1
|
|
|
"""Create a basic scenario from the internal data structure. |
2
|
|
|
|
3
|
|
|
SPDX-FileCopyrightText: 2016-2021 Uwe Krien <[email protected]> |
4
|
|
|
|
5
|
|
|
SPDX-License-Identifier: MIT |
6
|
|
|
""" |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
import calendar |
10
|
|
|
import logging |
11
|
|
|
import os |
12
|
|
|
|
13
|
|
|
import pandas as pd |
14
|
|
|
from reegis import config as cfg |
15
|
|
|
from reegis import demand_elec |
16
|
|
|
from reegis import demand_heat |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
def get_heat_profiles_deflex( |
20
|
|
|
deflex_geo, year, time_index=None, weather_year=None, keep_unit=False |
21
|
|
|
): |
22
|
|
|
""" |
23
|
|
|
|
24
|
|
|
Parameters |
25
|
|
|
---------- |
26
|
|
|
year |
27
|
|
|
deflex_geo |
28
|
|
|
time_index |
29
|
|
|
weather_year |
30
|
|
|
keep_unit |
31
|
|
|
|
32
|
|
|
Returns |
33
|
|
|
------- |
34
|
|
|
|
35
|
|
|
""" |
36
|
|
|
# separate_regions=keep all demand connected to the region |
37
|
|
|
separate_regions = cfg.get_list("creator", "separate_heat_regions") |
38
|
|
|
# Add lower and upper cases to be not case sensitive |
39
|
|
|
separate_regions = [x.upper() for x in separate_regions] + [ |
40
|
|
|
x.lower() for x in separate_regions |
41
|
|
|
] |
42
|
|
|
|
43
|
|
|
# add second fuel to first |
44
|
|
|
# combine_fuels = cfg.get_dict("combine_heat_fuels") |
45
|
|
|
combine_fuels = {"natural gas": "gas"} |
46
|
|
|
|
47
|
|
|
# fuels to be dissolved per region |
48
|
|
|
region_fuels = cfg.get_list("creator", "local_fuels") |
49
|
|
|
|
50
|
|
|
fn = os.path.join( |
51
|
|
|
cfg.get("paths", "demand"), |
52
|
|
|
"heat_profiles_{year}_{map}".format(year=year, map=deflex_geo.name), |
53
|
|
|
) |
54
|
|
|
|
55
|
|
|
demand_region = ( |
56
|
|
|
demand_heat.get_heat_profiles_by_region( |
57
|
|
|
deflex_geo, year, to_csv=fn, weather_year=weather_year |
58
|
|
|
) |
59
|
|
|
.groupby(level=[0, 1], axis=1) |
60
|
|
|
.sum() |
61
|
|
|
) |
62
|
|
|
|
63
|
|
|
# Decentralised demand is combined to a nation-wide demand if not part |
64
|
|
|
# of region_fuels. |
65
|
|
|
regions = list( |
66
|
|
|
set(demand_region.columns.get_level_values(0).unique()) |
67
|
|
|
- set(separate_regions) |
68
|
|
|
) |
69
|
|
|
|
70
|
|
|
# If region_fuels is 'all' fetch all fuels to be local. |
71
|
|
|
if "all" in region_fuels: |
72
|
|
|
region_fuels = demand_region.columns.get_level_values(1).unique() |
73
|
|
|
|
74
|
|
|
for fuel in demand_region.columns.get_level_values(1).unique(): |
75
|
|
|
demand_region["DE", fuel] = 0 |
76
|
|
|
|
77
|
|
|
for region in regions: |
78
|
|
|
for f1, f2 in combine_fuels.items(): |
79
|
|
|
demand_region[region, f1] += demand_region[region, f2] |
80
|
|
|
demand_region.drop((region, f2), axis=1, inplace=True) |
81
|
|
|
cols = list(set(demand_region[region].columns) - set(region_fuels)) |
82
|
|
|
for col in cols: |
83
|
|
|
demand_region["DE", col] += demand_region[region, col] |
84
|
|
|
demand_region.drop((region, col), axis=1, inplace=True) |
85
|
|
|
|
86
|
|
|
if time_index is not None: |
87
|
|
|
demand_region.index = time_index |
88
|
|
|
|
89
|
|
|
if not keep_unit: |
90
|
|
|
msg = ( |
91
|
|
|
"The unit of the source is 'TJ'. " |
92
|
|
|
"Will be divided by {0} to get 'MWh'." |
93
|
|
|
) |
94
|
|
|
converter = 0.0036 |
95
|
|
|
demand_region = demand_region.div(converter) |
96
|
|
|
logging.debug(msg.format(converter)) |
97
|
|
|
|
98
|
|
|
demand_region.sort_index(1, inplace=True) |
99
|
|
|
|
100
|
|
|
for c in demand_region.columns: |
101
|
|
|
if demand_region[c].sum() == 0: |
102
|
|
|
demand_region.drop(c, axis=1, inplace=True) |
103
|
|
|
|
104
|
|
|
return demand_region |
105
|
|
|
|
106
|
|
|
|
107
|
|
|
def scenario_demand(regions, year, name, opsd_version=None, weather_year=None): |
108
|
|
|
""" |
109
|
|
|
|
110
|
|
|
Parameters |
111
|
|
|
---------- |
112
|
|
|
regions |
113
|
|
|
year |
114
|
|
|
name |
115
|
|
|
opsd_version |
116
|
|
|
weather_year |
117
|
|
|
|
118
|
|
|
Returns |
119
|
|
|
------- |
120
|
|
|
|
121
|
|
|
Examples |
122
|
|
|
-------- |
123
|
|
|
>>> from reegis import geometries # doctest: +SKIP |
124
|
|
|
>>> fs=geometries.get_federal_states_polygon() # doctest: +SKIP |
125
|
|
|
>>> my_demand=scenario_demand(regions, 2014, "de21") # doctest: +SKIP |
126
|
|
|
>>> int(my_demand["DE01", "district heating"].sum()) # doctest: +SKIP |
127
|
|
|
18639262 |
128
|
|
|
>>> int(my_demand["DE05", "all"].sum()) # doctest: +SKIP |
129
|
|
|
10069304 |
130
|
|
|
|
131
|
|
|
""" |
132
|
|
|
demand_series = { |
133
|
|
|
"electricity demand series": scenario_elec_demand( |
134
|
|
|
pd.DataFrame(), |
135
|
|
|
regions, |
136
|
|
|
year, |
137
|
|
|
name, |
138
|
|
|
weather_year=weather_year, |
139
|
|
|
version=opsd_version, |
140
|
|
|
) |
141
|
|
|
} |
142
|
|
|
if cfg.get("creator", "heat"): |
143
|
|
|
demand_series["heat demand series"] = scenario_heat_demand( |
144
|
|
|
regions, year, weather_year=weather_year |
145
|
|
|
).reset_index(drop=True) |
146
|
|
|
return demand_series |
147
|
|
|
|
148
|
|
|
|
149
|
|
|
def scenario_heat_demand(regions, year, weather_year=None): |
150
|
|
|
""" |
151
|
|
|
|
152
|
|
|
Parameters |
153
|
|
|
---------- |
154
|
|
|
regions |
155
|
|
|
year |
156
|
|
|
weather_year |
157
|
|
|
|
158
|
|
|
Returns |
159
|
|
|
------- |
160
|
|
|
|
161
|
|
|
""" |
162
|
|
|
return get_heat_profiles_deflex( |
163
|
|
|
regions, year, weather_year=weather_year |
164
|
|
|
).sort_index(1) |
165
|
|
|
|
166
|
|
|
|
167
|
|
|
def scenario_elec_demand( |
168
|
|
|
table, regions, year, name, version=None, weather_year=None |
169
|
|
|
): |
170
|
|
|
""" |
171
|
|
|
|
172
|
|
|
Parameters |
173
|
|
|
---------- |
174
|
|
|
table |
175
|
|
|
regions |
176
|
|
|
year |
177
|
|
|
name |
178
|
|
|
weather_year |
179
|
|
|
|
180
|
|
|
Returns |
181
|
|
|
------- |
182
|
|
|
|
183
|
|
|
""" |
184
|
|
|
if weather_year is None: |
185
|
|
|
demand_year = year |
186
|
|
|
else: |
187
|
|
|
demand_year = weather_year |
188
|
|
|
|
189
|
|
|
df = demand_elec.get_entsoe_profile_by_region( |
190
|
|
|
regions, demand_year, name, annual_demand="bmwi", version=version |
191
|
|
|
) |
192
|
|
|
df = pd.concat([df], axis=1, keys=["all"]).swaplevel(0, 1, 1) |
193
|
|
|
df = df.reset_index(drop=True) |
194
|
|
|
if not calendar.isleap(year) and len(df) > 8760: |
195
|
|
|
df = df.iloc[:8760] |
196
|
|
|
return pd.concat([table, df], axis=1).sort_index(1) |
197
|
|
|
|
198
|
|
|
|
199
|
|
|
if __name__ == "__main__": |
200
|
|
|
pass |
201
|
|
|
|