| Conditions | 6 | 
| Total Lines | 108 | 
| Lines | 0 | 
| Ratio | 0 % | 
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | #  | 
            ||
| 79 | def _initialize_precalculated_series(self, sid, env, trading_days,  | 
            ||
| 80 | data_portal):  | 
            ||
| 81 | """  | 
            ||
| 82 | Internal method that precalculates the benchmark return series for  | 
            ||
| 83 | use in the simulation.  | 
            ||
| 84 | |||
| 85 | Parameters  | 
            ||
| 86 | ----------  | 
            ||
| 87 | sid: (int) Asset to use  | 
            ||
| 88 | |||
| 89 | env: TradingEnvironment  | 
            ||
| 90 | |||
| 91 | trading_days: pd.DateTimeIndex  | 
            ||
| 92 | |||
| 93 | data_portal: DataPortal  | 
            ||
| 94 | |||
| 95 | Notes  | 
            ||
| 96 | -----  | 
            ||
| 97 | If the benchmark asset started trading after the simulation start,  | 
            ||
| 98 | or finished trading before the simulation end, exceptions are raised.  | 
            ||
| 99 | |||
| 100 | If the benchmark asset started trading the same day as the simulation  | 
            ||
| 101 | start, the first available minute price on that day is used instead  | 
            ||
| 102 | of the previous close.  | 
            ||
| 103 | |||
| 104 | We use history to get an adjusted price history for each day's close,  | 
            ||
| 105 | as of the look-back date (the last day of the simulation). Prices are  | 
            ||
| 106 | fully adjusted for dividends, splits, and mergers.  | 
            ||
| 107 | |||
| 108 | Returns  | 
            ||
| 109 | -------  | 
            ||
| 110 | A pd.Series, indexed by trading day, whose values represent the %  | 
            ||
| 111 | change from close to close.  | 
            ||
| 112 | """  | 
            ||
| 113 | if sid is None:  | 
            ||
| 114 | # get benchmark info from trading environment, which defaults to  | 
            ||
| 115 | # downloading data from Yahoo.  | 
            ||
| 116 | daily_series = \  | 
            ||
| 117 | env.benchmark_returns[trading_days[0]:trading_days[-1]]  | 
            ||
| 118 | |||
| 119 | if self.emission_rate == "minute":  | 
            ||
| 120 | # we need to take the env's benchmark returns, which are daily,  | 
            ||
| 121 | # and resample them to minute  | 
            ||
| 122 | minutes = env.minutes_for_days_in_range(  | 
            ||
| 123 | start=trading_days[0],  | 
            ||
| 124 | end=trading_days[-1]  | 
            ||
| 125 | )  | 
            ||
| 126 | |||
| 127 | minute_series = daily_series.reindex(  | 
            ||
| 128 | index=minutes,  | 
            ||
| 129 | method="ffill"  | 
            ||
| 130 | )  | 
            ||
| 131 | |||
| 132 | return minute_series  | 
            ||
| 133 | else:  | 
            ||
| 134 | return daily_series  | 
            ||
| 135 | elif self.emission_rate == "minute":  | 
            ||
| 136 | minutes = env.minutes_for_days_in_range(self.trading_days[0],  | 
            ||
| 137 | self.trading_days[-1])  | 
            ||
| 138 | benchmark_series = data_portal.get_history_window(  | 
            ||
| 139 | [sid],  | 
            ||
| 140 | minutes[-1],  | 
            ||
| 141 | bar_count=len(minutes) + 1,  | 
            ||
| 142 | frequency="1m",  | 
            ||
| 143 | field="price",  | 
            ||
| 144 | ffill=True  | 
            ||
| 145 | )  | 
            ||
| 146 | |||
| 147 | return benchmark_series.pct_change()[1:]  | 
            ||
| 148 | else:  | 
            ||
| 149 | start_date = env.asset_finder.retrieve_asset(sid).start_date  | 
            ||
| 150 | if start_date < trading_days[0]:  | 
            ||
| 151 | # get the window of close prices for benchmark_sid from the  | 
            ||
| 152 | # last trading day of the simulation, going up to one day  | 
            ||
| 153 | # before the simulation start day (so that we can get the %  | 
            ||
| 154 | # change on day 1)  | 
            ||
| 155 | benchmark_series = data_portal.get_history_window(  | 
            ||
| 156 | [sid],  | 
            ||
| 157 | trading_days[-1],  | 
            ||
| 158 | bar_count=len(trading_days) + 1,  | 
            ||
| 159 | frequency="1d",  | 
            ||
| 160 | field="price",  | 
            ||
| 161 | ffill=True  | 
            ||
| 162 | )[sid]  | 
            ||
| 163 | return benchmark_series.pct_change()[1:]  | 
            ||
| 164 | elif start_date == trading_days[0]:  | 
            ||
| 165 | # Attempt to handle case where stock data starts on first  | 
            ||
| 166 | # day, in this case use the open to close return.  | 
            ||
| 167 | benchmark_series = data_portal.get_history_window(  | 
            ||
| 168 | [sid],  | 
            ||
| 169 | trading_days[-1],  | 
            ||
| 170 | bar_count=len(trading_days),  | 
            ||
| 171 | frequency="1d",  | 
            ||
| 172 | field="price",  | 
            ||
| 173 | ffill=True  | 
            ||
| 174 | )[sid]  | 
            ||
| 175 | |||
| 176 | # get a minute history window of the first day  | 
            ||
| 177 | first_open = data_portal.get_spot_value(  | 
            ||
| 178 | sid, 'open', trading_days[0], 'daily')  | 
            ||
| 179 | first_close = data_portal.get_spot_value(  | 
            ||
| 180 | sid, 'close', trading_days[0], 'daily')  | 
            ||
| 181 | |||
| 182 | first_day_return = (first_close - first_open) / first_open  | 
            ||
| 183 | |||
| 184 | returns = benchmark_series.pct_change()[:]  | 
            ||
| 185 | returns[0] = first_day_return  | 
            ||
| 186 | return returns  | 
            ||
| 187 |