1
|
|
|
from disaggregator import data, spatial |
2
|
|
|
from reegis import geometries as geo, config as cfg |
3
|
|
|
import pandas as pd |
4
|
|
|
import os |
5
|
|
|
|
6
|
|
|
def get_household_heatload_by_NUTS3_scenario( |
7
|
|
|
m_type, weight_by_income=True |
8
|
|
|
): |
9
|
|
|
|
10
|
|
|
""" |
11
|
|
|
Parameters |
12
|
|
|
---------- |
13
|
|
|
region_pick : list |
14
|
|
|
Selected regions in NUTS-3 format |
15
|
|
|
m_type: int |
16
|
|
|
1 = Status Quo, 2 = Conventional modernisation, 3 = Future modernisation |
17
|
|
|
weight_by_income : bool |
18
|
|
|
Choose whether heat demand shall be weighted by household income |
19
|
|
|
|
20
|
|
|
Returns: pd.DataFrame |
21
|
|
|
Dataframe containing yearly household load for selection |
22
|
|
|
------- |
23
|
|
|
""" |
24
|
|
|
# Abweichungen in den Jahresmengen bei bottom-up |
25
|
|
|
qdem_temp= spatial.disagg_households_heatload_DB_scenario( |
26
|
|
|
m_type, weight_by_income=weight_by_income |
27
|
|
|
) |
28
|
|
|
|
29
|
|
|
qdem = qdem_temp.sum(axis=1) |
30
|
|
|
|
31
|
|
|
return qdem |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def get_CTS_heatload_scenario(region_pick, efficiency_gain=0.5): |
35
|
|
|
""" |
36
|
|
|
Parameters |
37
|
|
|
---------- |
38
|
|
|
region_pick : list |
39
|
|
|
Selected regions in NUTS-3 format |
40
|
|
|
efficiency_gain: float |
41
|
|
|
Reduction factor for heatload due to increased CTS building efficiency |
42
|
|
|
(0.99 equals 99% reduction, 0% equals no reduction) |
43
|
|
|
|
44
|
|
|
Returns: pd.DataFrame |
45
|
|
|
Dataframe containing yearly heat CTS heat consumption by NUTS-3 region |
46
|
|
|
------- |
47
|
|
|
""" |
48
|
|
|
|
49
|
|
|
# Define year of interest |
50
|
|
|
data.cfg["base_year"] = 2015 |
51
|
|
|
# Get gas consumption of defined year and divide by gas-share in end energy use for heating |
52
|
|
|
heatload_hh = data.gas_consumption_HH().sum() / 0.47 |
53
|
|
|
# Multiply with CTS heatload share, Assumption: Share is constant because heatload mainly depends on wheather |
54
|
|
|
heatload_CTS_2015 = 0.37 * heatload_hh # Verhältnis aus dem Jahr 2017 |
55
|
|
|
# Assumption: Heatload is reduced equally for all regions |
56
|
|
|
heatload_CTS = heatload_CTS_2015 * (1-efficiency_gain) |
57
|
|
|
# Calculate CTS gas consumption by economic branch and NUTS3-region |
58
|
|
|
gc_CTS = spatial.disagg_CTS_industry( |
59
|
|
|
sector="CTS", source="gas", use_nuts3code=True |
60
|
|
|
) |
61
|
|
|
# Sum up the gas consumption per NUTS3-region |
62
|
|
|
sum_gas_CTS = gc_CTS.sum().sum() |
63
|
|
|
# Calculate scaling factor |
64
|
|
|
inc_fac = heatload_CTS / sum_gas_CTS |
65
|
|
|
# Calculate CTS heatload: Assumption: Heatload correlates strongly with gas consumption |
66
|
|
|
gc_CTS_new = gc_CTS.multiply(inc_fac) |
67
|
|
|
# Select heatload of NUTS3-regions of interest |
68
|
|
|
gc_CTS_combined = gc_CTS_new.sum() |
69
|
|
|
df = gc_CTS_combined[region_pick] |
70
|
|
|
|
71
|
|
|
return df |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def get_industry_heating_hotwater_scenario(region_pick, efficiency_gain=0.5): |
75
|
|
|
""" |
76
|
|
|
Parameters |
77
|
|
|
---------- |
78
|
|
|
region_pick : list |
79
|
|
|
Selected regions in NUTS-3 format |
80
|
|
|
efficiency_gain: float |
81
|
|
|
Reduction factor for heatload due to increased CTS building efficiency |
82
|
|
|
(0.99 equals 99% reduction, 0% equals no reduction) |
83
|
|
|
|
84
|
|
|
Returns: pd.DataFrame |
85
|
|
|
Dataframe containing yearly industry heat consumption by NUTS-3 region |
86
|
|
|
------- |
87
|
|
|
""" |
88
|
|
|
|
89
|
|
|
# Define year of interest |
90
|
|
|
data.cfg["base_year"] = 2015 |
91
|
|
|
# Get gas consumption of defined year and divide by gas-share in end energy use for heating |
92
|
|
|
heatload_hh = data.gas_consumption_HH().sum() / 0.47 |
93
|
|
|
# Multiply with industries heatload share, Assumption: Share is constant because heatload mainly depends on wheather |
94
|
|
|
heatload_industry_2015 = 0.089 * heatload_hh # Verhältnis aus dem Jahr 2017 |
95
|
|
|
heatload_industry = heatload_industry_2015 * (1-efficiency_gain) |
96
|
|
|
# Calculate industry gas consumption by economic branch and NUTS3-region |
97
|
|
|
gc_industry = spatial.disagg_CTS_industry( |
98
|
|
|
sector="industry", source="gas", use_nuts3code=True |
99
|
|
|
) |
100
|
|
|
# Sum up the gas consumption per NUTS3-region |
101
|
|
|
sum_gas_industry = gc_industry.sum().sum() |
102
|
|
|
# Calculate scaling factor |
103
|
|
|
inc_fac = heatload_industry / sum_gas_industry |
104
|
|
|
# Calculate indsutries heatload: Assumption: Heatload correlates strongly with gas consumption |
105
|
|
|
gc_industry_new = gc_industry.multiply(inc_fac) |
106
|
|
|
gc_industry_combined = gc_industry_new.sum() |
107
|
|
|
# Select heatload of NUTS3-regions of interest |
108
|
|
|
df = gc_industry_combined[region_pick] |
109
|
|
|
|
110
|
|
|
return df |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def get_industry_CTS_process_heat_scenario(region_pick, efficiency_gain=0.2): |
114
|
|
|
""" |
115
|
|
|
Parameters |
116
|
|
|
---------- |
117
|
|
|
region_pick : list |
118
|
|
|
Selected regions in NUTS-3 format |
119
|
|
|
efficiency_gain: float |
120
|
|
|
Reduction factor for heatload due to increased CTS building efficiency |
121
|
|
|
(0.99 equals 99% reduction, 0% equals no reduction) |
122
|
|
|
|
123
|
|
|
Returns: pd.DataFrame |
124
|
|
|
Dataframe containing yearly industry heat consumption by NUTS-3 region |
125
|
|
|
------- |
126
|
|
|
""" |
127
|
|
|
|
128
|
|
|
# Select year |
129
|
|
|
data.cfg["base_year"] = 2015 |
130
|
|
|
# Get industrial gas consumption by NUTS3 |
131
|
|
|
gc_industry = spatial.disagg_CTS_industry( |
132
|
|
|
sector="industry", source="gas", use_nuts3code=True |
133
|
|
|
) |
134
|
|
|
sum_gas_industry = gc_industry.sum().sum() |
135
|
|
|
# Calculate factor of process heat consumption to gas consumption. |
136
|
|
|
# Assumption: Process heat demand correlates with gas demand |
137
|
|
|
process_heat_2015 = (515 + 42) * 1e6 |
138
|
|
|
process_heat = process_heat_2015 * (1-efficiency_gain) |
139
|
|
|
inc_fac = process_heat / sum_gas_industry |
140
|
|
|
# Calculate process heat with factor |
141
|
|
|
ph_industry = gc_industry.multiply(inc_fac) |
142
|
|
|
ph_industry_combined = ph_industry.sum() |
143
|
|
|
# Select process heat consumptions for NUTS3-Regions of interest |
144
|
|
|
df = ph_industry_combined[region_pick] |
145
|
|
|
|
146
|
|
|
return df |
147
|
|
|
|
148
|
|
|
|
149
|
|
|
def get_combined_heatload_for_region_scenario(name, region_pick=None, m_type=2 , eff_gain_CTS=0, |
150
|
|
|
eff_gain_ph=0, eff_gain_ihw=0): |
151
|
|
|
""" |
152
|
|
|
Parameters |
153
|
|
|
---------- |
154
|
|
|
year : int |
155
|
|
|
Year of interest, so far only 2015 and 2016 are valid inputs |
156
|
|
|
name: string |
157
|
|
|
Name of scenario |
158
|
|
|
region_pick : list |
159
|
|
|
Selected regions in NUTS-3 format, if None function will return demand for all regions |
160
|
|
|
|
161
|
|
|
Returns: pd.DataFrame |
162
|
|
|
Dataframe containing aggregated yearly low temperature heat demand (households, CTS, industry) as well |
163
|
|
|
as high temperature heat demand (ProcessHeat) for selection |
164
|
|
|
------- |
165
|
|
|
""" |
166
|
|
|
if region_pick is None: |
167
|
|
|
nuts3_index = data.database_shapes().index # Select all NUTS3 Regions |
168
|
|
|
|
169
|
|
|
fn_pattern = "heat_consumption_by_nuts3_{name}.csv".format(name=name) |
170
|
|
|
fn = os.path.join(cfg.get("paths", "disaggregator"), fn_pattern) |
171
|
|
|
|
172
|
|
|
if not os.path.isfile(fn): |
173
|
|
|
tmp0 = get_household_heatload_by_NUTS3_scenario( |
174
|
|
|
m_type, weight_by_income=True |
175
|
|
|
) # Nur bis 2016 |
176
|
|
|
tmp1 = get_CTS_heatload_scenario(nuts3_index, eff_gain_CTS) # 2015 - 2035 (projection) |
|
|
|
|
177
|
|
|
tmp2 = get_industry_heating_hotwater_scenario(nuts3_index, eff_gain_ihw) |
178
|
|
|
tmp3 = get_industry_CTS_process_heat_scenario(nuts3_index, eff_gain_ph) |
179
|
|
|
|
180
|
|
|
df_heating = pd.concat([tmp0, tmp1, tmp2, tmp3], axis=1) |
181
|
|
|
df_heating.columns = ["Households", "CTS", "Industry", "ProcessHeat"] |
182
|
|
|
df_heating.to_csv(fn) |
183
|
|
|
|
184
|
|
|
else: |
185
|
|
|
df_heating = pd.read_csv(fn) |
186
|
|
|
df_heating.set_index("nuts3", drop=True, inplace=True) |
187
|
|
|
|
188
|
|
|
return df_heating |
189
|
|
|
|
190
|
|
|
|
191
|
|
|
test = get_combined_heatload_for_region_scenario('test123', region_pick=None, m_type=2 , eff_gain_CTS=0, |
192
|
|
|
eff_gain_ph=0, eff_gain_ihw=0) |
193
|
|
|
|