| Conditions | 2 |
| Total Lines | 56 |
| Code Lines | 18 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | """Create a basic scenario from the internal data structure. |
||
| 14 | def scenario_mobility(year, table): |
||
| 15 | """ |
||
| 16 | |||
| 17 | Parameters |
||
| 18 | ---------- |
||
| 19 | year |
||
| 20 | table |
||
| 21 | |||
| 22 | Returns |
||
| 23 | ------- |
||
| 24 | |||
| 25 | Examples |
||
| 26 | -------- |
||
| 27 | >>> my_table = scenario_mobility(2015, {}) |
||
| 28 | >>> my_table["mobility_mileage"]["DE"].sum() |
||
| 29 | diesel 3.769021e+11 |
||
| 30 | petrol 3.272263e+11 |
||
| 31 | other 1.334462e+10 |
||
| 32 | dtype: float64 |
||
| 33 | >>> my_table["mobility_spec_demand"]["DE"].loc["passenger car"] |
||
| 34 | diesel 0.067 |
||
| 35 | petrol 0.079 |
||
| 36 | other 0.000 |
||
| 37 | Name: passenger car, dtype: float64 |
||
| 38 | >>> my_table["mobility_energy_content"]["DE"]["diesel"] |
||
| 39 | energy_per_liter [MJ/l] 34.7 |
||
| 40 | Name: diesel, dtype: float64 |
||
| 41 | """ |
||
| 42 | |||
| 43 | table["mobility_mileage"] = mobility.get_mileage_by_type_and_fuel(year) |
||
| 44 | |||
| 45 | # fetch table of specific demand by fuel and vehicle type (from 2011) |
||
| 46 | table["mobility_spec_demand"] = ( |
||
| 47 | pd.DataFrame( |
||
| 48 | cfg.get_dict_list("fuel consumption"), |
||
| 49 | index=["diesel", "petrol", "other"], |
||
| 50 | ) |
||
| 51 | .astype(float) |
||
| 52 | .transpose() |
||
| 53 | ) |
||
| 54 | |||
| 55 | # fetch the energy content of the different fuel types |
||
| 56 | table["mobility_energy_content"] = pd.DataFrame( |
||
| 57 | cfg.get_dict("energy_per_liter"), index=["energy_per_liter [MJ/l]"] |
||
| 58 | )[["diesel", "petrol", "other"]] |
||
| 59 | |||
| 60 | for key in [ |
||
| 61 | "mobility_mileage", |
||
| 62 | "mobility_spec_demand", |
||
| 63 | "mobility_energy_content", |
||
| 64 | ]: |
||
| 65 | # Add "DE" as region level to be consistent to other tables |
||
| 66 | table[key].columns = pd.MultiIndex.from_product( |
||
| 67 | [["DE"], table[key].columns] |
||
| 68 | ) |
||
| 69 | return table |
||
| 70 |