|
1
|
|
|
"""Create a basic scenario from the internal data structure. |
|
2
|
|
|
|
|
3
|
|
|
SPDX-FileCopyrightText: 2016-2019 Uwe Krien <[email protected]> |
|
4
|
|
|
|
|
5
|
|
|
SPDX-License-Identifier: MIT |
|
6
|
|
|
""" |
|
7
|
|
|
import calendar |
|
8
|
|
|
import configparser |
|
9
|
|
|
|
|
10
|
|
|
import pandas as pd |
|
11
|
|
|
from reegis import config as cfg |
|
12
|
|
|
from reegis import mobility |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
def scenario_mobility(year, table): |
|
16
|
|
|
""" |
|
17
|
|
|
|
|
18
|
|
|
Parameters |
|
19
|
|
|
---------- |
|
20
|
|
|
year |
|
21
|
|
|
table |
|
22
|
|
|
|
|
23
|
|
|
Returns |
|
24
|
|
|
------- |
|
25
|
|
|
|
|
26
|
|
|
Examples |
|
27
|
|
|
-------- |
|
28
|
|
|
>>> my_table = scenario_mobility(2015, {}) |
|
29
|
|
|
>>> my_table["mobility_mileage"]["DE"].sum() |
|
30
|
|
|
diesel 3.769021e+11 |
|
31
|
|
|
petrol 3.272263e+11 |
|
32
|
|
|
other 1.334462e+10 |
|
33
|
|
|
dtype: float64 |
|
34
|
|
|
>>> my_table["mobility_spec_demand"]["DE"].loc["passenger car"] |
|
35
|
|
|
diesel 0.067 |
|
36
|
|
|
petrol 0.079 |
|
37
|
|
|
other 0.000 |
|
38
|
|
|
Name: passenger car, dtype: float64 |
|
39
|
|
|
>>> my_table["mobility_energy_content"]["DE"]["diesel"] |
|
40
|
|
|
energy_per_liter [MJ/l] 34.7 |
|
41
|
|
|
Name: diesel, dtype: float64 |
|
42
|
|
|
""" |
|
43
|
|
|
if calendar.isleap(year): |
|
44
|
|
|
hours_of_the_year = 8784 |
|
45
|
|
|
else: |
|
46
|
|
|
hours_of_the_year = 8760 |
|
47
|
|
|
|
|
48
|
|
|
try: |
|
49
|
|
|
other = cfg.get("creator", "mobility_other") |
|
50
|
|
|
except configparser.NoSectionError: |
|
51
|
|
|
other = cfg.get("general", "mobility_other") |
|
52
|
|
|
|
|
53
|
|
|
mobility_mileage = mobility.get_mileage_by_type_and_fuel(year) |
|
54
|
|
|
|
|
55
|
|
|
# fetch table of specific demand by fuel and vehicle type (from 2011) |
|
56
|
|
|
mobility_spec_demand = ( |
|
57
|
|
|
pd.DataFrame( |
|
58
|
|
|
cfg.get_dict_list("fuel consumption"), |
|
59
|
|
|
index=["diesel", "petrol", "other"], |
|
60
|
|
|
) |
|
61
|
|
|
.astype(float) |
|
62
|
|
|
.transpose() |
|
63
|
|
|
) |
|
64
|
|
|
|
|
65
|
|
|
mobility_spec_demand["other"] = mobility_spec_demand[other] |
|
66
|
|
|
fuel_usage = mobility_spec_demand.mul(mobility_mileage).sum() |
|
67
|
|
|
|
|
68
|
|
|
# fetch the energy content of the different fuel types |
|
69
|
|
|
mobility_energy_content = pd.DataFrame( |
|
70
|
|
|
cfg.get_dict("energy_per_liter"), index=["energy_per_liter [MJ/l]"] |
|
71
|
|
|
)[["diesel", "petrol", "other"]] |
|
72
|
|
|
|
|
73
|
|
|
mobility_energy_content["other"] = mobility_energy_content[other] |
|
74
|
|
|
|
|
75
|
|
|
# Convert to MW????? BITTE GENAU!!! |
|
76
|
|
|
energy_usage = fuel_usage.mul(mobility_energy_content).div(3600) |
|
77
|
|
|
|
|
78
|
|
|
s = energy_usage.div(hours_of_the_year).transpose()[ |
|
79
|
|
|
"energy_per_liter [MJ/l]" |
|
80
|
|
|
] |
|
81
|
|
|
table["mobility_series"] = pd.DataFrame( |
|
82
|
|
|
index=range(hours_of_the_year), columns=energy_usage.columns |
|
83
|
|
|
).fillna(1) |
|
84
|
|
|
|
|
85
|
|
|
table["mobility_series"] = table["mobility_series"].mul(s, axis=1) |
|
86
|
|
|
|
|
87
|
|
|
table["mobility_series"][other] += table["mobility_series"]["other"] |
|
88
|
|
|
table["mobility_series"].drop("other", axis=1, inplace=True) |
|
89
|
|
|
|
|
90
|
|
|
table["mobility_series"] = ( |
|
91
|
|
|
table["mobility_series"].astype(float).round().astype(int) |
|
92
|
|
|
) |
|
93
|
|
|
|
|
94
|
|
|
table["mobility"] = pd.DataFrame( |
|
95
|
|
|
index=["diesel", "petrol", "electricity"], |
|
96
|
|
|
columns=["efficiency", "source", "source_region"], |
|
97
|
|
|
) |
|
98
|
|
|
|
|
99
|
|
|
for col in table["mobility"].columns: |
|
100
|
|
|
for idx in table["mobility"].index: |
|
101
|
|
|
if col != "source_region": |
|
102
|
|
|
table["mobility"].loc[idx, col] = cfg.get(col, idx) |
|
103
|
|
|
else: |
|
104
|
|
|
table["mobility"].loc[idx, col] = "DE" |
|
105
|
|
|
|
|
106
|
|
|
# Add "DE" as region level to be consistent to other tables |
|
107
|
|
|
table["mobility"].index = pd.MultiIndex.from_product( |
|
108
|
|
|
[["DE"], table["mobility"].index] |
|
109
|
|
|
) |
|
110
|
|
|
table["mobility_series"].columns = pd.MultiIndex.from_product( |
|
111
|
|
|
[["DE"], table["mobility_series"].columns] |
|
112
|
|
|
) |
|
113
|
|
|
return table |
|
114
|
|
|
|