResult(strtoupper($arg)); } |
|
2375
|
|
|
$testCondition = '='.$arg.$condition; |
|
2376
|
|
|
if (PHPExcel_Calculation::getInstance()->_calculateFormulaValue($testCondition)) { |
|
2377
|
|
|
if ((is_null($returnValue)) || ($arg < $returnValue)) { |
|
2378
|
|
|
$returnValue = $arg; |
|
2379
|
|
|
} |
|
2380
|
|
|
} |
|
2381
|
|
|
} |
|
2382
|
|
|
|
|
2383
|
|
|
// Return |
|
2384
|
|
|
return $returnValue; |
|
2385
|
|
|
} // function MINIF() |
|
2386
|
|
|
|
|
2387
|
|
|
|
|
2388
|
|
|
// |
|
2389
|
|
|
// Special variant of array_count_values that isn't limited to strings and integers, |
|
2390
|
|
|
// but can work with floating point numbers as values |
|
2391
|
|
|
// |
|
2392
|
|
|
private static function _modeCalc($data) { |
|
2393
|
|
|
$frequencyArray = array(); |
|
2394
|
|
|
foreach($data as $datum) { |
|
2395
|
|
|
$found = False; |
|
2396
|
|
|
foreach($frequencyArray as $key => $value) { |
|
2397
|
|
|
if ((string) $value['value'] == (string) $datum) { |
|
2398
|
|
|
++$frequencyArray[$key]['frequency']; |
|
2399
|
|
|
$found = True; |
|
2400
|
|
|
break; |
|
2401
|
|
|
} |
|
2402
|
|
|
} |
|
2403
|
|
|
if (!$found) { |
|
2404
|
|
|
$frequencyArray[] = array('value' => $datum, |
|
2405
|
|
|
'frequency' => 1 ); |
|
2406
|
|
|
} |
|
2407
|
|
|
} |
|
2408
|
|
|
|
|
2409
|
|
|
foreach($frequencyArray as $key => $value) { |
|
2410
|
|
|
$frequencyList[$key] = $value['frequency']; |
|
|
|
|
|
|
2411
|
|
|
$valueList[$key] = $value['value']; |
|
|
|
|
|
|
2412
|
|
|
} |
|
2413
|
|
|
array_multisort($frequencyList, SORT_DESC, $valueList, SORT_ASC, SORT_NUMERIC, $frequencyArray); |
|
|
|
|
|
|
2414
|
|
|
|
|
2415
|
|
|
if ($frequencyArray[0]['frequency'] == 1) { |
|
2416
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
2417
|
|
|
} |
|
2418
|
|
|
return $frequencyArray[0]['value']; |
|
2419
|
|
|
} // function _modeCalc() |
|
2420
|
|
|
|
|
2421
|
|
|
|
|
2422
|
|
|
/** |
|
2423
|
|
|
* MODE |
|
2424
|
|
|
* |
|
2425
|
|
|
* Returns the most frequently occurring, or repetitive, value in an array or range of data |
|
2426
|
|
|
* |
|
2427
|
|
|
* Excel Function: |
|
2428
|
|
|
* MODE(value1[,value2[, ...]]) |
|
2429
|
|
|
* |
|
2430
|
|
|
* @access public |
|
2431
|
|
|
* @category Statistical Functions |
|
2432
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2433
|
|
|
* @return float |
|
2434
|
|
|
*/ |
|
2435
|
|
|
public static function MODE() { |
|
2436
|
|
|
// Return value |
|
2437
|
|
|
$returnValue = PHPExcel_Calculation_Functions::NA(); |
|
2438
|
|
|
|
|
2439
|
|
|
// Loop through arguments |
|
2440
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2441
|
|
|
|
|
2442
|
|
|
$mArgs = array(); |
|
2443
|
|
|
foreach ($aArgs as $arg) { |
|
2444
|
|
|
// Is it a numeric value? |
|
2445
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2446
|
|
|
$mArgs[] = $arg; |
|
2447
|
|
|
} |
|
2448
|
|
|
} |
|
2449
|
|
|
|
|
2450
|
|
|
if (!empty($mArgs)) { |
|
2451
|
|
|
return self::_modeCalc($mArgs); |
|
2452
|
|
|
} |
|
2453
|
|
|
|
|
2454
|
|
|
// Return |
|
2455
|
|
|
return $returnValue; |
|
2456
|
|
|
} // function MODE() |
|
2457
|
|
|
|
|
2458
|
|
|
|
|
2459
|
|
|
/** |
|
2460
|
|
|
* NEGBINOMDIST |
|
2461
|
|
|
* |
|
2462
|
|
|
* Returns the negative binomial distribution. NEGBINOMDIST returns the probability that |
|
2463
|
|
|
* there will be number_f failures before the number_s-th success, when the constant |
|
2464
|
|
|
* probability of a success is probability_s. This function is similar to the binomial |
|
2465
|
|
|
* distribution, except that the number of successes is fixed, and the number of trials is |
|
2466
|
|
|
* variable. Like the binomial, trials are assumed to be independent. |
|
2467
|
|
|
* |
|
2468
|
|
|
* @param float $failures Number of Failures |
|
2469
|
|
|
* @param float $successes Threshold number of Successes |
|
2470
|
|
|
* @param float $probability Probability of success on each trial |
|
2471
|
|
|
* @return float |
|
2472
|
|
|
* |
|
2473
|
|
|
*/ |
|
2474
|
|
|
public static function NEGBINOMDIST($failures, $successes, $probability) { |
|
2475
|
|
|
$failures = floor(PHPExcel_Calculation_Functions::flattenSingleValue($failures)); |
|
2476
|
|
|
$successes = floor(PHPExcel_Calculation_Functions::flattenSingleValue($successes)); |
|
2477
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
2478
|
|
|
|
|
2479
|
|
|
if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) { |
|
2480
|
|
|
if (($failures < 0) || ($successes < 1)) { |
|
2481
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2482
|
|
|
} |
|
2483
|
|
|
if (($probability < 0) || ($probability > 1)) { |
|
2484
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2485
|
|
|
} |
|
2486
|
|
|
if (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_GNUMERIC) { |
|
2487
|
|
|
if (($failures + $successes - 1) <= 0) { |
|
2488
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2489
|
|
|
} |
|
2490
|
|
|
} |
|
2491
|
|
|
return (PHPExcel_Calculation_MathTrig::COMBIN($failures + $successes - 1,$successes - 1)) * (pow($probability,$successes)) * (pow(1 - $probability,$failures)) ; |
|
2492
|
|
|
} |
|
2493
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2494
|
|
|
} // function NEGBINOMDIST() |
|
2495
|
|
|
|
|
2496
|
|
|
|
|
2497
|
|
|
/** |
|
2498
|
|
|
* NORMDIST |
|
2499
|
|
|
* |
|
2500
|
|
|
* Returns the normal distribution for the specified mean and standard deviation. This |
|
2501
|
|
|
* function has a very wide range of applications in statistics, including hypothesis |
|
2502
|
|
|
* testing. |
|
2503
|
|
|
* |
|
2504
|
|
|
* @param float $value |
|
2505
|
|
|
* @param float $mean Mean Value |
|
2506
|
|
|
* @param float $stdDev Standard Deviation |
|
2507
|
|
|
* @param boolean $cumulative |
|
2508
|
|
|
* @return float |
|
2509
|
|
|
* |
|
2510
|
|
|
*/ |
|
2511
|
|
|
public static function NORMDIST($value, $mean, $stdDev, $cumulative) { |
|
2512
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2513
|
|
|
$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
|
2514
|
|
|
$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
|
2515
|
|
|
|
|
2516
|
|
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
|
2517
|
|
|
if ($stdDev < 0) { |
|
2518
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2519
|
|
|
} |
|
2520
|
|
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
|
2521
|
|
|
if ($cumulative) { |
|
2522
|
|
|
return 0.5 * (1 + PHPExcel_Calculation_Engineering::_erfVal(($value - $mean) / ($stdDev * sqrt(2)))); |
|
2523
|
|
|
} else { |
|
2524
|
|
|
return (1 / (SQRT2PI * $stdDev)) * exp(0 - (pow($value - $mean,2) / (2 * ($stdDev * $stdDev)))); |
|
2525
|
|
|
} |
|
2526
|
|
|
} |
|
2527
|
|
|
} |
|
2528
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2529
|
|
|
} // function NORMDIST() |
|
2530
|
|
|
|
|
2531
|
|
|
|
|
2532
|
|
|
/** |
|
2533
|
|
|
* NORMINV |
|
2534
|
|
|
* |
|
2535
|
|
|
* Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation. |
|
2536
|
|
|
* |
|
2537
|
|
|
* @param float $value |
|
|
|
|
|
|
2538
|
|
|
* @param float $mean Mean Value |
|
2539
|
|
|
* @param float $stdDev Standard Deviation |
|
2540
|
|
|
* @return float |
|
2541
|
|
|
* |
|
2542
|
|
|
*/ |
|
2543
|
|
View Code Duplication |
public static function NORMINV($probability,$mean,$stdDev) { |
|
2544
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
2545
|
|
|
$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
|
2546
|
|
|
$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
|
2547
|
|
|
|
|
2548
|
|
|
if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
|
2549
|
|
|
if (($probability < 0) || ($probability > 1)) { |
|
2550
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2551
|
|
|
} |
|
2552
|
|
|
if ($stdDev < 0) { |
|
2553
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2554
|
|
|
} |
|
2555
|
|
|
return (self::_inverse_ncdf($probability) * $stdDev) + $mean; |
|
2556
|
|
|
} |
|
2557
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2558
|
|
|
} // function NORMINV() |
|
2559
|
|
|
|
|
2560
|
|
|
|
|
2561
|
|
|
/** |
|
2562
|
|
|
* NORMSDIST |
|
2563
|
|
|
* |
|
2564
|
|
|
* Returns the standard normal cumulative distribution function. The distribution has |
|
2565
|
|
|
* a mean of 0 (zero) and a standard deviation of one. Use this function in place of a |
|
2566
|
|
|
* table of standard normal curve areas. |
|
2567
|
|
|
* |
|
2568
|
|
|
* @param float $value |
|
2569
|
|
|
* @return float |
|
2570
|
|
|
*/ |
|
2571
|
|
|
public static function NORMSDIST($value) { |
|
2572
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2573
|
|
|
|
|
2574
|
|
|
return self::NORMDIST($value, 0, 1, True); |
|
2575
|
|
|
} // function NORMSDIST() |
|
2576
|
|
|
|
|
2577
|
|
|
|
|
2578
|
|
|
/** |
|
2579
|
|
|
* NORMSINV |
|
2580
|
|
|
* |
|
2581
|
|
|
* Returns the inverse of the standard normal cumulative distribution |
|
2582
|
|
|
* |
|
2583
|
|
|
* @param float $value |
|
2584
|
|
|
* @return float |
|
2585
|
|
|
*/ |
|
2586
|
|
|
public static function NORMSINV($value) { |
|
2587
|
|
|
return self::NORMINV($value, 0, 1); |
|
2588
|
|
|
} // function NORMSINV() |
|
2589
|
|
|
|
|
2590
|
|
|
|
|
2591
|
|
|
/** |
|
2592
|
|
|
* PERCENTILE |
|
2593
|
|
|
* |
|
2594
|
|
|
* Returns the nth percentile of values in a range.. |
|
2595
|
|
|
* |
|
2596
|
|
|
* Excel Function: |
|
2597
|
|
|
* PERCENTILE(value1[,value2[, ...]],entry) |
|
2598
|
|
|
* |
|
2599
|
|
|
* @access public |
|
2600
|
|
|
* @category Statistical Functions |
|
2601
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2602
|
|
|
* @param float $entry Percentile value in the range 0..1, inclusive. |
|
|
|
|
|
|
2603
|
|
|
* @return float |
|
2604
|
|
|
*/ |
|
2605
|
|
|
public static function PERCENTILE() { |
|
2606
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2607
|
|
|
|
|
2608
|
|
|
// Calculate |
|
2609
|
|
|
$entry = array_pop($aArgs); |
|
2610
|
|
|
|
|
2611
|
|
|
if ((is_numeric($entry)) && (!is_string($entry))) { |
|
2612
|
|
|
if (($entry < 0) || ($entry > 1)) { |
|
2613
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2614
|
|
|
} |
|
2615
|
|
|
$mArgs = array(); |
|
2616
|
|
|
foreach ($aArgs as $arg) { |
|
2617
|
|
|
// Is it a numeric value? |
|
2618
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2619
|
|
|
$mArgs[] = $arg; |
|
2620
|
|
|
} |
|
2621
|
|
|
} |
|
2622
|
|
|
$mValueCount = count($mArgs); |
|
2623
|
|
|
if ($mValueCount > 0) { |
|
2624
|
|
|
sort($mArgs); |
|
2625
|
|
|
$count = self::COUNT($mArgs); |
|
2626
|
|
|
$index = $entry * ($count-1); |
|
2627
|
|
|
$iBase = floor($index); |
|
2628
|
|
|
if ($index == $iBase) { |
|
2629
|
|
|
return $mArgs[$index]; |
|
2630
|
|
|
} else { |
|
2631
|
|
|
$iNext = $iBase + 1; |
|
2632
|
|
|
$iProportion = $index - $iBase; |
|
2633
|
|
|
return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion) ; |
|
2634
|
|
|
} |
|
2635
|
|
|
} |
|
2636
|
|
|
} |
|
2637
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2638
|
|
|
} // function PERCENTILE() |
|
2639
|
|
|
|
|
2640
|
|
|
|
|
2641
|
|
|
/** |
|
2642
|
|
|
* PERCENTRANK |
|
2643
|
|
|
* |
|
2644
|
|
|
* Returns the rank of a value in a data set as a percentage of the data set. |
|
2645
|
|
|
* |
|
2646
|
|
|
* @param array of number An array of, or a reference to, a list of numbers. |
|
2647
|
|
|
* @param number The number whose rank you want to find. |
|
2648
|
|
|
* @param number The number of significant digits for the returned percentage value. |
|
2649
|
|
|
* @return float |
|
2650
|
|
|
*/ |
|
2651
|
|
|
public static function PERCENTRANK($valueSet,$value,$significance=3) { |
|
2652
|
|
|
$valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet); |
|
2653
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2654
|
|
|
$significance = (is_null($significance)) ? 3 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($significance); |
|
2655
|
|
|
|
|
2656
|
|
|
foreach($valueSet as $key => $valueEntry) { |
|
2657
|
|
|
if (!is_numeric($valueEntry)) { |
|
2658
|
|
|
unset($valueSet[$key]); |
|
2659
|
|
|
} |
|
2660
|
|
|
} |
|
2661
|
|
|
sort($valueSet,SORT_NUMERIC); |
|
2662
|
|
|
$valueCount = count($valueSet); |
|
2663
|
|
|
if ($valueCount == 0) { |
|
2664
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2665
|
|
|
} |
|
2666
|
|
|
|
|
2667
|
|
|
$valueAdjustor = $valueCount - 1; |
|
2668
|
|
|
if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) { |
|
2669
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
2670
|
|
|
} |
|
2671
|
|
|
|
|
2672
|
|
|
$pos = array_search($value,$valueSet); |
|
2673
|
|
|
if ($pos === False) { |
|
2674
|
|
|
$pos = 0; |
|
2675
|
|
|
$testValue = $valueSet[0]; |
|
2676
|
|
|
while ($testValue < $value) { |
|
2677
|
|
|
$testValue = $valueSet[++$pos]; |
|
2678
|
|
|
} |
|
2679
|
|
|
--$pos; |
|
2680
|
|
|
$pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos])); |
|
2681
|
|
|
} |
|
2682
|
|
|
|
|
2683
|
|
|
return round($pos / $valueAdjustor,$significance); |
|
2684
|
|
|
} // function PERCENTRANK() |
|
2685
|
|
|
|
|
2686
|
|
|
|
|
2687
|
|
|
/** |
|
2688
|
|
|
* PERMUT |
|
2689
|
|
|
* |
|
2690
|
|
|
* Returns the number of permutations for a given number of objects that can be |
|
2691
|
|
|
* selected from number objects. A permutation is any set or subset of objects or |
|
2692
|
|
|
* events where internal order is significant. Permutations are different from |
|
2693
|
|
|
* combinations, for which the internal order is not significant. Use this function |
|
2694
|
|
|
* for lottery-style probability calculations. |
|
2695
|
|
|
* |
|
2696
|
|
|
* @param int $numObjs Number of different objects |
|
2697
|
|
|
* @param int $numInSet Number of objects in each permutation |
|
2698
|
|
|
* @return int Number of permutations |
|
2699
|
|
|
*/ |
|
2700
|
|
View Code Duplication |
public static function PERMUT($numObjs,$numInSet) { |
|
2701
|
|
|
$numObjs = PHPExcel_Calculation_Functions::flattenSingleValue($numObjs); |
|
2702
|
|
|
$numInSet = PHPExcel_Calculation_Functions::flattenSingleValue($numInSet); |
|
2703
|
|
|
|
|
2704
|
|
|
if ((is_numeric($numObjs)) && (is_numeric($numInSet))) { |
|
2705
|
|
|
$numInSet = floor($numInSet); |
|
2706
|
|
|
if ($numObjs < $numInSet) { |
|
2707
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2708
|
|
|
} |
|
2709
|
|
|
return round(PHPExcel_Calculation_MathTrig::FACT($numObjs) / PHPExcel_Calculation_MathTrig::FACT($numObjs - $numInSet)); |
|
2710
|
|
|
} |
|
2711
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2712
|
|
|
} // function PERMUT() |
|
2713
|
|
|
|
|
2714
|
|
|
|
|
2715
|
|
|
/** |
|
2716
|
|
|
* POISSON |
|
2717
|
|
|
* |
|
2718
|
|
|
* Returns the Poisson distribution. A common application of the Poisson distribution |
|
2719
|
|
|
* is predicting the number of events over a specific time, such as the number of |
|
2720
|
|
|
* cars arriving at a toll plaza in 1 minute. |
|
2721
|
|
|
* |
|
2722
|
|
|
* @param float $value |
|
2723
|
|
|
* @param float $mean Mean Value |
|
2724
|
|
|
* @param boolean $cumulative |
|
2725
|
|
|
* @return float |
|
2726
|
|
|
* |
|
2727
|
|
|
*/ |
|
2728
|
|
|
public static function POISSON($value, $mean, $cumulative) { |
|
2729
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2730
|
|
|
$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
|
2731
|
|
|
|
|
2732
|
|
|
if ((is_numeric($value)) && (is_numeric($mean))) { |
|
2733
|
|
|
if (($value <= 0) || ($mean <= 0)) { |
|
2734
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2735
|
|
|
} |
|
2736
|
|
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
|
2737
|
|
|
if ($cumulative) { |
|
2738
|
|
|
$summer = 0; |
|
2739
|
|
|
for ($i = 0; $i <= floor($value); ++$i) { |
|
2740
|
|
|
$summer += pow($mean,$i) / PHPExcel_Calculation_MathTrig::FACT($i); |
|
2741
|
|
|
} |
|
2742
|
|
|
return exp(0-$mean) * $summer; |
|
2743
|
|
|
} else { |
|
2744
|
|
|
return (exp(0-$mean) * pow($mean,$value)) / PHPExcel_Calculation_MathTrig::FACT($value); |
|
2745
|
|
|
} |
|
2746
|
|
|
} |
|
2747
|
|
|
} |
|
2748
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2749
|
|
|
} // function POISSON() |
|
2750
|
|
|
|
|
2751
|
|
|
|
|
2752
|
|
|
/** |
|
2753
|
|
|
* QUARTILE |
|
2754
|
|
|
* |
|
2755
|
|
|
* Returns the quartile of a data set. |
|
2756
|
|
|
* |
|
2757
|
|
|
* Excel Function: |
|
2758
|
|
|
* QUARTILE(value1[,value2[, ...]],entry) |
|
2759
|
|
|
* |
|
2760
|
|
|
* @access public |
|
2761
|
|
|
* @category Statistical Functions |
|
2762
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2763
|
|
|
* @param int $entry Quartile value in the range 1..3, inclusive. |
|
|
|
|
|
|
2764
|
|
|
* @return float |
|
2765
|
|
|
*/ |
|
2766
|
|
|
public static function QUARTILE() { |
|
2767
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2768
|
|
|
|
|
2769
|
|
|
// Calculate |
|
2770
|
|
|
$entry = floor(array_pop($aArgs)); |
|
2771
|
|
|
|
|
2772
|
|
|
if ((is_numeric($entry)) && (!is_string($entry))) { |
|
2773
|
|
|
$entry /= 4; |
|
2774
|
|
|
if (($entry < 0) || ($entry > 1)) { |
|
2775
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2776
|
|
|
} |
|
2777
|
|
|
return self::PERCENTILE($aArgs,$entry); |
|
2778
|
|
|
} |
|
2779
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2780
|
|
|
} // function QUARTILE() |
|
2781
|
|
|
|
|
2782
|
|
|
|
|
2783
|
|
|
/** |
|
2784
|
|
|
* RANK |
|
2785
|
|
|
* |
|
2786
|
|
|
* Returns the rank of a number in a list of numbers. |
|
2787
|
|
|
* |
|
2788
|
|
|
* @param number The number whose rank you want to find. |
|
2789
|
|
|
* @param array of number An array of, or a reference to, a list of numbers. |
|
2790
|
|
|
* @param mixed Order to sort the values in the value set |
|
2791
|
|
|
* @return float |
|
2792
|
|
|
*/ |
|
2793
|
|
|
public static function RANK($value,$valueSet,$order=0) { |
|
2794
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2795
|
|
|
$valueSet = PHPExcel_Calculation_Functions::flattenArray($valueSet); |
|
2796
|
|
|
$order = (is_null($order)) ? 0 : (integer) PHPExcel_Calculation_Functions::flattenSingleValue($order); |
|
2797
|
|
|
|
|
2798
|
|
|
foreach($valueSet as $key => $valueEntry) { |
|
2799
|
|
|
if (!is_numeric($valueEntry)) { |
|
2800
|
|
|
unset($valueSet[$key]); |
|
2801
|
|
|
} |
|
2802
|
|
|
} |
|
2803
|
|
|
|
|
2804
|
|
|
if ($order == 0) { |
|
2805
|
|
|
rsort($valueSet,SORT_NUMERIC); |
|
2806
|
|
|
} else { |
|
2807
|
|
|
sort($valueSet,SORT_NUMERIC); |
|
2808
|
|
|
} |
|
2809
|
|
|
$pos = array_search($value,$valueSet); |
|
2810
|
|
|
if ($pos === False) { |
|
2811
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
2812
|
|
|
} |
|
2813
|
|
|
|
|
2814
|
|
|
return ++$pos; |
|
2815
|
|
|
} // function RANK() |
|
2816
|
|
|
|
|
2817
|
|
|
|
|
2818
|
|
|
/** |
|
2819
|
|
|
* RSQ |
|
2820
|
|
|
* |
|
2821
|
|
|
* Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's. |
|
2822
|
|
|
* |
|
2823
|
|
|
* @param array of mixed Data Series Y |
|
2824
|
|
|
* @param array of mixed Data Series X |
|
2825
|
|
|
* @return float |
|
2826
|
|
|
*/ |
|
2827
|
|
View Code Duplication |
public static function RSQ($yValues,$xValues) { |
|
2828
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
2829
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2830
|
|
|
} |
|
2831
|
|
|
$yValueCount = count($yValues); |
|
2832
|
|
|
$xValueCount = count($xValues); |
|
2833
|
|
|
|
|
2834
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
2835
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
2836
|
|
|
} elseif ($yValueCount == 1) { |
|
2837
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
2838
|
|
|
} |
|
2839
|
|
|
|
|
2840
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
2841
|
|
|
return $bestFitLinear->getGoodnessOfFit(); |
|
2842
|
|
|
} // function RSQ() |
|
2843
|
|
|
|
|
2844
|
|
|
|
|
2845
|
|
|
/** |
|
2846
|
|
|
* SKEW |
|
2847
|
|
|
* |
|
2848
|
|
|
* Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry |
|
2849
|
|
|
* of a distribution around its mean. Positive skewness indicates a distribution with an |
|
2850
|
|
|
* asymmetric tail extending toward more positive values. Negative skewness indicates a |
|
2851
|
|
|
* distribution with an asymmetric tail extending toward more negative values. |
|
2852
|
|
|
* |
|
2853
|
|
|
* @param array Data Series |
|
2854
|
|
|
* @return float |
|
2855
|
|
|
*/ |
|
2856
|
|
|
public static function SKEW() { |
|
2857
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
2858
|
|
|
$mean = self::AVERAGE($aArgs); |
|
2859
|
|
|
$stdDev = self::STDEV($aArgs); |
|
2860
|
|
|
|
|
2861
|
|
|
$count = $summer = 0; |
|
2862
|
|
|
// Loop through arguments |
|
2863
|
|
View Code Duplication |
foreach ($aArgs as $k => $arg) { |
|
2864
|
|
|
if ((is_bool($arg)) && |
|
|
|
|
|
|
2865
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
2866
|
|
|
} else { |
|
2867
|
|
|
// Is it a numeric value? |
|
2868
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2869
|
|
|
$summer += pow((($arg - $mean) / $stdDev),3) ; |
|
2870
|
|
|
++$count; |
|
2871
|
|
|
} |
|
2872
|
|
|
} |
|
2873
|
|
|
} |
|
2874
|
|
|
|
|
2875
|
|
|
// Return |
|
2876
|
|
|
if ($count > 2) { |
|
2877
|
|
|
return $summer * ($count / (($count-1) * ($count-2))); |
|
2878
|
|
|
} |
|
2879
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
2880
|
|
|
} // function SKEW() |
|
2881
|
|
|
|
|
2882
|
|
|
|
|
2883
|
|
|
/** |
|
2884
|
|
|
* SLOPE |
|
2885
|
|
|
* |
|
2886
|
|
|
* Returns the slope of the linear regression line through data points in known_y's and known_x's. |
|
2887
|
|
|
* |
|
2888
|
|
|
* @param array of mixed Data Series Y |
|
2889
|
|
|
* @param array of mixed Data Series X |
|
2890
|
|
|
* @return float |
|
2891
|
|
|
*/ |
|
2892
|
|
View Code Duplication |
public static function SLOPE($yValues,$xValues) { |
|
2893
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
2894
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2895
|
|
|
} |
|
2896
|
|
|
$yValueCount = count($yValues); |
|
2897
|
|
|
$xValueCount = count($xValues); |
|
2898
|
|
|
|
|
2899
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
2900
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
2901
|
|
|
} elseif ($yValueCount == 1) { |
|
2902
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
2903
|
|
|
} |
|
2904
|
|
|
|
|
2905
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
2906
|
|
|
return $bestFitLinear->getSlope(); |
|
2907
|
|
|
} // function SLOPE() |
|
2908
|
|
|
|
|
2909
|
|
|
|
|
2910
|
|
|
/** |
|
2911
|
|
|
* SMALL |
|
2912
|
|
|
* |
|
2913
|
|
|
* Returns the nth smallest value in a data set. You can use this function to |
|
2914
|
|
|
* select a value based on its relative standing. |
|
2915
|
|
|
* |
|
2916
|
|
|
* Excel Function: |
|
2917
|
|
|
* SMALL(value1[,value2[, ...]],entry) |
|
2918
|
|
|
* |
|
2919
|
|
|
* @access public |
|
2920
|
|
|
* @category Statistical Functions |
|
2921
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2922
|
|
|
* @param int $entry Position (ordered from the smallest) in the array or range of data to return |
|
|
|
|
|
|
2923
|
|
|
* @return float |
|
2924
|
|
|
*/ |
|
2925
|
|
View Code Duplication |
public static function SMALL() { |
|
2926
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
2927
|
|
|
|
|
2928
|
|
|
// Calculate |
|
2929
|
|
|
$entry = array_pop($aArgs); |
|
2930
|
|
|
|
|
2931
|
|
|
if ((is_numeric($entry)) && (!is_string($entry))) { |
|
2932
|
|
|
$mArgs = array(); |
|
2933
|
|
|
foreach ($aArgs as $arg) { |
|
2934
|
|
|
// Is it a numeric value? |
|
2935
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
2936
|
|
|
$mArgs[] = $arg; |
|
2937
|
|
|
} |
|
2938
|
|
|
} |
|
2939
|
|
|
$count = self::COUNT($mArgs); |
|
2940
|
|
|
$entry = floor(--$entry); |
|
2941
|
|
|
if (($entry < 0) || ($entry >= $count) || ($count == 0)) { |
|
2942
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2943
|
|
|
} |
|
2944
|
|
|
sort($mArgs); |
|
2945
|
|
|
return $mArgs[$entry]; |
|
2946
|
|
|
} |
|
2947
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2948
|
|
|
} // function SMALL() |
|
2949
|
|
|
|
|
2950
|
|
|
|
|
2951
|
|
|
/** |
|
2952
|
|
|
* STANDARDIZE |
|
2953
|
|
|
* |
|
2954
|
|
|
* Returns a normalized value from a distribution characterized by mean and standard_dev. |
|
2955
|
|
|
* |
|
2956
|
|
|
* @param float $value Value to normalize |
|
2957
|
|
|
* @param float $mean Mean Value |
|
2958
|
|
|
* @param float $stdDev Standard Deviation |
|
2959
|
|
|
* @return float Standardized value |
|
2960
|
|
|
*/ |
|
2961
|
|
View Code Duplication |
public static function STANDARDIZE($value,$mean,$stdDev) { |
|
2962
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
2963
|
|
|
$mean = PHPExcel_Calculation_Functions::flattenSingleValue($mean); |
|
2964
|
|
|
$stdDev = PHPExcel_Calculation_Functions::flattenSingleValue($stdDev); |
|
2965
|
|
|
|
|
2966
|
|
|
if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { |
|
2967
|
|
|
if ($stdDev <= 0) { |
|
2968
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
2969
|
|
|
} |
|
2970
|
|
|
return ($value - $mean) / $stdDev ; |
|
2971
|
|
|
} |
|
2972
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
2973
|
|
|
} // function STANDARDIZE() |
|
2974
|
|
|
|
|
2975
|
|
|
|
|
2976
|
|
|
/** |
|
2977
|
|
|
* STDEV |
|
2978
|
|
|
* |
|
2979
|
|
|
* Estimates standard deviation based on a sample. The standard deviation is a measure of how |
|
2980
|
|
|
* widely values are dispersed from the average value (the mean). |
|
2981
|
|
|
* |
|
2982
|
|
|
* Excel Function: |
|
2983
|
|
|
* STDEV(value1[,value2[, ...]]) |
|
2984
|
|
|
* |
|
2985
|
|
|
* @access public |
|
2986
|
|
|
* @category Statistical Functions |
|
2987
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
2988
|
|
|
* @return float |
|
2989
|
|
|
*/ |
|
2990
|
|
View Code Duplication |
public static function STDEV() { |
|
2991
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
2992
|
|
|
|
|
2993
|
|
|
// Return value |
|
2994
|
|
|
$returnValue = null; |
|
2995
|
|
|
|
|
2996
|
|
|
$aMean = self::AVERAGE($aArgs); |
|
2997
|
|
|
if (!is_null($aMean)) { |
|
2998
|
|
|
$aCount = -1; |
|
2999
|
|
|
foreach ($aArgs as $k => $arg) { |
|
3000
|
|
|
if ((is_bool($arg)) && |
|
3001
|
|
|
((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
|
3002
|
|
|
$arg = (integer) $arg; |
|
3003
|
|
|
} |
|
3004
|
|
|
// Is it a numeric value? |
|
3005
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
3006
|
|
|
if (is_null($returnValue)) { |
|
3007
|
|
|
$returnValue = pow(($arg - $aMean),2); |
|
3008
|
|
|
} else { |
|
3009
|
|
|
$returnValue += pow(($arg - $aMean),2); |
|
3010
|
|
|
} |
|
3011
|
|
|
++$aCount; |
|
3012
|
|
|
} |
|
3013
|
|
|
} |
|
3014
|
|
|
|
|
3015
|
|
|
// Return |
|
3016
|
|
|
if (($aCount > 0) && ($returnValue >= 0)) { |
|
3017
|
|
|
return sqrt($returnValue / $aCount); |
|
3018
|
|
|
} |
|
3019
|
|
|
} |
|
3020
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
3021
|
|
|
} // function STDEV() |
|
3022
|
|
|
|
|
3023
|
|
|
|
|
3024
|
|
|
/** |
|
3025
|
|
|
* STDEVA |
|
3026
|
|
|
* |
|
3027
|
|
|
* Estimates standard deviation based on a sample, including numbers, text, and logical values |
|
3028
|
|
|
* |
|
3029
|
|
|
* Excel Function: |
|
3030
|
|
|
* STDEVA(value1[,value2[, ...]]) |
|
3031
|
|
|
* |
|
3032
|
|
|
* @access public |
|
3033
|
|
|
* @category Statistical Functions |
|
3034
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3035
|
|
|
* @return float |
|
3036
|
|
|
*/ |
|
3037
|
|
View Code Duplication |
public static function STDEVA() { |
|
3038
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
3039
|
|
|
|
|
3040
|
|
|
// Return value |
|
3041
|
|
|
$returnValue = null; |
|
3042
|
|
|
|
|
3043
|
|
|
$aMean = self::AVERAGEA($aArgs); |
|
3044
|
|
|
if (!is_null($aMean)) { |
|
3045
|
|
|
$aCount = -1; |
|
3046
|
|
|
foreach ($aArgs as $k => $arg) { |
|
3047
|
|
|
if ((is_bool($arg)) && |
|
|
|
|
|
|
3048
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
3049
|
|
|
} else { |
|
3050
|
|
|
// Is it a numeric value? |
|
3051
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
|
3052
|
|
|
if (is_bool($arg)) { |
|
3053
|
|
|
$arg = (integer) $arg; |
|
3054
|
|
|
} elseif (is_string($arg)) { |
|
3055
|
|
|
$arg = 0; |
|
3056
|
|
|
} |
|
3057
|
|
|
if (is_null($returnValue)) { |
|
3058
|
|
|
$returnValue = pow(($arg - $aMean),2); |
|
3059
|
|
|
} else { |
|
3060
|
|
|
$returnValue += pow(($arg - $aMean),2); |
|
3061
|
|
|
} |
|
3062
|
|
|
++$aCount; |
|
3063
|
|
|
} |
|
3064
|
|
|
} |
|
3065
|
|
|
} |
|
3066
|
|
|
|
|
3067
|
|
|
// Return |
|
3068
|
|
|
if (($aCount > 0) && ($returnValue >= 0)) { |
|
3069
|
|
|
return sqrt($returnValue / $aCount); |
|
3070
|
|
|
} |
|
3071
|
|
|
} |
|
3072
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
3073
|
|
|
} // function STDEVA() |
|
3074
|
|
|
|
|
3075
|
|
|
|
|
3076
|
|
|
/** |
|
3077
|
|
|
* STDEVP |
|
3078
|
|
|
* |
|
3079
|
|
|
* Calculates standard deviation based on the entire population |
|
3080
|
|
|
* |
|
3081
|
|
|
* Excel Function: |
|
3082
|
|
|
* STDEVP(value1[,value2[, ...]]) |
|
3083
|
|
|
* |
|
3084
|
|
|
* @access public |
|
3085
|
|
|
* @category Statistical Functions |
|
3086
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3087
|
|
|
* @return float |
|
3088
|
|
|
*/ |
|
3089
|
|
View Code Duplication |
public static function STDEVP() { |
|
3090
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
3091
|
|
|
|
|
3092
|
|
|
// Return value |
|
3093
|
|
|
$returnValue = null; |
|
3094
|
|
|
|
|
3095
|
|
|
$aMean = self::AVERAGE($aArgs); |
|
3096
|
|
|
if (!is_null($aMean)) { |
|
3097
|
|
|
$aCount = 0; |
|
3098
|
|
|
foreach ($aArgs as $k => $arg) { |
|
3099
|
|
|
if ((is_bool($arg)) && |
|
3100
|
|
|
((!PHPExcel_Calculation_Functions::isCellValue($k)) || (PHPExcel_Calculation_Functions::getCompatibilityMode() == PHPExcel_Calculation_Functions::COMPATIBILITY_OPENOFFICE))) { |
|
3101
|
|
|
$arg = (integer) $arg; |
|
3102
|
|
|
} |
|
3103
|
|
|
// Is it a numeric value? |
|
3104
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
3105
|
|
|
if (is_null($returnValue)) { |
|
3106
|
|
|
$returnValue = pow(($arg - $aMean),2); |
|
3107
|
|
|
} else { |
|
3108
|
|
|
$returnValue += pow(($arg - $aMean),2); |
|
3109
|
|
|
} |
|
3110
|
|
|
++$aCount; |
|
3111
|
|
|
} |
|
3112
|
|
|
} |
|
3113
|
|
|
|
|
3114
|
|
|
// Return |
|
3115
|
|
|
if (($aCount > 0) && ($returnValue >= 0)) { |
|
3116
|
|
|
return sqrt($returnValue / $aCount); |
|
3117
|
|
|
} |
|
3118
|
|
|
} |
|
3119
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
3120
|
|
|
} // function STDEVP() |
|
3121
|
|
|
|
|
3122
|
|
|
|
|
3123
|
|
|
/** |
|
3124
|
|
|
* STDEVPA |
|
3125
|
|
|
* |
|
3126
|
|
|
* Calculates standard deviation based on the entire population, including numbers, text, and logical values |
|
3127
|
|
|
* |
|
3128
|
|
|
* Excel Function: |
|
3129
|
|
|
* STDEVPA(value1[,value2[, ...]]) |
|
3130
|
|
|
* |
|
3131
|
|
|
* @access public |
|
3132
|
|
|
* @category Statistical Functions |
|
3133
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3134
|
|
|
* @return float |
|
3135
|
|
|
*/ |
|
3136
|
|
View Code Duplication |
public static function STDEVPA() { |
|
3137
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
3138
|
|
|
|
|
3139
|
|
|
// Return value |
|
3140
|
|
|
$returnValue = null; |
|
3141
|
|
|
|
|
3142
|
|
|
$aMean = self::AVERAGEA($aArgs); |
|
3143
|
|
|
if (!is_null($aMean)) { |
|
3144
|
|
|
$aCount = 0; |
|
3145
|
|
|
foreach ($aArgs as $k => $arg) { |
|
3146
|
|
|
if ((is_bool($arg)) && |
|
|
|
|
|
|
3147
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
3148
|
|
|
} else { |
|
3149
|
|
|
// Is it a numeric value? |
|
3150
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
|
3151
|
|
|
if (is_bool($arg)) { |
|
3152
|
|
|
$arg = (integer) $arg; |
|
3153
|
|
|
} elseif (is_string($arg)) { |
|
3154
|
|
|
$arg = 0; |
|
3155
|
|
|
} |
|
3156
|
|
|
if (is_null($returnValue)) { |
|
3157
|
|
|
$returnValue = pow(($arg - $aMean),2); |
|
3158
|
|
|
} else { |
|
3159
|
|
|
$returnValue += pow(($arg - $aMean),2); |
|
3160
|
|
|
} |
|
3161
|
|
|
++$aCount; |
|
3162
|
|
|
} |
|
3163
|
|
|
} |
|
3164
|
|
|
} |
|
3165
|
|
|
|
|
3166
|
|
|
// Return |
|
3167
|
|
|
if (($aCount > 0) && ($returnValue >= 0)) { |
|
3168
|
|
|
return sqrt($returnValue / $aCount); |
|
3169
|
|
|
} |
|
3170
|
|
|
} |
|
3171
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
3172
|
|
|
} // function STDEVPA() |
|
3173
|
|
|
|
|
3174
|
|
|
|
|
3175
|
|
|
/** |
|
3176
|
|
|
* STEYX |
|
3177
|
|
|
* |
|
3178
|
|
|
* Returns the standard error of the predicted y-value for each x in the regression. |
|
3179
|
|
|
* |
|
3180
|
|
|
* @param array of mixed Data Series Y |
|
3181
|
|
|
* @param array of mixed Data Series X |
|
3182
|
|
|
* @return float |
|
3183
|
|
|
*/ |
|
3184
|
|
View Code Duplication |
public static function STEYX($yValues,$xValues) { |
|
3185
|
|
|
if (!self::_checkTrendArrays($yValues,$xValues)) { |
|
3186
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3187
|
|
|
} |
|
3188
|
|
|
$yValueCount = count($yValues); |
|
3189
|
|
|
$xValueCount = count($xValues); |
|
3190
|
|
|
|
|
3191
|
|
|
if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { |
|
3192
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
3193
|
|
|
} elseif ($yValueCount == 1) { |
|
3194
|
|
|
return PHPExcel_Calculation_Functions::DIV0(); |
|
3195
|
|
|
} |
|
3196
|
|
|
|
|
3197
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues); |
|
3198
|
|
|
return $bestFitLinear->getStdevOfResiduals(); |
|
3199
|
|
|
} // function STEYX() |
|
3200
|
|
|
|
|
3201
|
|
|
|
|
3202
|
|
|
/** |
|
3203
|
|
|
* TDIST |
|
3204
|
|
|
* |
|
3205
|
|
|
* Returns the probability of Student's T distribution. |
|
3206
|
|
|
* |
|
3207
|
|
|
* @param float $value Value for the function |
|
3208
|
|
|
* @param float $degrees degrees of freedom |
|
3209
|
|
|
* @param float $tails number of tails (1 or 2) |
|
3210
|
|
|
* @return float |
|
3211
|
|
|
*/ |
|
3212
|
|
|
public static function TDIST($value, $degrees, $tails) { |
|
3213
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
3214
|
|
|
$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
|
3215
|
|
|
$tails = floor(PHPExcel_Calculation_Functions::flattenSingleValue($tails)); |
|
3216
|
|
|
|
|
3217
|
|
|
if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) { |
|
3218
|
|
|
if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) { |
|
3219
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
3220
|
|
|
} |
|
3221
|
|
|
// tdist, which finds the probability that corresponds to a given value |
|
3222
|
|
|
// of t with k degrees of freedom. This algorithm is translated from a |
|
3223
|
|
|
// pascal function on p81 of "Statistical Computing in Pascal" by D |
|
3224
|
|
|
// Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd: |
|
3225
|
|
|
// London). The above Pascal algorithm is itself a translation of the |
|
3226
|
|
|
// fortran algoritm "AS 3" by B E Cooper of the Atlas Computer |
|
3227
|
|
|
// Laboratory as reported in (among other places) "Applied Statistics |
|
3228
|
|
|
// Algorithms", editied by P Griffiths and I D Hill (1985; Ellis |
|
3229
|
|
|
// Horwood Ltd.; W. Sussex, England). |
|
3230
|
|
|
$tterm = $degrees; |
|
3231
|
|
|
$ttheta = atan2($value,sqrt($tterm)); |
|
3232
|
|
|
$tc = cos($ttheta); |
|
3233
|
|
|
$ts = sin($ttheta); |
|
3234
|
|
|
$tsum = 0; |
|
3235
|
|
|
|
|
3236
|
|
|
if (($degrees % 2) == 1) { |
|
3237
|
|
|
$ti = 3; |
|
3238
|
|
|
$tterm = $tc; |
|
3239
|
|
|
} else { |
|
3240
|
|
|
$ti = 2; |
|
3241
|
|
|
$tterm = 1; |
|
3242
|
|
|
} |
|
3243
|
|
|
|
|
3244
|
|
|
$tsum = $tterm; |
|
3245
|
|
|
while ($ti < $degrees) { |
|
3246
|
|
|
$tterm *= $tc * $tc * ($ti - 1) / $ti; |
|
3247
|
|
|
$tsum += $tterm; |
|
3248
|
|
|
$ti += 2; |
|
3249
|
|
|
} |
|
3250
|
|
|
$tsum *= $ts; |
|
3251
|
|
|
if (($degrees % 2) == 1) { $tsum = M_2DIVPI * ($tsum + $ttheta); } |
|
3252
|
|
|
$tValue = 0.5 * (1 + $tsum); |
|
3253
|
|
|
if ($tails == 1) { |
|
3254
|
|
|
return 1 - abs($tValue); |
|
3255
|
|
|
} else { |
|
3256
|
|
|
return 1 - abs((1 - $tValue) - $tValue); |
|
3257
|
|
|
} |
|
3258
|
|
|
} |
|
3259
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3260
|
|
|
} // function TDIST() |
|
3261
|
|
|
|
|
3262
|
|
|
|
|
3263
|
|
|
/** |
|
3264
|
|
|
* TINV |
|
3265
|
|
|
* |
|
3266
|
|
|
* Returns the one-tailed probability of the chi-squared distribution. |
|
3267
|
|
|
* |
|
3268
|
|
|
* @param float $probability Probability for the function |
|
3269
|
|
|
* @param float $degrees degrees of freedom |
|
3270
|
|
|
* @return float |
|
3271
|
|
|
*/ |
|
3272
|
|
View Code Duplication |
public static function TINV($probability, $degrees) { |
|
3273
|
|
|
$probability = PHPExcel_Calculation_Functions::flattenSingleValue($probability); |
|
3274
|
|
|
$degrees = floor(PHPExcel_Calculation_Functions::flattenSingleValue($degrees)); |
|
3275
|
|
|
|
|
3276
|
|
|
if ((is_numeric($probability)) && (is_numeric($degrees))) { |
|
3277
|
|
|
$xLo = 100; |
|
3278
|
|
|
$xHi = 0; |
|
3279
|
|
|
|
|
3280
|
|
|
$x = $xNew = 1; |
|
3281
|
|
|
$dx = 1; |
|
3282
|
|
|
$i = 0; |
|
3283
|
|
|
|
|
3284
|
|
|
while ((abs($dx) > PRECISION) && ($i++ < MAX_ITERATIONS)) { |
|
3285
|
|
|
// Apply Newton-Raphson step |
|
3286
|
|
|
$result = self::TDIST($x, $degrees, 2); |
|
3287
|
|
|
$error = $result - $probability; |
|
3288
|
|
|
if ($error == 0.0) { |
|
3289
|
|
|
$dx = 0; |
|
3290
|
|
|
} elseif ($error < 0.0) { |
|
3291
|
|
|
$xLo = $x; |
|
3292
|
|
|
} else { |
|
3293
|
|
|
$xHi = $x; |
|
3294
|
|
|
} |
|
3295
|
|
|
// Avoid division by zero |
|
3296
|
|
|
if ($result != 0.0) { |
|
3297
|
|
|
$dx = $error / $result; |
|
3298
|
|
|
$xNew = $x - $dx; |
|
3299
|
|
|
} |
|
3300
|
|
|
// If the NR fails to converge (which for example may be the |
|
3301
|
|
|
// case if the initial guess is too rough) we apply a bisection |
|
3302
|
|
|
// step to determine a more narrow interval around the root. |
|
3303
|
|
|
if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { |
|
3304
|
|
|
$xNew = ($xLo + $xHi) / 2; |
|
3305
|
|
|
$dx = $xNew - $x; |
|
3306
|
|
|
} |
|
3307
|
|
|
$x = $xNew; |
|
3308
|
|
|
} |
|
3309
|
|
|
if ($i == MAX_ITERATIONS) { |
|
3310
|
|
|
return PHPExcel_Calculation_Functions::NA(); |
|
3311
|
|
|
} |
|
3312
|
|
|
return round($x,12); |
|
3313
|
|
|
} |
|
3314
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3315
|
|
|
} // function TINV() |
|
3316
|
|
|
|
|
3317
|
|
|
|
|
3318
|
|
|
/** |
|
3319
|
|
|
* TREND |
|
3320
|
|
|
* |
|
3321
|
|
|
* Returns values along a linear trend |
|
3322
|
|
|
* |
|
3323
|
|
|
* @param array of mixed Data Series Y |
|
3324
|
|
|
* @param array of mixed Data Series X |
|
3325
|
|
|
* @param array of mixed Values of X for which we want to find Y |
|
3326
|
|
|
* @param boolean A logical value specifying whether to force the intersect to equal 0. |
|
3327
|
|
|
* @return array of float |
|
3328
|
|
|
*/ |
|
3329
|
|
View Code Duplication |
public static function TREND($yValues,$xValues=array(),$newValues=array(),$const=True) { |
|
3330
|
|
|
$yValues = PHPExcel_Calculation_Functions::flattenArray($yValues); |
|
3331
|
|
|
$xValues = PHPExcel_Calculation_Functions::flattenArray($xValues); |
|
3332
|
|
|
$newValues = PHPExcel_Calculation_Functions::flattenArray($newValues); |
|
3333
|
|
|
$const = (is_null($const)) ? True : (boolean) PHPExcel_Calculation_Functions::flattenSingleValue($const); |
|
3334
|
|
|
|
|
3335
|
|
|
$bestFitLinear = trendClass::calculate(trendClass::TREND_LINEAR,$yValues,$xValues,$const); |
|
3336
|
|
|
if (empty($newValues)) { |
|
3337
|
|
|
$newValues = $bestFitLinear->getXValues(); |
|
3338
|
|
|
} |
|
3339
|
|
|
|
|
3340
|
|
|
$returnArray = array(); |
|
3341
|
|
|
foreach($newValues as $xValue) { |
|
3342
|
|
|
$returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue); |
|
3343
|
|
|
} |
|
3344
|
|
|
|
|
3345
|
|
|
return $returnArray; |
|
3346
|
|
|
} // function TREND() |
|
3347
|
|
|
|
|
3348
|
|
|
|
|
3349
|
|
|
/** |
|
3350
|
|
|
* TRIMMEAN |
|
3351
|
|
|
* |
|
3352
|
|
|
* Returns the mean of the interior of a data set. TRIMMEAN calculates the mean |
|
3353
|
|
|
* taken by excluding a percentage of data points from the top and bottom tails |
|
3354
|
|
|
* of a data set. |
|
3355
|
|
|
* |
|
3356
|
|
|
* Excel Function: |
|
3357
|
|
|
* TRIMEAN(value1[,value2[, ...]],$discard) |
|
3358
|
|
|
* |
|
3359
|
|
|
* @access public |
|
3360
|
|
|
* @category Statistical Functions |
|
3361
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3362
|
|
|
* @param float $discard Percentage to discard |
|
|
|
|
|
|
3363
|
|
|
* @return float |
|
3364
|
|
|
*/ |
|
3365
|
|
|
public static function TRIMMEAN() { |
|
3366
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
3367
|
|
|
|
|
3368
|
|
|
// Calculate |
|
3369
|
|
|
$percent = array_pop($aArgs); |
|
3370
|
|
|
|
|
3371
|
|
|
if ((is_numeric($percent)) && (!is_string($percent))) { |
|
3372
|
|
|
if (($percent < 0) || ($percent > 1)) { |
|
3373
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
3374
|
|
|
} |
|
3375
|
|
|
$mArgs = array(); |
|
3376
|
|
|
foreach ($aArgs as $arg) { |
|
3377
|
|
|
// Is it a numeric value? |
|
3378
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
3379
|
|
|
$mArgs[] = $arg; |
|
3380
|
|
|
} |
|
3381
|
|
|
} |
|
3382
|
|
|
$discard = floor(self::COUNT($mArgs) * $percent / 2); |
|
3383
|
|
|
sort($mArgs); |
|
3384
|
|
|
for ($i=0; $i < $discard; ++$i) { |
|
3385
|
|
|
array_pop($mArgs); |
|
3386
|
|
|
array_shift($mArgs); |
|
3387
|
|
|
} |
|
3388
|
|
|
return self::AVERAGE($mArgs); |
|
3389
|
|
|
} |
|
3390
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3391
|
|
|
} // function TRIMMEAN() |
|
3392
|
|
|
|
|
3393
|
|
|
|
|
3394
|
|
|
/** |
|
3395
|
|
|
* VARFunc |
|
3396
|
|
|
* |
|
3397
|
|
|
* Estimates variance based on a sample. |
|
3398
|
|
|
* |
|
3399
|
|
|
* Excel Function: |
|
3400
|
|
|
* VAR(value1[,value2[, ...]]) |
|
3401
|
|
|
* |
|
3402
|
|
|
* @access public |
|
3403
|
|
|
* @category Statistical Functions |
|
3404
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3405
|
|
|
* @return float |
|
3406
|
|
|
*/ |
|
3407
|
|
View Code Duplication |
public static function VARFunc() { |
|
3408
|
|
|
// Return value |
|
3409
|
|
|
$returnValue = PHPExcel_Calculation_Functions::DIV0(); |
|
3410
|
|
|
|
|
3411
|
|
|
$summerA = $summerB = 0; |
|
3412
|
|
|
|
|
3413
|
|
|
// Loop through arguments |
|
3414
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
3415
|
|
|
$aCount = 0; |
|
3416
|
|
|
foreach ($aArgs as $arg) { |
|
3417
|
|
|
if (is_bool($arg)) { $arg = (integer) $arg; } |
|
3418
|
|
|
// Is it a numeric value? |
|
3419
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
3420
|
|
|
$summerA += ($arg * $arg); |
|
3421
|
|
|
$summerB += $arg; |
|
3422
|
|
|
++$aCount; |
|
3423
|
|
|
} |
|
3424
|
|
|
} |
|
3425
|
|
|
|
|
3426
|
|
|
// Return |
|
3427
|
|
|
if ($aCount > 1) { |
|
3428
|
|
|
$summerA *= $aCount; |
|
3429
|
|
|
$summerB *= $summerB; |
|
3430
|
|
|
$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); |
|
3431
|
|
|
} |
|
3432
|
|
|
return $returnValue; |
|
3433
|
|
|
} // function VARFunc() |
|
3434
|
|
|
|
|
3435
|
|
|
|
|
3436
|
|
|
/** |
|
3437
|
|
|
* VARA |
|
3438
|
|
|
* |
|
3439
|
|
|
* Estimates variance based on a sample, including numbers, text, and logical values |
|
3440
|
|
|
* |
|
3441
|
|
|
* Excel Function: |
|
3442
|
|
|
* VARA(value1[,value2[, ...]]) |
|
3443
|
|
|
* |
|
3444
|
|
|
* @access public |
|
3445
|
|
|
* @category Statistical Functions |
|
3446
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3447
|
|
|
* @return float |
|
3448
|
|
|
*/ |
|
3449
|
|
View Code Duplication |
public static function VARA() { |
|
3450
|
|
|
// Return value |
|
3451
|
|
|
$returnValue = PHPExcel_Calculation_Functions::DIV0(); |
|
3452
|
|
|
|
|
3453
|
|
|
$summerA = $summerB = 0; |
|
3454
|
|
|
|
|
3455
|
|
|
// Loop through arguments |
|
3456
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
3457
|
|
|
$aCount = 0; |
|
3458
|
|
|
foreach ($aArgs as $k => $arg) { |
|
3459
|
|
|
if ((is_string($arg)) && |
|
3460
|
|
|
(PHPExcel_Calculation_Functions::isValue($k))) { |
|
3461
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3462
|
|
|
} elseif ((is_string($arg)) && |
|
|
|
|
|
|
3463
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
3464
|
|
|
} else { |
|
3465
|
|
|
// Is it a numeric value? |
|
3466
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
|
3467
|
|
|
if (is_bool($arg)) { |
|
3468
|
|
|
$arg = (integer) $arg; |
|
3469
|
|
|
} elseif (is_string($arg)) { |
|
3470
|
|
|
$arg = 0; |
|
3471
|
|
|
} |
|
3472
|
|
|
$summerA += ($arg * $arg); |
|
3473
|
|
|
$summerB += $arg; |
|
3474
|
|
|
++$aCount; |
|
3475
|
|
|
} |
|
3476
|
|
|
} |
|
3477
|
|
|
} |
|
3478
|
|
|
|
|
3479
|
|
|
// Return |
|
3480
|
|
|
if ($aCount > 1) { |
|
3481
|
|
|
$summerA *= $aCount; |
|
3482
|
|
|
$summerB *= $summerB; |
|
3483
|
|
|
$returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); |
|
3484
|
|
|
} |
|
3485
|
|
|
return $returnValue; |
|
3486
|
|
|
} // function VARA() |
|
3487
|
|
|
|
|
3488
|
|
|
|
|
3489
|
|
|
/** |
|
3490
|
|
|
* VARP |
|
3491
|
|
|
* |
|
3492
|
|
|
* Calculates variance based on the entire population |
|
3493
|
|
|
* |
|
3494
|
|
|
* Excel Function: |
|
3495
|
|
|
* VARP(value1[,value2[, ...]]) |
|
3496
|
|
|
* |
|
3497
|
|
|
* @access public |
|
3498
|
|
|
* @category Statistical Functions |
|
3499
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3500
|
|
|
* @return float |
|
3501
|
|
|
*/ |
|
3502
|
|
View Code Duplication |
public static function VARP() { |
|
3503
|
|
|
// Return value |
|
3504
|
|
|
$returnValue = PHPExcel_Calculation_Functions::DIV0(); |
|
3505
|
|
|
|
|
3506
|
|
|
$summerA = $summerB = 0; |
|
3507
|
|
|
|
|
3508
|
|
|
// Loop through arguments |
|
3509
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArray(func_get_args()); |
|
3510
|
|
|
$aCount = 0; |
|
3511
|
|
|
foreach ($aArgs as $arg) { |
|
3512
|
|
|
if (is_bool($arg)) { $arg = (integer) $arg; } |
|
3513
|
|
|
// Is it a numeric value? |
|
3514
|
|
|
if ((is_numeric($arg)) && (!is_string($arg))) { |
|
3515
|
|
|
$summerA += ($arg * $arg); |
|
3516
|
|
|
$summerB += $arg; |
|
3517
|
|
|
++$aCount; |
|
3518
|
|
|
} |
|
3519
|
|
|
} |
|
3520
|
|
|
|
|
3521
|
|
|
// Return |
|
3522
|
|
|
if ($aCount > 0) { |
|
3523
|
|
|
$summerA *= $aCount; |
|
3524
|
|
|
$summerB *= $summerB; |
|
3525
|
|
|
$returnValue = ($summerA - $summerB) / ($aCount * $aCount); |
|
3526
|
|
|
} |
|
3527
|
|
|
return $returnValue; |
|
3528
|
|
|
} // function VARP() |
|
3529
|
|
|
|
|
3530
|
|
|
|
|
3531
|
|
|
/** |
|
3532
|
|
|
* VARPA |
|
3533
|
|
|
* |
|
3534
|
|
|
* Calculates variance based on the entire population, including numbers, text, and logical values |
|
3535
|
|
|
* |
|
3536
|
|
|
* Excel Function: |
|
3537
|
|
|
* VARPA(value1[,value2[, ...]]) |
|
3538
|
|
|
* |
|
3539
|
|
|
* @access public |
|
3540
|
|
|
* @category Statistical Functions |
|
3541
|
|
|
* @param mixed $arg,... Data values |
|
|
|
|
|
|
3542
|
|
|
* @return float |
|
3543
|
|
|
*/ |
|
3544
|
|
View Code Duplication |
public static function VARPA() { |
|
3545
|
|
|
// Return value |
|
3546
|
|
|
$returnValue = PHPExcel_Calculation_Functions::DIV0(); |
|
3547
|
|
|
|
|
3548
|
|
|
$summerA = $summerB = 0; |
|
3549
|
|
|
|
|
3550
|
|
|
// Loop through arguments |
|
3551
|
|
|
$aArgs = PHPExcel_Calculation_Functions::flattenArrayIndexed(func_get_args()); |
|
3552
|
|
|
$aCount = 0; |
|
3553
|
|
|
foreach ($aArgs as $k => $arg) { |
|
3554
|
|
|
if ((is_string($arg)) && |
|
3555
|
|
|
(PHPExcel_Calculation_Functions::isValue($k))) { |
|
3556
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3557
|
|
|
} elseif ((is_string($arg)) && |
|
|
|
|
|
|
3558
|
|
|
(!PHPExcel_Calculation_Functions::isMatrixValue($k))) { |
|
3559
|
|
|
} else { |
|
3560
|
|
|
// Is it a numeric value? |
|
3561
|
|
|
if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { |
|
3562
|
|
|
if (is_bool($arg)) { |
|
3563
|
|
|
$arg = (integer) $arg; |
|
3564
|
|
|
} elseif (is_string($arg)) { |
|
3565
|
|
|
$arg = 0; |
|
3566
|
|
|
} |
|
3567
|
|
|
$summerA += ($arg * $arg); |
|
3568
|
|
|
$summerB += $arg; |
|
3569
|
|
|
++$aCount; |
|
3570
|
|
|
} |
|
3571
|
|
|
} |
|
3572
|
|
|
} |
|
3573
|
|
|
|
|
3574
|
|
|
// Return |
|
3575
|
|
|
if ($aCount > 0) { |
|
3576
|
|
|
$summerA *= $aCount; |
|
3577
|
|
|
$summerB *= $summerB; |
|
3578
|
|
|
$returnValue = ($summerA - $summerB) / ($aCount * $aCount); |
|
3579
|
|
|
} |
|
3580
|
|
|
return $returnValue; |
|
3581
|
|
|
} // function VARPA() |
|
3582
|
|
|
|
|
3583
|
|
|
|
|
3584
|
|
|
/** |
|
3585
|
|
|
* WEIBULL |
|
3586
|
|
|
* |
|
3587
|
|
|
* Returns the Weibull distribution. Use this distribution in reliability |
|
3588
|
|
|
* analysis, such as calculating a device's mean time to failure. |
|
3589
|
|
|
* |
|
3590
|
|
|
* @param float $value |
|
3591
|
|
|
* @param float $alpha Alpha Parameter |
|
3592
|
|
|
* @param float $beta Beta Parameter |
|
3593
|
|
|
* @param boolean $cumulative |
|
3594
|
|
|
* @return float |
|
3595
|
|
|
* |
|
3596
|
|
|
*/ |
|
3597
|
|
|
public static function WEIBULL($value, $alpha, $beta, $cumulative) { |
|
3598
|
|
|
$value = PHPExcel_Calculation_Functions::flattenSingleValue($value); |
|
3599
|
|
|
$alpha = PHPExcel_Calculation_Functions::flattenSingleValue($alpha); |
|
3600
|
|
|
$beta = PHPExcel_Calculation_Functions::flattenSingleValue($beta); |
|
3601
|
|
|
|
|
3602
|
|
|
if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) { |
|
3603
|
|
|
if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) { |
|
3604
|
|
|
return PHPExcel_Calculation_Functions::NaN(); |
|
3605
|
|
|
} |
|
3606
|
|
|
if ((is_numeric($cumulative)) || (is_bool($cumulative))) { |
|
3607
|
|
|
if ($cumulative) { |
|
3608
|
|
|
return 1 - exp(0 - pow($value / $beta,$alpha)); |
|
3609
|
|
|
} else { |
|
3610
|
|
|
return ($alpha / pow($beta,$alpha)) * pow($value,$alpha - 1) * exp(0 - pow($value / $beta,$alpha)); |
|
3611
|
|
|
} |
|
3612
|
|
|
} |
|
3613
|
|
|
} |
|
3614
|
|
|
return PHPExcel_Calculation_Functions::VALUE(); |
|
3615
|
|
|
} // function WEIBULL() |
|
3616
|
|
|
|
|
3617
|
|
|
|
|
3618
|
|
|
/** |
|
3619
|
|
|
* ZTEST |
|
3620
|
|
|
* |
|
3621
|
|
|
* Returns the Weibull distribution. Use this distribution in reliability |
|
3622
|
|
|
* analysis, such as calculating a device's mean time to failure. |
|
3623
|
|
|
* |
|
3624
|
|
|
* @param float $value |
|
|
|
|
|
|
3625
|
|
|
* @param float $alpha Alpha Parameter |
|
|
|
|
|
|
3626
|
|
|
* @param float $beta Beta Parameter |
|
|
|
|
|
|
3627
|
|
|
* @param boolean $cumulative |
|
|
|
|
|
|
3628
|
|
|
* @return float |
|
3629
|
|
|
* |
|
3630
|
|
|
*/ |
|
3631
|
|
|
public static function ZTEST($dataSet, $m0, $sigma=null) { |
|
3632
|
|
|
$dataSet = PHPExcel_Calculation_Functions::flattenArrayIndexed($dataSet); |
|
3633
|
|
|
$m0 = PHPExcel_Calculation_Functions::flattenSingleValue($m0); |
|
3634
|
|
|
$sigma = PHPExcel_Calculation_Functions::flattenSingleValue($sigma); |
|
3635
|
|
|
|
|
3636
|
|
|
if (is_null($sigma)) { |
|
3637
|
|
|
$sigma = self::STDEV($dataSet); |
|
3638
|
|
|
} |
|
3639
|
|
|
$n = count($dataSet); |
|
3640
|
|
|
|
|
3641
|
|
|
return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0)/($sigma/SQRT($n))); |
|
3642
|
|
|
} // function ZTEST() |
|
3643
|
|
|
|
|
3644
|
|
|
} // class PHPExcel_Calculation_Statistical |
|
3645
|
|
|
|
This check marks PHPDoc comments that could not be parsed by our parser. To see which comment annotations we can parse, please refer to our documentation on supported doc-types.