1
|
|
|
"""Create a basic scenario from the internal data structure. |
2
|
|
|
|
3
|
|
|
SPDX-FileCopyrightText: 2016-2019 Uwe Krien <[email protected]> |
4
|
|
|
|
5
|
|
|
SPDX-License-Identifier: MIT |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
import calendar |
10
|
|
|
import logging |
11
|
|
|
import os |
12
|
|
|
|
13
|
|
|
import pandas as pd |
14
|
|
|
from reegis import demand_elec |
15
|
|
|
from reegis import demand_heat |
16
|
|
|
|
17
|
|
|
from scenario_builder import config as cfg |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
def get_heat_profiles_deflex( |
21
|
|
|
deflex_geo, year, time_index=None, weather_year=None, keep_unit=False |
22
|
|
|
): |
23
|
|
|
""" |
24
|
|
|
|
25
|
|
|
Parameters |
26
|
|
|
---------- |
27
|
|
|
year |
28
|
|
|
deflex_geo |
29
|
|
|
time_index |
30
|
|
|
weather_year |
31
|
|
|
keep_unit |
32
|
|
|
|
33
|
|
|
Returns |
34
|
|
|
------- |
35
|
|
|
|
36
|
|
|
""" |
37
|
|
|
# separate_regions=keep all demand connected to the region |
38
|
|
|
separate_regions = cfg.get_list("demand_heat", "separate_heat_regions") |
39
|
|
|
# Add lower and upper cases to be not case sensitive |
40
|
|
|
separate_regions = ([x.upper() for x in separate_regions] + |
41
|
|
|
[x.lower() for x in separate_regions]) |
42
|
|
|
|
43
|
|
|
# add second fuel to first |
44
|
|
|
combine_fuels = cfg.get_dict("combine_heat_fuels") |
45
|
|
|
|
46
|
|
|
# fuels to be dissolved per region |
47
|
|
|
region_fuels = cfg.get_list("demand_heat", "local_fuels") |
48
|
|
|
|
49
|
|
|
fn = os.path.join( |
50
|
|
|
cfg.get("paths", "demand"), |
51
|
|
|
"heat_profiles_{year}_{map}".format(year=year, map=deflex_geo.name), |
52
|
|
|
) |
53
|
|
|
|
54
|
|
|
demand_region = ( |
55
|
|
|
demand_heat.get_heat_profiles_by_region( |
56
|
|
|
deflex_geo, year, to_csv=fn, weather_year=weather_year |
57
|
|
|
) |
58
|
|
|
.groupby(level=[0, 1], axis=1) |
59
|
|
|
.sum() |
60
|
|
|
) |
61
|
|
|
|
62
|
|
|
# Decentralised demand is combined to a nation-wide demand if not part |
63
|
|
|
# of region_fuels. |
64
|
|
|
regions = list( |
65
|
|
|
set(demand_region.columns.get_level_values(0).unique()) |
66
|
|
|
- set(separate_regions) |
67
|
|
|
) |
68
|
|
|
|
69
|
|
|
# If region_fuels is 'all' fetch all fuels to be local. |
70
|
|
|
if "all" in region_fuels: |
71
|
|
|
region_fuels = demand_region.columns.get_level_values(1).unique() |
72
|
|
|
|
73
|
|
|
for fuel in demand_region.columns.get_level_values(1).unique(): |
74
|
|
|
demand_region["DE_demand", fuel] = 0 |
75
|
|
|
|
76
|
|
|
for region in regions: |
77
|
|
|
for f1, f2 in combine_fuels.items(): |
78
|
|
|
demand_region[region, f1] += demand_region[region, f2] |
79
|
|
|
demand_region.drop((region, f2), axis=1, inplace=True) |
80
|
|
|
cols = list(set(demand_region[region].columns) - set(region_fuels)) |
81
|
|
|
for col in cols: |
82
|
|
|
demand_region["DE_demand", col] += demand_region[region, col] |
83
|
|
|
demand_region.drop((region, col), axis=1, inplace=True) |
84
|
|
|
|
85
|
|
|
if time_index is not None: |
86
|
|
|
demand_region.index = time_index |
87
|
|
|
|
88
|
|
|
if not keep_unit: |
89
|
|
|
msg = ( |
90
|
|
|
"The unit of the source is 'TJ'. " |
91
|
|
|
"Will be divided by {0} to get 'MWh'." |
92
|
|
|
) |
93
|
|
|
converter = 0.0036 |
94
|
|
|
demand_region = demand_region.div(converter) |
95
|
|
|
logging.debug(msg.format(converter)) |
96
|
|
|
|
97
|
|
|
demand_region.sort_index(1, inplace=True) |
98
|
|
|
|
99
|
|
|
for c in demand_region.columns: |
100
|
|
|
if demand_region[c].sum() == 0: |
101
|
|
|
demand_region.drop(c, axis=1, inplace=True) |
102
|
|
|
|
103
|
|
|
return demand_region |
104
|
|
|
|
105
|
|
|
|
106
|
|
|
def scenario_demand(regions, year, name, weather_year=None): |
107
|
|
|
""" |
108
|
|
|
|
109
|
|
|
Parameters |
110
|
|
|
---------- |
111
|
|
|
regions |
112
|
|
|
year |
113
|
|
|
name |
114
|
|
|
weather_year |
115
|
|
|
|
116
|
|
|
Returns |
117
|
|
|
------- |
118
|
|
|
|
119
|
|
|
Examples |
120
|
|
|
-------- |
121
|
|
|
>>> regions=geometries.deflex_regions(rmap="de21") # doctest: +SKIP |
122
|
|
|
>>> my_demand=scenario_demand(regions, 2014, "de21") # doctest: +SKIP |
123
|
|
|
>>> int(my_demand["DE01", "district heating"].sum()) # doctest: +SKIP |
124
|
|
|
18639262 |
125
|
|
|
>>> int(my_demand["DE05", "electrical_load"].sum()) # doctest: +SKIP |
126
|
|
|
10069304 |
127
|
|
|
|
128
|
|
|
""" |
129
|
|
|
demand_series = scenario_elec_demand( |
130
|
|
|
pd.DataFrame(), regions, year, name, weather_year=weather_year |
131
|
|
|
) |
132
|
|
|
if cfg.get("basic", "heat"): |
133
|
|
|
demand_series = scenario_heat_demand( |
134
|
|
|
demand_series, regions, year, weather_year=weather_year |
135
|
|
|
) |
136
|
|
|
return demand_series |
137
|
|
|
|
138
|
|
|
|
139
|
|
|
def scenario_heat_demand(table, regions, year, weather_year=None): |
140
|
|
|
""" |
141
|
|
|
|
142
|
|
|
Parameters |
143
|
|
|
---------- |
144
|
|
|
table |
145
|
|
|
regions |
146
|
|
|
year |
147
|
|
|
weather_year |
148
|
|
|
|
149
|
|
|
Returns |
150
|
|
|
------- |
151
|
|
|
|
152
|
|
|
""" |
153
|
|
|
idx = table.index # Use the index of the existing time series |
154
|
|
|
table = pd.concat( |
155
|
|
|
[ |
156
|
|
|
table, |
157
|
|
|
get_heat_profiles_deflex( |
158
|
|
|
regions, year, idx, weather_year=weather_year |
159
|
|
|
), |
160
|
|
|
], |
161
|
|
|
axis=1, |
162
|
|
|
) |
163
|
|
|
return table.sort_index(1) |
164
|
|
|
|
165
|
|
|
|
166
|
|
|
def scenario_elec_demand(table, regions, year, name, weather_year=None): |
167
|
|
|
""" |
168
|
|
|
|
169
|
|
|
Parameters |
170
|
|
|
---------- |
171
|
|
|
table |
172
|
|
|
regions |
173
|
|
|
year |
174
|
|
|
name |
175
|
|
|
weather_year |
176
|
|
|
|
177
|
|
|
Returns |
178
|
|
|
------- |
179
|
|
|
|
180
|
|
|
""" |
181
|
|
|
if weather_year is None: |
182
|
|
|
demand_year = year |
183
|
|
|
else: |
184
|
|
|
demand_year = weather_year |
185
|
|
|
|
186
|
|
|
df = demand_elec.get_entsoe_profile_by_region( |
187
|
|
|
regions, demand_year, name, annual_demand="bmwi" |
188
|
|
|
) |
189
|
|
|
df = pd.concat([df], axis=1, keys=["electrical_load"]).swaplevel(0, 1, 1) |
190
|
|
|
df = df.reset_index(drop=True) |
191
|
|
|
if not calendar.isleap(year) and len(df) > 8760: |
192
|
|
|
df = df.iloc[:8760] |
193
|
|
|
return pd.concat([table, df], axis=1).sort_index(1) |
194
|
|
|
|
195
|
|
|
|
196
|
|
|
if __name__ == "__main__": |
197
|
|
|
pass |
198
|
|
|
|