1
|
|
|
""" |
2
|
|
|
PRIVATE MODULE: do not import (from) it directly. |
3
|
|
|
This module contains meta functionality for the ``Array`` type. |
4
|
|
|
""" |
5
|
|
|
from functools import lru_cache |
6
|
|
|
import numpy as np |
7
|
|
|
from typish import SubscriptableType |
8
|
|
|
from typish._types import Ellipsis_, NoneType |
9
|
|
|
|
10
|
|
|
|
11
|
|
|
class _ArrayMeta(SubscriptableType): |
12
|
|
|
# A Meta class for the Array class. |
13
|
|
|
@lru_cache() |
14
|
|
|
def __getitem__(self, item): |
15
|
|
|
return SubscriptableType.__getitem__(self, item) |
16
|
|
|
|
17
|
|
|
def __instancecheck__(self, inst): |
18
|
|
|
result = False |
19
|
|
|
if isinstance(inst, np.ndarray): |
20
|
|
|
result = True # In case of an empty array or no _generic_type. |
21
|
|
|
rows = 0 |
22
|
|
|
cols = 0 |
23
|
|
|
if len(inst.shape) > 0: |
24
|
|
|
rows = inst.shape[0] |
25
|
|
|
if len(inst.shape) > 1: |
26
|
|
|
cols = inst.shape[1] |
27
|
|
|
|
28
|
|
|
if inst.size > 0 and self.generic_type: |
29
|
|
|
if isinstance(self.generic_type, tuple): |
30
|
|
|
inst_dtypes = [inst.dtype[name] for name in inst.dtype.names] |
31
|
|
|
cls_dtypes = [np.dtype(typ) for typ in self.generic_type] |
32
|
|
|
result = inst_dtypes == cls_dtypes |
33
|
|
|
else: |
34
|
|
|
result = isinstance(inst[0], self.generic_type) |
35
|
|
|
result |= inst.dtype == np.dtype(self.generic_type) |
36
|
|
|
result &= self.rows is ... or self.rows == rows |
37
|
|
|
result &= self.cols is ... or self.cols == cols |
38
|
|
|
return result |
39
|
|
|
|
40
|
|
|
|
41
|
|
|
class _Array(metaclass=_ArrayMeta): |
42
|
|
|
# This class exists to keep the Array class as clean as possible. |
43
|
|
|
_ROWCOL_TYPES = [int, Ellipsis_, NoneType] |
44
|
|
|
generic_type = None |
45
|
|
|
rows = ... |
46
|
|
|
cols = ... |
47
|
|
|
|
48
|
|
|
def __new__(cls, *args, **kwargs): |
49
|
|
|
raise TypeError("Cannot instantiate abstract class Array") |
50
|
|
|
|
51
|
|
|
@classmethod |
52
|
|
|
def _after_subscription(cls, item): |
53
|
|
|
if not isinstance(item, tuple): |
54
|
|
|
cls.generic_type = item |
55
|
|
|
else: |
56
|
|
|
if not len(item): |
57
|
|
|
raise TypeError('Parameter Array[...] cannot be empty') |
58
|
|
|
|
59
|
|
|
# Collect all elements in item that are types and keep track of |
60
|
|
|
# the index. |
61
|
|
|
cls.generic_type = tuple() |
62
|
|
|
for index, value in enumerate(item): |
63
|
|
|
if isinstance(value, type): |
64
|
|
|
cls.generic_type += (value,) |
65
|
|
|
else: |
66
|
|
|
break |
67
|
|
|
else: |
68
|
|
|
index += 1 |
|
|
|
|
69
|
|
|
|
70
|
|
|
# If there is only one type defined before, then store that type |
71
|
|
|
# rather than a tuple. |
72
|
|
|
if len(cls.generic_type) == 1: |
73
|
|
|
cls.generic_type = cls.generic_type[0] |
74
|
|
|
|
75
|
|
|
if len(item) > index: |
76
|
|
|
if type(item[index]) not in cls._ROWCOL_TYPES: |
77
|
|
|
raise TypeError('Unexpected type %s, expecting int or ... or None' % item[index]) |
78
|
|
|
cls.rows = item[index] or ... |
79
|
|
|
index += 1 |
80
|
|
|
|
81
|
|
|
if len(item) > index: |
82
|
|
|
if isinstance(cls.generic_type, tuple): |
83
|
|
|
raise TypeError('You are not allowed to specify a column count, combined with multiple column ' |
84
|
|
|
'types.') |
85
|
|
|
if type(item[index]) not in cls._ROWCOL_TYPES: |
86
|
|
|
raise TypeError('Unexpected type %s, expecting int or ... or None' % item[index]) |
87
|
|
|
cls.cols = item[index] or ... |
88
|
|
|
|