| Total Complexity | 97 | 
| Total Lines | 1356 | 
| Duplicated Lines | 0 % | 
Complex classes like tests.HistoryTestCase often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from os.path import dirname, join, realpath  | 
            ||
| 60 | class HistoryTestCase(TestCase):  | 
            ||
| 61 | @classmethod  | 
            ||
| 62 | def setUpClass(cls):  | 
            ||
| 63 | cls.AAPL = 1  | 
            ||
| 64 | cls.MSFT = 2  | 
            ||
| 65 | cls.DELL = 3  | 
            ||
| 66 | cls.TSLA = 4  | 
            ||
| 67 | cls.BRKA = 5  | 
            ||
| 68 | cls.IBM = 6  | 
            ||
| 69 | cls.GS = 7  | 
            ||
| 70 | cls.C = 8  | 
            ||
| 71 | cls.DIVIDEND_SID = 9  | 
            ||
| 72 | cls.FUTURE_ASSET = 10  | 
            ||
| 73 | cls.FUTURE_ASSET2 = 11  | 
            ||
| 74 | cls.FUTURE_ASSET3 = 12  | 
            ||
| 75 | cls.FOO = 13  | 
            ||
| 76 | cls.assets = [cls.AAPL, cls.MSFT, cls.DELL, cls.TSLA, cls.BRKA,  | 
            ||
| 77 | cls.IBM, cls.GS, cls.C, cls.DIVIDEND_SID, cls.FOO]  | 
            ||
| 78 | |||
| 79 | asset_info = make_simple_asset_info(  | 
            ||
| 80 | cls.assets,  | 
            ||
| 81 |             Timestamp('2014-03-03'), | 
            ||
| 82 |             Timestamp('2014-08-30'), | 
            ||
| 83 | ['AAPL', 'MSFT', 'DELL', 'TSLA', 'BRKA', 'IBM', 'GS', 'C',  | 
            ||
| 84 | 'DIVIDEND_SID', 'FOO']  | 
            ||
| 85 | )  | 
            ||
| 86 | cls.env = TradingEnvironment()  | 
            ||
| 87 | |||
| 88 | cls.env.write_data(  | 
            ||
| 89 | equities_df=asset_info,  | 
            ||
| 90 |             futures_data={ | 
            ||
| 91 |                 cls.FUTURE_ASSET: { | 
            ||
| 92 |                     "start_date": pd.Timestamp('2015-11-23', tz='UTC'), | 
            ||
| 93 |                     "end_date": pd.Timestamp('2014-12-01', tz='UTC'), | 
            ||
| 94 | 'symbol': 'TEST_FUTURE',  | 
            ||
| 95 | 'asset_type': 'future',  | 
            ||
| 96 | },  | 
            ||
| 97 |                 cls.FUTURE_ASSET2: { | 
            ||
| 98 |                     "start_date": pd.Timestamp('2014-03-19', tz='UTC'), | 
            ||
| 99 |                     "end_date": pd.Timestamp('2014-03-22', tz='UTC'), | 
            ||
| 100 | 'symbol': 'TEST_FUTURE2',  | 
            ||
| 101 | 'asset_type': 'future',  | 
            ||
| 102 | },  | 
            ||
| 103 |                 cls.FUTURE_ASSET3: { | 
            ||
| 104 |                     "start_date": pd.Timestamp('2014-03-19', tz='UTC'), | 
            ||
| 105 |                     "end_date": pd.Timestamp('2014-03-22', tz='UTC'), | 
            ||
| 106 | 'symbol': 'TEST_FUTURE3',  | 
            ||
| 107 | 'asset_type': 'future',  | 
            ||
| 108 | }  | 
            ||
| 109 | }  | 
            ||
| 110 | )  | 
            ||
| 111 | |||
| 112 | cls.tempdir = TempDirectory()  | 
            ||
| 113 | cls.tempdir.create()  | 
            ||
| 114 | |||
| 115 | try:  | 
            ||
| 116 | cls.create_fake_minute_data(cls.tempdir)  | 
            ||
| 117 | |||
| 118 |             cls.futures_start_dates = { | 
            ||
| 119 |                 cls.FUTURE_ASSET: pd.Timestamp("2015-11-23 20:11", tz='UTC'), | 
            ||
| 120 |                 cls.FUTURE_ASSET2: pd.Timestamp("2014-03-19 13:31", tz='UTC'), | 
            ||
| 121 |                 cls.FUTURE_ASSET3: pd.Timestamp("2014-03-19 13:31", tz='UTC') | 
            ||
| 122 | }  | 
            ||
| 123 | |||
| 124 | futures_tempdir = os.path.join(cls.tempdir.path,  | 
            ||
| 125 | 'futures', 'minutes')  | 
            ||
| 126 | os.makedirs(futures_tempdir)  | 
            ||
| 127 | cls.create_fake_futures_minute_data(  | 
            ||
| 128 | futures_tempdir,  | 
            ||
| 129 | cls.env.asset_finder.retrieve_asset(cls.FUTURE_ASSET),  | 
            ||
| 130 | cls.futures_start_dates[cls.FUTURE_ASSET],  | 
            ||
| 131 | cls.futures_start_dates[cls.FUTURE_ASSET] +  | 
            ||
| 132 | timedelta(minutes=10000)  | 
            ||
| 133 | )  | 
            ||
| 134 | |||
| 135 | # build data for FUTURE_ASSET2 from 2014-03-19 13:31 to  | 
            ||
| 136 | # 2014-03-21 20:00  | 
            ||
| 137 | cls.create_fake_futures_minute_data(  | 
            ||
| 138 | futures_tempdir,  | 
            ||
| 139 | cls.env.asset_finder.retrieve_asset(cls.FUTURE_ASSET2),  | 
            ||
| 140 | cls.futures_start_dates[cls.FUTURE_ASSET2],  | 
            ||
| 141 | cls.futures_start_dates[cls.FUTURE_ASSET2] +  | 
            ||
| 142 | timedelta(minutes=3270)  | 
            ||
| 143 | )  | 
            ||
| 144 | |||
| 145 | # build data for FUTURE_ASSET3 from 2014-03-19 13:31 to  | 
            ||
| 146 | # 2014-03-21 20:00.  | 
            ||
| 147 | # Pause trading between 2014-03-20 14:00 and 2014-03-20 15:00  | 
            ||
| 148 |             gap_start = pd.Timestamp('2014-03-20 14:00', tz='UTC') | 
            ||
| 149 |             gap_end = pd.Timestamp('2014-03-20 15:00', tz='UTC') | 
            ||
| 150 | cls.create_fake_futures_minute_data(  | 
            ||
| 151 | futures_tempdir,  | 
            ||
| 152 | cls.env.asset_finder.retrieve_asset(cls.FUTURE_ASSET3),  | 
            ||
| 153 | cls.futures_start_dates[cls.FUTURE_ASSET3],  | 
            ||
| 154 | cls.futures_start_dates[cls.FUTURE_ASSET3] +  | 
            ||
| 155 | timedelta(minutes=3270),  | 
            ||
| 156 | gap_start_dt=gap_start,  | 
            ||
| 157 | gap_end_dt=gap_end,  | 
            ||
| 158 | )  | 
            ||
| 159 | |||
| 160 | cls.create_fake_daily_data(cls.tempdir)  | 
            ||
| 161 | |||
| 162 | splits = DataFrame([  | 
            ||
| 163 |                 {'effective_date': str_to_seconds("2002-01-03"), | 
            ||
| 164 | 'ratio': 0.5,  | 
            ||
| 165 | 'sid': cls.AAPL},  | 
            ||
| 166 |                 {'effective_date': str_to_seconds("2014-03-20"), | 
            ||
| 167 | 'ratio': 0.5,  | 
            ||
| 168 | 'sid': cls.AAPL},  | 
            ||
| 169 |                 {'effective_date': str_to_seconds("2014-03-21"), | 
            ||
| 170 | 'ratio': 0.5,  | 
            ||
| 171 | 'sid': cls.AAPL},  | 
            ||
| 172 |                 {'effective_date': str_to_seconds("2014-04-01"), | 
            ||
| 173 | 'ratio': 0.5,  | 
            ||
| 174 | 'sid': cls.IBM},  | 
            ||
| 175 |                 {'effective_date': str_to_seconds("2014-07-01"), | 
            ||
| 176 | 'ratio': 0.5,  | 
            ||
| 177 | 'sid': cls.IBM},  | 
            ||
| 178 |                 {'effective_date': str_to_seconds("2014-07-07"), | 
            ||
| 179 | 'ratio': 0.5,  | 
            ||
| 180 | 'sid': cls.IBM},  | 
            ||
| 181 |                 {'effective_date': str_to_seconds("2002-03-21"), | 
            ||
| 182 | 'ratio': 0.5,  | 
            ||
| 183 | 'sid': cls.FOO},  | 
            ||
| 184 | ],  | 
            ||
| 185 | columns=['effective_date', 'ratio', 'sid'],  | 
            ||
| 186 | )  | 
            ||
| 187 | |||
| 188 | mergers = DataFrame([  | 
            ||
| 189 |                 {'effective_date': str_to_seconds("2014-07-16"), | 
            ||
| 190 | 'ratio': 0.5,  | 
            ||
| 191 | 'sid': cls.C}  | 
            ||
| 192 | ],  | 
            ||
| 193 | columns=['effective_date', 'ratio', 'sid'])  | 
            ||
| 194 | |||
| 195 | dividends = DataFrame([  | 
            ||
| 196 |                 {'ex_date': | 
            ||
| 197 |                  Timestamp("2014-03-18", tz='UTC').to_datetime64(), | 
            ||
| 198 | 'record_date':  | 
            ||
| 199 |                  Timestamp("2014-03-19", tz='UTC').to_datetime64(), | 
            ||
| 200 | 'declared_date':  | 
            ||
| 201 |                  Timestamp("2014-03-18", tz='UTC').to_datetime64(), | 
            ||
| 202 | 'pay_date':  | 
            ||
| 203 |                  Timestamp("2014-03-20", tz='UTC').to_datetime64(), | 
            ||
| 204 | 'amount': 2.0,  | 
            ||
| 205 | 'sid': cls.DIVIDEND_SID},  | 
            ||
| 206 |                 {'ex_date': | 
            ||
| 207 |                  Timestamp("2014-03-20", tz='UTC').to_datetime64(), | 
            ||
| 208 | 'record_date':  | 
            ||
| 209 |                  Timestamp("2014-03-21", tz='UTC').to_datetime64(), | 
            ||
| 210 | 'declared_date':  | 
            ||
| 211 |                  Timestamp("2014-03-18", tz='UTC').to_datetime64(), | 
            ||
| 212 | 'pay_date':  | 
            ||
| 213 |                  Timestamp("2014-03-23", tz='UTC').to_datetime64(), | 
            ||
| 214 | 'amount': 4.0,  | 
            ||
| 215 | 'sid': cls.DIVIDEND_SID}],  | 
            ||
| 216 | columns=['ex_date',  | 
            ||
| 217 | 'record_date',  | 
            ||
| 218 | 'declared_date',  | 
            ||
| 219 | 'pay_date',  | 
            ||
| 220 | 'amount',  | 
            ||
| 221 | 'sid'])  | 
            ||
| 222 | |||
| 223 | cls.create_fake_adjustments(cls.tempdir,  | 
            ||
| 224 | "adjustments.sqlite",  | 
            ||
| 225 | splits=splits,  | 
            ||
| 226 | mergers=mergers,  | 
            ||
| 227 | dividends=dividends)  | 
            ||
| 228 | |||
| 229 | cls.data_portal = cls.get_portal(  | 
            ||
| 230 | daily_equities_filename="test_daily_data.bcolz",  | 
            ||
| 231 | adjustments_filename="adjustments.sqlite"  | 
            ||
| 232 | )  | 
            ||
| 233 | except:  | 
            ||
| 234 | cls.tempdir.cleanup()  | 
            ||
| 235 | raise  | 
            ||
| 236 | |||
| 237 | @classmethod  | 
            ||
| 238 | def tearDownClass(cls):  | 
            ||
| 239 | cls.tempdir.cleanup()  | 
            ||
| 240 | |||
| 241 | @classmethod  | 
            ||
| 242 | def create_fake_futures_minute_data(cls, tempdir, asset, start_dt, end_dt,  | 
            ||
| 243 | gap_start_dt=None, gap_end_dt=None):  | 
            ||
| 244 | num_minutes = int((end_dt - start_dt).total_seconds() / 60)  | 
            ||
| 245 | |||
| 246 | # need to prepend one 0 per minute between normalize_date(start_dt)  | 
            ||
| 247 | # and start_dt  | 
            ||
| 248 | zeroes_buffer = \  | 
            ||
| 249 | [0] * int((start_dt -  | 
            ||
| 250 | normalize_date(start_dt)).total_seconds() / 60)  | 
            ||
| 251 | |||
| 252 |         future_df = pd.DataFrame({ | 
            ||
| 253 | "open": np.array(zeroes_buffer +  | 
            ||
| 254 | list(range(0, num_minutes))) * 1000,  | 
            ||
| 255 | "high": np.array(zeroes_buffer +  | 
            ||
| 256 | list(range(10000, 10000 + num_minutes))) * 1000,  | 
            ||
| 257 | "low": np.array(zeroes_buffer +  | 
            ||
| 258 | list(range(20000, 20000 + num_minutes))) * 1000,  | 
            ||
| 259 | "close": np.array(zeroes_buffer +  | 
            ||
| 260 | list(range(30000, 30000 + num_minutes))) * 1000,  | 
            ||
| 261 | "volume": np.array(zeroes_buffer +  | 
            ||
| 262 | list(range(40000, 40000 + num_minutes)))  | 
            ||
| 263 | })  | 
            ||
| 264 | |||
| 265 | if gap_start_dt and gap_end_dt:  | 
            ||
| 266 | minutes = pd.date_range(normalize_date(start_dt), end_dt, freq='T')  | 
            ||
| 267 | gap_start_ix = minutes.get_loc(gap_start_dt)  | 
            ||
| 268 | gap_end_ix = minutes.get_loc(gap_end_dt)  | 
            ||
| 269 | future_df.iloc[gap_start_ix:gap_end_ix, :] = 0  | 
            ||
| 270 | |||
| 271 |         path = join(tempdir, "{0}.bcolz".format(asset.sid)) | 
            ||
| 272 | ctable = bcolz.ctable.fromdataframe(future_df, rootdir=path)  | 
            ||
| 273 | |||
| 274 | ctable.attrs["start_dt"] = start_dt.value / 1e9  | 
            ||
| 275 | ctable.attrs["last_dt"] = end_dt.value / 1e9  | 
            ||
| 276 | |||
| 277 | @classmethod  | 
            ||
| 278 | def create_fake_minute_data(cls, tempdir):  | 
            ||
| 279 |         resources = { | 
            ||
| 280 | cls.AAPL: join(TEST_MINUTE_RESOURCE_PATH, 'AAPL_minute.csv.gz'),  | 
            ||
| 281 | cls.MSFT: join(TEST_MINUTE_RESOURCE_PATH, 'MSFT_minute.csv.gz'),  | 
            ||
| 282 | cls.DELL: join(TEST_MINUTE_RESOURCE_PATH, 'DELL_minute.csv.gz'),  | 
            ||
| 283 | cls.TSLA: join(TEST_MINUTE_RESOURCE_PATH, "TSLA_minute.csv.gz"),  | 
            ||
| 284 | cls.BRKA: join(TEST_MINUTE_RESOURCE_PATH, "BRKA_minute.csv.gz"),  | 
            ||
| 285 | cls.IBM: join(TEST_MINUTE_RESOURCE_PATH, "IBM_minute.csv.gz"),  | 
            ||
| 286 | cls.GS:  | 
            ||
| 287 | join(TEST_MINUTE_RESOURCE_PATH, "IBM_minute.csv.gz"), # unused  | 
            ||
| 288 | cls.C: join(TEST_MINUTE_RESOURCE_PATH, "C_minute.csv.gz"),  | 
            ||
| 289 | cls.DIVIDEND_SID: join(TEST_MINUTE_RESOURCE_PATH,  | 
            ||
| 290 | "DIVIDEND_minute.csv.gz"),  | 
            ||
| 291 | cls.FOO: join(TEST_MINUTE_RESOURCE_PATH,  | 
            ||
| 292 | "FOO_minute.csv.gz"),  | 
            ||
| 293 | }  | 
            ||
| 294 | |||
| 295 | equities_tempdir = os.path.join(tempdir.path, 'equity', 'minutes')  | 
            ||
| 296 | os.makedirs(equities_tempdir)  | 
            ||
| 297 | |||
| 298 | MinuteBarWriterFromCSVs(resources,  | 
            ||
| 299 |                                 pd.Timestamp('2002-01-02', tz='UTC')).write( | 
            ||
| 300 | equities_tempdir, cls.assets)  | 
            ||
| 301 | |||
| 302 | @classmethod  | 
            ||
| 303 | def create_fake_daily_data(cls, tempdir):  | 
            ||
| 304 |         resources = { | 
            ||
| 305 | cls.AAPL: join(TEST_DAILY_RESOURCE_PATH, 'AAPL.csv'),  | 
            ||
| 306 | cls.MSFT: join(TEST_DAILY_RESOURCE_PATH, 'MSFT.csv'),  | 
            ||
| 307 | cls.DELL: join(TEST_DAILY_RESOURCE_PATH, 'MSFT.csv'), # unused  | 
            ||
| 308 | cls.TSLA: join(TEST_DAILY_RESOURCE_PATH, 'MSFT.csv'), # unused  | 
            ||
| 309 | cls.BRKA: join(TEST_DAILY_RESOURCE_PATH, 'BRK-A.csv'),  | 
            ||
| 310 | cls.IBM: join(TEST_MINUTE_RESOURCE_PATH, 'IBM_daily.csv.gz'),  | 
            ||
| 311 | cls.GS: join(TEST_MINUTE_RESOURCE_PATH, 'GS_daily.csv.gz'),  | 
            ||
| 312 | cls.C: join(TEST_MINUTE_RESOURCE_PATH, 'C_daily.csv.gz'),  | 
            ||
| 313 | cls.DIVIDEND_SID: join(TEST_MINUTE_RESOURCE_PATH,  | 
            ||
| 314 | 'DIVIDEND_daily.csv.gz'),  | 
            ||
| 315 | cls.FOO: join(TEST_MINUTE_RESOURCE_PATH, 'FOO_daily.csv.gz'),  | 
            ||
| 316 | }  | 
            ||
| 317 |         raw_data = { | 
            ||
| 318 |             asset: read_csv(path, parse_dates=['day']).set_index('day') | 
            ||
| 319 | for asset, path in iteritems(resources)  | 
            ||
| 320 | }  | 
            ||
| 321 | for frame in raw_data.values():  | 
            ||
| 322 | frame['price'] = frame['close']  | 
            ||
| 323 | |||
| 324 | writer = DailyBarWriterFromCSVs(resources)  | 
            ||
| 325 |         data_path = tempdir.getpath('test_daily_data.bcolz') | 
            ||
| 326 | writer.write(data_path, trading_days, cls.assets)  | 
            ||
| 327 | |||
| 328 | @classmethod  | 
            ||
| 329 | def create_fake_adjustments(cls, tempdir, filename,  | 
            ||
| 330 | splits=None, mergers=None, dividends=None):  | 
            ||
| 331 | writer = SQLiteAdjustmentWriter(tempdir.getpath(filename),  | 
            ||
| 332 | cls.env.trading_days,  | 
            ||
| 333 | MockDailyBarReader())  | 
            ||
| 334 | |||
| 335 | if dividends is None:  | 
            ||
| 336 | dividends = DataFrame(  | 
            ||
| 337 |                 { | 
            ||
| 338 | # Hackery to make the dtypes correct on an empty frame.  | 
            ||
| 339 | 'ex_date': array([], dtype='datetime64[ns]'),  | 
            ||
| 340 | 'pay_date': array([], dtype='datetime64[ns]'),  | 
            ||
| 341 | 'record_date': array([], dtype='datetime64[ns]'),  | 
            ||
| 342 | 'declared_date': array([], dtype='datetime64[ns]'),  | 
            ||
| 343 | 'amount': array([], dtype=float),  | 
            ||
| 344 | 'sid': array([], dtype=int),  | 
            ||
| 345 | },  | 
            ||
| 346 | index=DatetimeIndex([], tz='UTC'),  | 
            ||
| 347 | columns=['ex_date',  | 
            ||
| 348 | 'pay_date',  | 
            ||
| 349 | 'record_date',  | 
            ||
| 350 | 'declared_date',  | 
            ||
| 351 | 'amount',  | 
            ||
| 352 | 'sid']  | 
            ||
| 353 | )  | 
            ||
| 354 | |||
| 355 | if splits is None:  | 
            ||
| 356 | splits = DataFrame(  | 
            ||
| 357 |                 { | 
            ||
| 358 | # Hackery to make the dtypes correct on an empty frame.  | 
            ||
| 359 | 'effective_date': array([], dtype=int),  | 
            ||
| 360 | 'ratio': array([], dtype=float),  | 
            ||
| 361 | 'sid': array([], dtype=int),  | 
            ||
| 362 | },  | 
            ||
| 363 | index=DatetimeIndex([], tz='UTC'))  | 
            ||
| 364 | |||
| 365 | if mergers is None:  | 
            ||
| 366 | mergers = DataFrame(  | 
            ||
| 367 |                 { | 
            ||
| 368 | # Hackery to make the dtypes correct on an empty frame.  | 
            ||
| 369 | 'effective_date': array([], dtype=int),  | 
            ||
| 370 | 'ratio': array([], dtype=float),  | 
            ||
| 371 | 'sid': array([], dtype=int),  | 
            ||
| 372 | },  | 
            ||
| 373 | index=DatetimeIndex([], tz='UTC'))  | 
            ||
| 374 | |||
| 375 | writer.write(splits, mergers, dividends)  | 
            ||
| 376 | |||
| 377 | @classmethod  | 
            ||
| 378 | def get_portal(cls,  | 
            ||
| 379 | daily_equities_filename="test_daily_data.bcolz",  | 
            ||
| 380 | adjustments_filename="adjustments.sqlite",  | 
            ||
| 381 | env=None):  | 
            ||
| 382 | |||
| 383 | if env is None:  | 
            ||
| 384 | env = cls.env  | 
            ||
| 385 | |||
| 386 | temp_path = cls.tempdir.path  | 
            ||
| 387 | |||
| 388 | minutes_path = os.path.join(temp_path, 'equity', 'minutes')  | 
            ||
| 389 | futures_path = os.path.join(temp_path, 'futures', 'minutes')  | 
            ||
| 390 | |||
| 391 | adjustment_reader = SQLiteAdjustmentReader(  | 
            ||
| 392 | join(temp_path, adjustments_filename))  | 
            ||
| 393 | |||
| 394 | equity_minute_reader = BcolzMinuteBarReader(minutes_path)  | 
            ||
| 395 | |||
| 396 | equity_daily_reader = BcolzDailyBarReader(  | 
            ||
| 397 | join(temp_path, daily_equities_filename))  | 
            ||
| 398 | |||
| 399 | future_minute_reader = FutureMinuteReader(futures_path)  | 
            ||
| 400 | |||
| 401 | return DataPortal(  | 
            ||
| 402 | env,  | 
            ||
| 403 | equity_minute_reader=equity_minute_reader,  | 
            ||
| 404 | future_minute_reader=future_minute_reader,  | 
            ||
| 405 | equity_daily_reader=equity_daily_reader,  | 
            ||
| 406 | adjustment_reader=adjustment_reader  | 
            ||
| 407 | )  | 
            ||
| 408 | |||
| 409 | def test_history_in_initialize(self):  | 
            ||
| 410 | algo_text = dedent(  | 
            ||
| 411 | """\  | 
            ||
| 412 | from zipline.api import history  | 
            ||
| 413 | |||
| 414 | def initialize(context):  | 
            ||
| 415 | history([24], 10, '1d', 'price')  | 
            ||
| 416 | |||
| 417 | def handle_data(context, data):  | 
            ||
| 418 | pass  | 
            ||
| 419 | """  | 
            ||
| 420 | )  | 
            ||
| 421 | |||
| 422 |         start = pd.Timestamp('2007-04-05', tz='UTC') | 
            ||
| 423 |         end = pd.Timestamp('2007-04-10', tz='UTC') | 
            ||
| 424 | |||
| 425 | sim_params = SimulationParameters(  | 
            ||
| 426 | period_start=start,  | 
            ||
| 427 | period_end=end,  | 
            ||
| 428 |             capital_base=float("1.0e5"), | 
            ||
| 429 | data_frequency='minute',  | 
            ||
| 430 | emission_rate='daily',  | 
            ||
| 431 | env=self.env,  | 
            ||
| 432 | )  | 
            ||
| 433 | |||
| 434 | test_algo = TradingAlgorithm(  | 
            ||
| 435 | script=algo_text,  | 
            ||
| 436 | data_frequency='minute',  | 
            ||
| 437 | sim_params=sim_params,  | 
            ||
| 438 | env=self.env,  | 
            ||
| 439 | )  | 
            ||
| 440 | |||
| 441 | with self.assertRaises(HistoryInInitialize):  | 
            ||
| 442 | test_algo.initialize()  | 
            ||
| 443 | |||
| 444 | def test_minute_basic_functionality(self):  | 
            ||
| 445 | # get a 5-bar minute history from the very end of the available data  | 
            ||
| 446 | window = self.data_portal.get_history_window(  | 
            ||
| 447 | [1],  | 
            ||
| 448 |             pd.Timestamp("2014-03-21 18:23:00+00:00", tz='UTC'), | 
            ||
| 449 | 5,  | 
            ||
| 450 | "1m",  | 
            ||
| 451 | "open_price"  | 
            ||
| 452 | )  | 
            ||
| 453 | |||
| 454 | self.assertEqual(len(window), 5)  | 
            ||
| 455 | reference = [534.469, 534.471, 534.475, 534.477, 534.477]  | 
            ||
| 456 | for i in range(0, 4):  | 
            ||
| 457 | self.assertEqual(window.iloc[-5 + i].loc[1], reference[i])  | 
            ||
| 458 | |||
| 459 | def test_minute_splits(self):  | 
            ||
| 460 | portal = self.data_portal  | 
            ||
| 461 | |||
| 462 | window = portal.get_history_window(  | 
            ||
| 463 | [1],  | 
            ||
| 464 |             pd.Timestamp("2014-03-21 18:30:00+00:00", tz='UTC'), | 
            ||
| 465 | 1000,  | 
            ||
| 466 | "1m",  | 
            ||
| 467 | "open_price"  | 
            ||
| 468 | )  | 
            ||
| 469 | |||
| 470 | self.assertEqual(len(window), 1000)  | 
            ||
| 471 | |||
| 472 | # there are two splits for AAPL (on 2014-03-20 and 2014-03-21),  | 
            ||
| 473 | # each with ratio 0.5).  | 
            ||
| 474 | |||
| 475 |         day1_end = pd.Timestamp("2014-03-19 20:00", tz='UTC') | 
            ||
| 476 |         day2_start = pd.Timestamp("2014-03-20 13:31", tz='UTC') | 
            ||
| 477 |         day2_end = pd.Timestamp("2014-03-20 20:00", tz='UTC') | 
            ||
| 478 |         day3_start = pd.Timestamp("2014-03-21 13:31", tz='UTC') | 
            ||
| 479 | |||
| 480 | self.assertEquals(window.loc[day1_end, 1], 533.086)  | 
            ||
| 481 | self.assertEquals(window.loc[day2_start, 1], 533.087)  | 
            ||
| 482 | self.assertEquals(window.loc[day2_end, 1], 533.853)  | 
            ||
| 483 | self.assertEquals(window.loc[day3_start, 1], 533.854)  | 
            ||
| 484 | |||
| 485 | def test_ffill_minute_equity_window_starts_with_nan(self):  | 
            ||
| 486 | """  | 
            ||
| 487 | Test that forward filling does not leave leading nan if there is data  | 
            ||
| 488 | available before the start of the window.  | 
            ||
| 489 | """  | 
            ||
| 490 | |||
| 491 | window = self.data_portal.get_history_window(  | 
            ||
| 492 | [self.FOO],  | 
            ||
| 493 |             pd.Timestamp("2014-03-21 13:41:00+00:00", tz='UTC'), | 
            ||
| 494 | 20,  | 
            ||
| 495 | "1m",  | 
            ||
| 496 | "price"  | 
            ||
| 497 | )  | 
            ||
| 498 | |||
| 499 | # The previous value is on 2014-03-20, and there is a split between  | 
            ||
| 500 | # the two dates, the spot price of the latest value is 1066.92, with  | 
            ||
| 501 | # the expected result being 533.46 after the 2:1 split is applied.  | 
            ||
| 502 | expected = np.append(np.full(19, 533.460),  | 
            ||
| 503 | np.array(529.601))  | 
            ||
| 504 | |||
| 505 | np.testing.assert_allclose(window.loc[:, self.FOO], expected)  | 
            ||
| 506 | |||
| 507 | def test_ffill_minute_future_window_starts_with_nan(self):  | 
            ||
| 508 | """  | 
            ||
| 509 | Test that forward filling does not leave leading nan if there is data  | 
            ||
| 510 | available before the start of the window.  | 
            ||
| 511 | """  | 
            ||
| 512 | |||
| 513 | window = self.data_portal.get_history_window(  | 
            ||
| 514 | [self.FUTURE_ASSET3],  | 
            ||
| 515 |             pd.Timestamp("2014-03-20 15:00:00+00:00", tz='UTC'), | 
            ||
| 516 | 20,  | 
            ||
| 517 | "1m",  | 
            ||
| 518 | "price"  | 
            ||
| 519 | )  | 
            ||
| 520 | |||
| 521 | # 31468 is the value at 2014-03-20 13:59, and should be the forward  | 
            ||
| 522 | # filled value until 2015-03-20 15:00  | 
            ||
| 523 | expected = np.append(np.full(19, 31468),  | 
            ||
| 524 | np.array(31529))  | 
            ||
| 525 | |||
| 526 | np.testing.assert_allclose(window.loc[:, self.FUTURE_ASSET3],  | 
            ||
| 527 | expected)  | 
            ||
| 528 | |||
| 529 | def test_ffill_daily_equity_window_starts_with_nan(self):  | 
            ||
| 530 | """  | 
            ||
| 531 | Test that forward filling does not leave leading nan if there is data  | 
            ||
| 532 | available before the start of the window.  | 
            ||
| 533 | """  | 
            ||
| 534 | window = self.data_portal.get_history_window(  | 
            ||
| 535 | [self.FOO],  | 
            ||
| 536 |             pd.Timestamp("2014-03-21 00:00:00+00:00", tz='UTC'), | 
            ||
| 537 | 2,  | 
            ||
| 538 | "1d",  | 
            ||
| 539 | "price"  | 
            ||
| 540 | )  | 
            ||
| 541 | |||
| 542 | # The previous value is on 2014-03-20, and there is a split between  | 
            ||
| 543 | # the two dates, the spot price of the latest value is 106.692, with  | 
            ||
| 544 | # the expected result being 533.46 after the 2:1 split is applied.  | 
            ||
| 545 | expected = np.array([  | 
            ||
| 546 | 53.346,  | 
            ||
| 547 | 52.95,  | 
            ||
| 548 | ])  | 
            ||
| 549 | |||
| 550 | np.testing.assert_allclose(window.loc[:, self.FOO], expected)  | 
            ||
| 551 | |||
| 552 | def test_minute_window_starts_before_trading_start(self):  | 
            ||
| 553 | portal = self.data_portal  | 
            ||
| 554 | |||
| 555 | # get a 50-bar minute history for MSFT starting 5 minutes into 3/20,  | 
            ||
| 556 | # its first trading day  | 
            ||
| 557 | window = portal.get_history_window(  | 
            ||
| 558 | [2],  | 
            ||
| 559 |             pd.Timestamp("2014-03-20 13:35:00", tz='UTC'), | 
            ||
| 560 | 50,  | 
            ||
| 561 | "1m",  | 
            ||
| 562 | "high",  | 
            ||
| 563 | )  | 
            ||
| 564 | |||
| 565 | self.assertEqual(len(window), 50)  | 
            ||
| 566 | reference = [107.081, 109.476, 102.316, 107.861, 106.040]  | 
            ||
| 567 | for i in range(0, 4):  | 
            ||
| 568 | self.assertEqual(window.iloc[-5 + i].loc[2], reference[i])  | 
            ||
| 569 | |||
| 570 | # get history for two securities at the same time, where one starts  | 
            ||
| 571 | # trading a day later than the other  | 
            ||
| 572 | window2 = portal.get_history_window(  | 
            ||
| 573 | [1, 2],  | 
            ||
| 574 |             pd.Timestamp("2014-03-20 13:35:00", tz='UTC'), | 
            ||
| 575 | 50,  | 
            ||
| 576 | "1m",  | 
            ||
| 577 | "low",  | 
            ||
| 578 | )  | 
            ||
| 579 | |||
| 580 | self.assertEqual(len(window2), 50)  | 
            ||
| 581 |         reference2 = { | 
            ||
| 582 | 1: [1059.318, 1055.914, 1061.136, 1063.698, 1055.964],  | 
            ||
| 583 | 2: [98.902, 99.841, 90.984, 99.891, 98.027]  | 
            ||
| 584 | }  | 
            ||
| 585 | |||
| 586 | for i in range(0, 45):  | 
            ||
| 587 | self.assertFalse(np.isnan(window2.iloc[i].loc[1]))  | 
            ||
| 588 | |||
| 589 | # there should be 45 NaNs for MSFT until it starts trading  | 
            ||
| 590 | self.assertTrue(np.isnan(window2.iloc[i].loc[2]))  | 
            ||
| 591 | |||
| 592 | for i in range(0, 4):  | 
            ||
| 593 | self.assertEquals(window2.iloc[-5 + i].loc[1],  | 
            ||
| 594 | reference2[1][i])  | 
            ||
| 595 | self.assertEquals(window2.iloc[-5 + i].loc[2],  | 
            ||
| 596 | reference2[2][i])  | 
            ||
| 597 | |||
| 598 | def test_minute_window_ends_before_trading_start(self):  | 
            ||
| 
                                                                                                    
                        
                         | 
                |||
| 599 | # entire window is before the trading start  | 
            ||
| 600 | window = self.data_portal.get_history_window(  | 
            ||
| 601 | [2],  | 
            ||
| 602 |             pd.Timestamp("2014-02-05 14:35:00", tz='UTC'), | 
            ||
| 603 | 100,  | 
            ||
| 604 | "1m",  | 
            ||
| 605 | "high"  | 
            ||
| 606 | )  | 
            ||
| 607 | |||
| 608 | self.assertEqual(len(window), 100)  | 
            ||
| 609 | for i in range(0, 100):  | 
            ||
| 610 | self.assertTrue(np.isnan(window.iloc[i].loc[2]))  | 
            ||
| 611 | |||
| 612 | def test_minute_window_ends_after_trading_end(self):  | 
            ||
| 613 | portal = self.data_portal  | 
            ||
| 614 | |||
| 615 | window = portal.get_history_window(  | 
            ||
| 616 | [2],  | 
            ||
| 617 |             pd.Timestamp("2014-03-24 13:35:00", tz='UTC'), | 
            ||
| 618 | 50,  | 
            ||
| 619 | "1m",  | 
            ||
| 620 | "high",  | 
            ||
| 621 | )  | 
            ||
| 622 | |||
| 623 | # should be 45 non-NaNs then 5 NaNs as MSFT has stopped trading at  | 
            ||
| 624 | # the end of the day 2014-03-21 (and the 22nd and 23rd is weekend)  | 
            ||
| 625 | self.assertEqual(len(window), 50)  | 
            ||
| 626 | |||
| 627 | for i in range(0, 45):  | 
            ||
| 628 | self.assertFalse(np.isnan(window.iloc[i].loc[2]))  | 
            ||
| 629 | |||
| 630 | for i in range(46, 50):  | 
            ||
| 631 | self.assertTrue(np.isnan(window.iloc[i].loc[2]))  | 
            ||
| 632 | |||
| 633 | def test_minute_window_starts_after_trading_end(self):  | 
            ||
| 634 | # entire window is after the trading end  | 
            ||
| 635 | window = self.data_portal.get_history_window(  | 
            ||
| 636 | [2],  | 
            ||
| 637 |             pd.Timestamp("2014-04-02 14:35:00", tz='UTC'), | 
            ||
| 638 | 100,  | 
            ||
| 639 | "1m",  | 
            ||
| 640 | "high"  | 
            ||
| 641 | )  | 
            ||
| 642 | |||
| 643 | self.assertEqual(len(window), 100)  | 
            ||
| 644 | for i in range(0, 100):  | 
            ||
| 645 | self.assertTrue(np.isnan(window.iloc[i].loc[2]))  | 
            ||
| 646 | |||
| 647 | def test_minute_window_starts_before_1_2_2002(self):  | 
            ||
| 648 | window = self.data_portal.get_history_window(  | 
            ||
| 649 | [3],  | 
            ||
| 650 |             pd.Timestamp("2002-01-02 14:35:00", tz='UTC'), | 
            ||
| 651 | 50,  | 
            ||
| 652 | "1m",  | 
            ||
| 653 | "close_price"  | 
            ||
| 654 | )  | 
            ||
| 655 | |||
| 656 | self.assertEqual(len(window), 50)  | 
            ||
| 657 | for i in range(0, 45):  | 
            ||
| 658 | self.assertTrue(np.isnan(window.iloc[i].loc[3]))  | 
            ||
| 659 | |||
| 660 | for i in range(46, 50):  | 
            ||
| 661 | self.assertFalse(np.isnan(window.iloc[i].loc[3]))  | 
            ||
| 662 | |||
| 663 | def test_minute_early_close(self):  | 
            ||
| 664 | # market was closed early on 7/3, and that's reflected in our  | 
            ||
| 665 | # fake IBM minute data. also, IBM had a split that takes effect  | 
            ||
| 666 | # right after the early close.  | 
            ||
| 667 | |||
| 668 | # five minutes into the day after an early close, get 20 1m bars  | 
            ||
| 669 | window = self.data_portal.get_history_window(  | 
            ||
| 670 | [self.IBM],  | 
            ||
| 671 |             pd.Timestamp("2014-07-07 13:35:00", tz='UTC'), | 
            ||
| 672 | 20,  | 
            ||
| 673 | "1m",  | 
            ||
| 674 | "high"  | 
            ||
| 675 | )  | 
            ||
| 676 | |||
| 677 | self.assertEqual(len(window), 20)  | 
            ||
| 678 | |||
| 679 | reference = [27134.486, 27134.802, 27134.660, 27132.813, 27130.964,  | 
            ||
| 680 | 27133.767, 27133.268, 27131.510, 27134.946, 27132.400,  | 
            ||
| 681 | 27134.350, 27130.588, 27132.528, 27130.418, 27131.040,  | 
            ||
| 682 | 27132.664, 27131.307, 27133.978, 27132.779, 27134.476]  | 
            ||
| 683 | |||
| 684 | for i in range(0, 20):  | 
            ||
| 685 | self.assertAlmostEquals(window.iloc[i].loc[self.IBM], reference[i])  | 
            ||
| 686 | |||
| 687 | def test_minute_merger(self):  | 
            ||
| 688 | def check(field, ref):  | 
            ||
| 689 | window = self.data_portal.get_history_window(  | 
            ||
| 690 | [self.C],  | 
            ||
| 691 |                 pd.Timestamp("2014-07-16 13:35", tz='UTC'), | 
            ||
| 692 | 10,  | 
            ||
| 693 | "1m",  | 
            ||
| 694 | field  | 
            ||
| 695 | )  | 
            ||
| 696 | |||
| 697 | self.assertEqual(len(window), len(ref))  | 
            ||
| 698 | |||
| 699 | for i in range(0, len(ref) - 1):  | 
            ||
| 700 | self.assertEquals(window.iloc[i].loc[self.C], ref[i])  | 
            ||
| 701 | |||
| 702 | open_ref = [71.99, 71.991, 71.992, 71.996, 71.996,  | 
            ||
| 703 | 72.000, 72.001, 72.002, 72.004, 72.005]  | 
            ||
| 704 | high_ref = [77.334, 80.196, 80.387, 72.331, 79.184,  | 
            ||
| 705 | 75.439, 81.176, 78.564, 80.498, 82.000]  | 
            ||
| 706 | low_ref = [62.621, 70.427, 65.572, 68.357, 63.623,  | 
            ||
| 707 | 69.805, 67.245, 64.238, 64.487, 71.864]  | 
            ||
| 708 | close_ref = [69.977, 75.311, 72.979, 70.344, 71.403,  | 
            ||
| 709 | 72.622, 74.210, 71.401, 72.492, 73.669]  | 
            ||
| 710 | vol_ref = [12663, 12662, 12661, 12661, 12660, 12661,  | 
            ||
| 711 | 12663, 12662, 12663, 12662]  | 
            ||
| 712 | |||
| 713 |         check("open_price", open_ref) | 
            ||
| 714 |         check("high", high_ref) | 
            ||
| 715 |         check("low", low_ref) | 
            ||
| 716 |         check("close_price", close_ref) | 
            ||
| 717 |         check("price", close_ref) | 
            ||
| 718 |         check("volume", vol_ref) | 
            ||
| 719 | |||
| 720 | def test_minute_forward_fill(self):  | 
            ||
| 721 | # only forward fill if ffill=True AND we are asking for "price"  | 
            ||
| 722 | |||
| 723 | # our fake TSLA data (sid 4) is missing a bunch of minute bars  | 
            ||
| 724 | # right after the open on 2002-01-02  | 
            ||
| 725 | |||
| 726 | for field in ["open_price", "high", "low", "volume", "close_price"]:  | 
            ||
| 727 | no_ffill = self.data_portal.get_history_window(  | 
            ||
| 728 | [4],  | 
            ||
| 729 |                 pd.Timestamp("2002-01-02 21:00:00", tz='UTC'), | 
            ||
| 730 | 390,  | 
            ||
| 731 | "1m",  | 
            ||
| 732 | field  | 
            ||
| 733 | )  | 
            ||
| 734 | |||
| 735 | missing_bar_indices = [1, 3, 5, 7, 9, 11, 13]  | 
            ||
| 736 | if field == 'volume':  | 
            ||
| 737 | for bar_idx in missing_bar_indices:  | 
            ||
| 738 | self.assertEqual(no_ffill.iloc[bar_idx].loc[4], 0)  | 
            ||
| 739 | else:  | 
            ||
| 740 | for bar_idx in missing_bar_indices:  | 
            ||
| 741 | self.assertTrue(np.isnan(no_ffill.iloc[bar_idx].loc[4]))  | 
            ||
| 742 | |||
| 743 | ffill_window = self.data_portal.get_history_window(  | 
            ||
| 744 | [4],  | 
            ||
| 745 |             pd.Timestamp("2002-01-02 21:00:00", tz='UTC'), | 
            ||
| 746 | 390,  | 
            ||
| 747 | "1m",  | 
            ||
| 748 | "price"  | 
            ||
| 749 | )  | 
            ||
| 750 | |||
| 751 | for i in range(0, 390):  | 
            ||
| 752 | self.assertFalse(np.isnan(ffill_window.iloc[i].loc[4]))  | 
            ||
| 753 | |||
| 754 | # 2002-01-02 14:31:00+00:00 126.183  | 
            ||
| 755 | # 2002-01-02 14:32:00+00:00 126.183  | 
            ||
| 756 | # 2002-01-02 14:33:00+00:00 125.648  | 
            ||
| 757 | # 2002-01-02 14:34:00+00:00 125.648  | 
            ||
| 758 | # 2002-01-02 14:35:00+00:00 126.016  | 
            ||
| 759 | # 2002-01-02 14:36:00+00:00 126.016  | 
            ||
| 760 | # 2002-01-02 14:37:00+00:00 127.918  | 
            ||
| 761 | # 2002-01-02 14:38:00+00:00 127.918  | 
            ||
| 762 | # 2002-01-02 14:39:00+00:00 126.423  | 
            ||
| 763 | # 2002-01-02 14:40:00+00:00 126.423  | 
            ||
| 764 | # 2002-01-02 14:41:00+00:00 129.825  | 
            ||
| 765 | # 2002-01-02 14:42:00+00:00 129.825  | 
            ||
| 766 | # 2002-01-02 14:43:00+00:00 125.392  | 
            ||
| 767 | # 2002-01-02 14:44:00+00:00 125.392  | 
            ||
| 768 | |||
| 769 | vals = [126.183, 125.648, 126.016, 127.918, 126.423, 129.825, 125.392]  | 
            ||
| 770 | for idx, val in enumerate(vals):  | 
            ||
| 771 | self.assertEqual(ffill_window.iloc[2 * idx].loc[4], val)  | 
            ||
| 772 | self.assertEqual(ffill_window.iloc[(2 * idx) + 1].loc[4], val)  | 
            ||
| 773 | |||
| 774 | # make sure that if we pass ffill=False with field="price", we do  | 
            ||
| 775 | # not ffill  | 
            ||
| 776 | really_no_ffill_window = self.data_portal.get_history_window(  | 
            ||
| 777 | [4],  | 
            ||
| 778 |             pd.Timestamp("2002-01-02 21:00:00", tz='UTC'), | 
            ||
| 779 | 390,  | 
            ||
| 780 | "1m",  | 
            ||
| 781 | "price",  | 
            ||
| 782 | ffill=False  | 
            ||
| 783 | )  | 
            ||
| 784 | |||
| 785 | for idx, val in enumerate(vals):  | 
            ||
| 786 | idx1 = 2 * idx  | 
            ||
| 787 | idx2 = idx1 + 1  | 
            ||
| 788 | self.assertEqual(really_no_ffill_window.iloc[idx1].loc[4], val)  | 
            ||
| 789 | self.assertTrue(np.isnan(really_no_ffill_window.iloc[idx2].loc[4]))  | 
            ||
| 790 | |||
| 791 | def test_daily_functionality(self):  | 
            ||
| 792 | # 9 daily bars  | 
            ||
| 793 | # 2014-03-10,183999.0,186400.0,183601.0,186400.0,400  | 
            ||
| 794 | # 2014-03-11,186925.0,187490.0,185910.0,187101.0,600  | 
            ||
| 795 | # 2014-03-12,186498.0,187832.0,186005.0,187750.0,300  | 
            ||
| 796 | # 2014-03-13,188150.0,188852.0,185254.0,185750.0,700  | 
            ||
| 797 | # 2014-03-14,185825.0,186507.0,183418.0,183860.0,600  | 
            ||
| 798 | # 2014-03-17,184350.0,185790.0,184350.0,185050.0,400  | 
            ||
| 799 | # 2014-03-18,185400.0,185400.0,183860.0,184860.0,200  | 
            ||
| 800 | # 2014-03-19,184860.0,185489.0,182764.0,183860.0,200  | 
            ||
| 801 | # 2014-03-20,183999.0,186742.0,183630.0,186540.0,300  | 
            ||
| 802 | |||
| 803 | # 5 one-minute bars that will be aggregated  | 
            ||
| 804 | # 2014-03-21 13:31:00+00:00,185422401,185426332,185413974,185420153,304  | 
            ||
| 805 | # 2014-03-21 13:32:00+00:00,185422402,185424165,185417717,185420941,300  | 
            ||
| 806 | # 2014-03-21 13:33:00+00:00,185422403,185430663,185419420,185425041,303  | 
            ||
| 807 | # 2014-03-21 13:34:00+00:00,185422403,185431290,185417079,185424184,302  | 
            ||
| 808 | # 2014-03-21 13:35:00+00:00,185422405,185430210,185416293,185423251,302  | 
            ||
| 809 | |||
| 810 | def run_query(field, values):  | 
            ||
| 811 | window = self.data_portal.get_history_window(  | 
            ||
| 812 | [self.BRKA],  | 
            ||
| 813 |                 pd.Timestamp("2014-03-21 13:35", tz='UTC'), | 
            ||
| 814 | 10,  | 
            ||
| 815 | "1d",  | 
            ||
| 816 | field  | 
            ||
| 817 | )  | 
            ||
| 818 | |||
| 819 | self.assertEqual(len(window), 10)  | 
            ||
| 820 | |||
| 821 | for i in range(0, 10):  | 
            ||
| 822 | self.assertEquals(window.iloc[i].loc[self.BRKA],  | 
            ||
| 823 | values[i])  | 
            ||
| 824 | |||
| 825 | # last value is the first minute's open  | 
            ||
| 826 | opens = [183999, 186925, 186498, 188150, 185825, 184350,  | 
            ||
| 827 | 185400, 184860, 183999, 185422.401]  | 
            ||
| 828 | |||
| 829 | # last value is the last minute's close  | 
            ||
| 830 | closes = [186400, 187101, 187750, 185750, 183860, 185050,  | 
            ||
| 831 | 184860, 183860, 186540, 185423.251]  | 
            ||
| 832 | |||
| 833 | # last value is the highest high value  | 
            ||
| 834 | highs = [186400, 187490, 187832, 188852, 186507, 185790,  | 
            ||
| 835 | 185400, 185489, 186742, 185431.290]  | 
            ||
| 836 | |||
| 837 | # last value is the lowest low value  | 
            ||
| 838 | lows = [183601, 185910, 186005, 185254, 183418, 184350, 183860,  | 
            ||
| 839 | 182764, 183630, 185413.974]  | 
            ||
| 840 | |||
| 841 | # last value is the sum of all the minute volumes  | 
            ||
| 842 | volumes = [400, 600, 300, 700, 600, 400, 200, 200, 300, 1511]  | 
            ||
| 843 | |||
| 844 |         run_query("open_price", opens) | 
            ||
| 845 |         run_query("close_price", closes) | 
            ||
| 846 |         run_query("price", closes) | 
            ||
| 847 |         run_query("high", highs) | 
            ||
| 848 |         run_query("low", lows) | 
            ||
| 849 |         run_query("volume", volumes) | 
            ||
| 850 | |||
| 851 | def test_daily_splits_with_no_minute_data(self):  | 
            ||
| 852 | # scenario is that we have daily data for AAPL through 6/11,  | 
            ||
| 853 | # but we have no minute data for AAPL on 6/11. there's also a split  | 
            ||
| 854 | # for AAPL on 6/9.  | 
            ||
| 855 | splits = DataFrame(  | 
            ||
| 856 | [  | 
            ||
| 857 |                 { | 
            ||
| 858 |                     'effective_date': str_to_seconds('2014-06-09'), | 
            ||
| 859 | 'ratio': (1 / 7.0),  | 
            ||
| 860 | 'sid': self.AAPL,  | 
            ||
| 861 | }  | 
            ||
| 862 | ],  | 
            ||
| 863 | columns=['effective_date', 'ratio', 'sid'])  | 
            ||
| 864 | |||
| 865 | self.create_fake_adjustments(self.tempdir,  | 
            ||
| 866 | "adjustments2.sqlite",  | 
            ||
| 867 | splits=splits)  | 
            ||
| 868 | |||
| 869 | portal = self.get_portal(adjustments_filename="adjustments2.sqlite")  | 
            ||
| 870 | |||
| 871 | def test_window(field, reference, ffill=True):  | 
            ||
| 872 | window = portal.get_history_window(  | 
            ||
| 873 | [self.AAPL],  | 
            ||
| 874 |                 pd.Timestamp("2014-06-11 15:30", tz='UTC'), | 
            ||
| 875 | 6,  | 
            ||
| 876 | "1d",  | 
            ||
| 877 | field,  | 
            ||
| 878 | ffill  | 
            ||
| 879 | )  | 
            ||
| 880 | |||
| 881 | self.assertEqual(len(window), 6)  | 
            ||
| 882 | |||
| 883 | for i in range(0, 5):  | 
            ||
| 884 | self.assertEquals(window.iloc[i].loc[self.AAPL],  | 
            ||
| 885 | reference[i])  | 
            ||
| 886 | |||
| 887 | if ffill and field == "price":  | 
            ||
| 888 | last_val = window.iloc[5].loc[self.AAPL]  | 
            ||
| 889 | second_to_last_val = window.iloc[4].loc[self.AAPL]  | 
            ||
| 890 | |||
| 891 | self.assertEqual(last_val, second_to_last_val)  | 
            ||
| 892 | else:  | 
            ||
| 893 | if field == "volume":  | 
            ||
| 894 | self.assertEqual(window.iloc[5].loc[self.AAPL], 0)  | 
            ||
| 895 | else:  | 
            ||
| 896 | self.assertTrue(np.isnan(window.iloc[5].loc[self.AAPL]))  | 
            ||
| 897 | |||
| 898 | # 2014-06-04,637.4400099999999,647.8899690000001,636.110046,644.819992,p  | 
            ||
| 899 | # 2014-06-05,646.20005,649.370003,642.610008,647.349983,75951400  | 
            ||
| 900 | # 2014-06-06,649.900002,651.259979,644.469971,645.570023,87484600  | 
            ||
| 901 | # 2014-06-09,92.699997,93.879997,91.75,93.699997,75415000  | 
            ||
| 902 | # 2014-06-10,94.730003,95.050003,93.57,94.25,62777000  | 
            ||
| 903 | open_data = [91.063, 92.314, 92.843, 92.699, 94.730]  | 
            ||
| 904 |         test_window("open_price", open_data, ffill=False) | 
            ||
| 905 |         test_window("open_price", open_data) | 
            ||
| 906 | |||
| 907 | high_data = [92.556, 92.767, 93.037, 93.879, 95.050]  | 
            ||
| 908 |         test_window("high", high_data, ffill=False) | 
            ||
| 909 |         test_window("high", high_data) | 
            ||
| 910 | |||
| 911 | low_data = [90.873, 91.801, 92.067, 91.750, 93.570]  | 
            ||
| 912 |         test_window("low", low_data, ffill=False) | 
            ||
| 913 |         test_window("low", low_data) | 
            ||
| 914 | |||
| 915 | close_data = [92.117, 92.478, 92.224, 93.699, 94.250]  | 
            ||
| 916 |         test_window("close_price", close_data, ffill=False) | 
            ||
| 917 |         test_window("close_price", close_data) | 
            ||
| 918 |         test_window("price", close_data, ffill=False) | 
            ||
| 919 |         test_window("price", close_data) | 
            ||
| 920 | |||
| 921 | vol_data = [587093500, 531659800, 612392200, 75415000, 62777000]  | 
            ||
| 922 |         test_window("volume", vol_data) | 
            ||
| 923 |         test_window("volume", vol_data, ffill=False) | 
            ||
| 924 | |||
| 925 | def test_daily_window_starts_before_trading_start(self):  | 
            ||
| 926 | portal = self.data_portal  | 
            ||
| 927 | |||
| 928 | # MSFT started on 3/3/2014, so try to go before that  | 
            ||
| 929 | window = portal.get_history_window(  | 
            ||
| 930 | [self.MSFT],  | 
            ||
| 931 |             pd.Timestamp("2014-03-05 13:35:00", tz='UTC'), | 
            ||
| 932 | 5,  | 
            ||
| 933 | "1d",  | 
            ||
| 934 | "high"  | 
            ||
| 935 | )  | 
            ||
| 936 | |||
| 937 | self.assertEqual(len(window), 5)  | 
            ||
| 938 | |||
| 939 | # should be two empty days, then 3/3 and 3/4, then  | 
            ||
| 940 | # an empty day because we don't have minute data for 3/5  | 
            ||
| 941 | self.assertTrue(np.isnan(window.iloc[0].loc[self.MSFT]))  | 
            ||
| 942 | self.assertTrue(np.isnan(window.iloc[1].loc[self.MSFT]))  | 
            ||
| 943 | self.assertEquals(window.iloc[2].loc[self.MSFT], 38.130)  | 
            ||
| 944 | self.assertEquals(window.iloc[3].loc[self.MSFT], 38.48)  | 
            ||
| 945 | self.assertTrue(np.isnan(window.iloc[4].loc[self.MSFT]))  | 
            ||
| 946 | |||
| 947 | def test_daily_window_ends_before_trading_start(self):  | 
            ||
| 948 | portal = self.data_portal  | 
            ||
| 949 | |||
| 950 | # MSFT started on 3/3/2014, so try to go before that  | 
            ||
| 951 | window = portal.get_history_window(  | 
            ||
| 952 | [self.MSFT],  | 
            ||
| 953 |             pd.Timestamp("2014-02-28 13:35:00", tz='UTC'), | 
            ||
| 954 | 5,  | 
            ||
| 955 | "1d",  | 
            ||
| 956 | "high"  | 
            ||
| 957 | )  | 
            ||
| 958 | |||
| 959 | self.assertEqual(len(window), 5)  | 
            ||
| 960 | for i in range(0, 5):  | 
            ||
| 961 | self.assertTrue(np.isnan(window.iloc[i].loc[self.MSFT]))  | 
            ||
| 962 | |||
| 963 | def test_daily_window_starts_after_trading_end(self):  | 
            ||
| 964 | # MSFT stopped trading EOD Friday 8/29/2014  | 
            ||
| 965 | window = self.data_portal.get_history_window(  | 
            ||
| 966 | [self.MSFT],  | 
            ||
| 967 |             pd.Timestamp("2014-09-12 13:35:00", tz='UTC'), | 
            ||
| 968 | 8,  | 
            ||
| 969 | "1d",  | 
            ||
| 970 | "high",  | 
            ||
| 971 | )  | 
            ||
| 972 | |||
| 973 | self.assertEqual(len(window), 8)  | 
            ||
| 974 | for i in range(0, 8):  | 
            ||
| 975 | self.assertTrue(np.isnan(window.iloc[i].loc[self.MSFT]))  | 
            ||
| 976 | |||
| 977 | def test_daily_window_ends_after_trading_end(self):  | 
            ||
| 978 | # MSFT stopped trading EOD Friday 8/29/2014  | 
            ||
| 979 | window = self.data_portal.get_history_window(  | 
            ||
| 980 | [self.MSFT],  | 
            ||
| 981 |             pd.Timestamp("2014-09-04 13:35:00", tz='UTC'), | 
            ||
| 982 | 10,  | 
            ||
| 983 | "1d",  | 
            ||
| 984 | "high",  | 
            ||
| 985 | )  | 
            ||
| 986 | |||
| 987 | # should be 7 non-NaNs (8/21-8/22, 8/25-8/29) and 3 NaNs (9/2 - 9/4)  | 
            ||
| 988 | # (9/1/2014 is labor day)  | 
            ||
| 989 | self.assertEqual(len(window), 10)  | 
            ||
| 990 | |||
| 991 | for i in range(0, 7):  | 
            ||
| 992 | self.assertFalse(np.isnan(window.iloc[i].loc[self.MSFT]))  | 
            ||
| 993 | |||
| 994 | for i in range(7, 10):  | 
            ||
| 995 | self.assertTrue(np.isnan(window.iloc[i].loc[self.MSFT]))  | 
            ||
| 996 | |||
| 997 | def test_empty_sid_list(self):  | 
            ||
| 998 | portal = self.data_portal  | 
            ||
| 999 | |||
| 1000 | fields = ["open_price",  | 
            ||
| 1001 | "close_price",  | 
            ||
| 1002 | "high",  | 
            ||
| 1003 | "low",  | 
            ||
| 1004 | "volume",  | 
            ||
| 1005 | "price"]  | 
            ||
| 1006 | freqs = ["1m", "1d"]  | 
            ||
| 1007 | |||
| 1008 | for field in fields:  | 
            ||
| 1009 | for freq in freqs:  | 
            ||
| 1010 | window = portal.get_history_window(  | 
            ||
| 1011 | [],  | 
            ||
| 1012 |                     pd.Timestamp("2014-06-11 15:30", tz='UTC'), | 
            ||
| 1013 | 6,  | 
            ||
| 1014 | freq,  | 
            ||
| 1015 | field  | 
            ||
| 1016 | )  | 
            ||
| 1017 | |||
| 1018 | self.assertEqual(len(window), 6)  | 
            ||
| 1019 | |||
| 1020 | for i in range(0, 6):  | 
            ||
| 1021 | self.assertEqual(len(window.iloc[i]), 0)  | 
            ||
| 1022 | |||
| 1023 | def test_daily_window_starts_before_minute_data(self):  | 
            ||
| 1024 | |||
| 1025 | env = TradingEnvironment()  | 
            ||
| 1026 | asset_info = make_simple_asset_info(  | 
            ||
| 1027 | [self.GS],  | 
            ||
| 1028 |             Timestamp('1999-04-05'), | 
            ||
| 1029 |             Timestamp('2004-08-30'), | 
            ||
| 1030 | ['GS']  | 
            ||
| 1031 | )  | 
            ||
| 1032 | env.write_data(equities_df=asset_info)  | 
            ||
| 1033 | portal = self.get_portal(env=env)  | 
            ||
| 1034 | |||
| 1035 | window = portal.get_history_window(  | 
            ||
| 1036 | [self.GS],  | 
            ||
| 1037 | # 3rd day of daily data for GS, minute data starts in 2002.  | 
            ||
| 1038 |             pd.Timestamp("1999-04-07 14:35:00", tz='UTC'), | 
            ||
| 1039 | 10,  | 
            ||
| 1040 | "1d",  | 
            ||
| 1041 | "low"  | 
            ||
| 1042 | )  | 
            ||
| 1043 | |||
| 1044 | # 12/20, 12/21, 12/24, 12/26, 12/27, 12/28, 12/31 should be NaNs  | 
            ||
| 1045 | # 1/2 and 1/3 should be non-NaN  | 
            ||
| 1046 | # 1/4 should be NaN (since we don't have minute data for it)  | 
            ||
| 1047 | |||
| 1048 | self.assertEqual(len(window), 10)  | 
            ||
| 1049 | |||
| 1050 | for i in range(0, 7):  | 
            ||
| 1051 | self.assertTrue(np.isnan(window.iloc[i].loc[self.GS]))  | 
            ||
| 1052 | |||
| 1053 | for i in range(8, 9):  | 
            ||
| 1054 | self.assertFalse(np.isnan(window.iloc[i].loc[self.GS]))  | 
            ||
| 1055 | |||
| 1056 | self.assertTrue(np.isnan(window.iloc[9].loc[self.GS]))  | 
            ||
| 1057 | |||
| 1058 | def test_minute_window_ends_before_1_2_2002(self):  | 
            ||
| 1059 | with self.assertRaises(ValueError):  | 
            ||
| 1060 | self.data_portal.get_history_window(  | 
            ||
| 1061 | [self.GS],  | 
            ||
| 1062 |                 pd.Timestamp("2001-12-31 14:35:00", tz='UTC'), | 
            ||
| 1063 | 50,  | 
            ||
| 1064 | "1m",  | 
            ||
| 1065 | "close_price"  | 
            ||
| 1066 | )  | 
            ||
| 1067 | |||
| 1068 | def test_bad_history_inputs(self):  | 
            ||
| 1069 | portal = self.data_portal  | 
            ||
| 1070 | |||
| 1071 | # bad fieldname  | 
            ||
| 1072 | for field in ["foo", "bar", "", "5"]:  | 
            ||
| 1073 | with self.assertRaises(ValueError):  | 
            ||
| 1074 | portal.get_history_window(  | 
            ||
| 1075 | [self.AAPL],  | 
            ||
| 1076 |                     pd.Timestamp("2014-06-11 15:30", tz='UTC'), | 
            ||
| 1077 | 6,  | 
            ||
| 1078 | "1d",  | 
            ||
| 1079 | field  | 
            ||
| 1080 | )  | 
            ||
| 1081 | |||
| 1082 | # bad frequency  | 
            ||
| 1083 | for freq in ["2m", "30m", "3d", "300d", "", "5"]:  | 
            ||
| 1084 | with self.assertRaises(ValueError):  | 
            ||
| 1085 | portal.get_history_window(  | 
            ||
| 1086 | [self.AAPL],  | 
            ||
| 1087 |                     pd.Timestamp("2014-06-11 15:30", tz='UTC'), | 
            ||
| 1088 | 6,  | 
            ||
| 1089 | freq,  | 
            ||
| 1090 | "volume"  | 
            ||
| 1091 | )  | 
            ||
| 1092 | |||
| 1093 | def test_daily_merger(self):  | 
            ||
| 1094 | def check(field, ref):  | 
            ||
| 1095 | window = self.data_portal.get_history_window(  | 
            ||
| 1096 | [self.C],  | 
            ||
| 1097 |                 pd.Timestamp("2014-07-17 13:35", tz='UTC'), | 
            ||
| 1098 | 4,  | 
            ||
| 1099 | "1d",  | 
            ||
| 1100 | field  | 
            ||
| 1101 | )  | 
            ||
| 1102 | |||
| 1103 | self.assertEqual(len(window), len(ref),)  | 
            ||
| 1104 | |||
| 1105 | for i in range(0, len(ref) - 1):  | 
            ||
| 1106 | self.assertEquals(window.iloc[i].loc[self.C], ref[i], i)  | 
            ||
| 1107 | |||
| 1108 | # 2014-07-14 00:00:00+00:00,139.18,139.14,139.2,139.17,12351  | 
            ||
| 1109 | # 2014-07-15 00:00:00+00:00,139.2,139.2,139.18,139.19,12354  | 
            ||
| 1110 | # 2014-07-16 00:00:00+00:00,69.58,69.56,69.57,69.565,12352  | 
            ||
| 1111 | # 2014-07-17 13:31:00+00:00,72767,80146,63406,71776,12876  | 
            ||
| 1112 | # 2014-07-17 13:32:00+00:00,72769,76943,68907,72925,12875  | 
            ||
| 1113 | # 2014-07-17 13:33:00+00:00,72771,76127,63194,69660,12875  | 
            ||
| 1114 | # 2014-07-17 13:34:00+00:00,72774,79349,69771,74560,12877  | 
            ||
| 1115 | # 2014-07-17 13:35:00+00:00,72776,75340,68970,72155,12879  | 
            ||
| 1116 | |||
| 1117 | open_ref = [69.59, 69.6, 69.58, 72.767]  | 
            ||
| 1118 | high_ref = [69.57, 69.6, 69.56, 80.146]  | 
            ||
| 1119 | low_ref = [69.6, 69.59, 69.57, 63.194]  | 
            ||
| 1120 | close_ref = [69.585, 69.595, 69.565, 72.155]  | 
            ||
| 1121 | vol_ref = [12351, 12354, 12352, 64382]  | 
            ||
| 1122 | |||
| 1123 |         check("open_price", open_ref) | 
            ||
| 1124 |         check("high", high_ref) | 
            ||
| 1125 |         check("low", low_ref) | 
            ||
| 1126 |         check("close_price", close_ref) | 
            ||
| 1127 |         check("price", close_ref) | 
            ||
| 1128 |         check("volume", vol_ref) | 
            ||
| 1129 | |||
| 1130 | def test_minute_adjustments_as_of_lookback_date(self):  | 
            ||
| 1131 | # AAPL has splits on 2014-03-20 and 2014-03-21  | 
            ||
| 1132 | window_0320 = self.data_portal.get_history_window(  | 
            ||
| 1133 | [self.AAPL],  | 
            ||
| 1134 |             pd.Timestamp("2014-03-20 13:35", tz='UTC'), | 
            ||
| 1135 | 395,  | 
            ||
| 1136 | "1m",  | 
            ||
| 1137 | "open_price"  | 
            ||
| 1138 | )  | 
            ||
| 1139 | |||
| 1140 | window_0321 = self.data_portal.get_history_window(  | 
            ||
| 1141 | [self.AAPL],  | 
            ||
| 1142 |             pd.Timestamp("2014-03-21 13:35", tz='UTC'), | 
            ||
| 1143 | 785,  | 
            ||
| 1144 | "1m",  | 
            ||
| 1145 | "open_price"  | 
            ||
| 1146 | )  | 
            ||
| 1147 | |||
| 1148 | for i in range(0, 395):  | 
            ||
| 1149 | # history on 3/20, since the 3/21 0.5 split hasn't  | 
            ||
| 1150 | # happened yet, should return values 2x larger than history on  | 
            ||
| 1151 | # 3/21  | 
            ||
| 1152 | self.assertEqual(window_0320.iloc[i].loc[self.AAPL],  | 
            ||
| 1153 | window_0321.iloc[i].loc[self.AAPL] * 2)  | 
            ||
| 1154 | |||
| 1155 | def test_daily_adjustments_as_of_lookback_date(self):  | 
            ||
| 1156 | window_0402 = self.data_portal.get_history_window(  | 
            ||
| 1157 | [self.IBM],  | 
            ||
| 1158 |             pd.Timestamp("2014-04-02 13:35", tz='UTC'), | 
            ||
| 1159 | 23,  | 
            ||
| 1160 | "1d",  | 
            ||
| 1161 | "open_price"  | 
            ||
| 1162 | )  | 
            ||
| 1163 | |||
| 1164 | window_0702 = self.data_portal.get_history_window(  | 
            ||
| 1165 | [self.IBM],  | 
            ||
| 1166 |             pd.Timestamp("2014-07-02 13:35", tz='UTC'), | 
            ||
| 1167 | 86,  | 
            ||
| 1168 | "1d",  | 
            ||
| 1169 | "open_price"  | 
            ||
| 1170 | )  | 
            ||
| 1171 | |||
| 1172 | for i in range(0, 22):  | 
            ||
| 1173 | self.assertEqual(window_0402.iloc[i].loc[self.IBM],  | 
            ||
| 1174 | window_0702.iloc[i].loc[self.IBM] * 2)  | 
            ||
| 1175 | |||
| 1176 | def test_minute_dividends(self):  | 
            ||
| 1177 | def check(field, ref):  | 
            ||
| 1178 | window = self.data_portal.get_history_window(  | 
            ||
| 1179 | [self.DIVIDEND_SID],  | 
            ||
| 1180 |                 pd.Timestamp("2014-03-18 13:35", tz='UTC'), | 
            ||
| 1181 | 10,  | 
            ||
| 1182 | "1m",  | 
            ||
| 1183 | field  | 
            ||
| 1184 | )  | 
            ||
| 1185 | |||
| 1186 | self.assertEqual(len(window), len(ref))  | 
            ||
| 1187 | |||
| 1188 | np.testing.assert_allclose(window.loc[:, self.DIVIDEND_SID], ref)  | 
            ||
| 1189 | |||
| 1190 | # the DIVIDEND stock has dividends on 2014-03-18 (0.98)  | 
            ||
| 1191 | # 2014-03-17 19:56:00+00:00,118923,123229,112445,117837,2273  | 
            ||
| 1192 | # 2014-03-17 19:57:00+00:00,118927,122997,117911,120454,2274  | 
            ||
| 1193 | # 2014-03-17 19:58:00+00:00,118930,129112,111136,120124,2274  | 
            ||
| 1194 | # 2014-03-17 19:59:00+00:00,118932,126147,112112,119129,2276  | 
            ||
| 1195 | # 2014-03-17 20:00:00+00:00,118932,124541,108717,116628,2275  | 
            ||
| 1196 | # 2014-03-18 13:31:00+00:00,116457,120731,114148,117439,2274  | 
            ||
| 1197 | # 2014-03-18 13:32:00+00:00,116461,116520,106572,111546,2275  | 
            ||
| 1198 | # 2014-03-18 13:33:00+00:00,116461,117115,108506,112810,2274  | 
            ||
| 1199 | # 2014-03-18 13:34:00+00:00,116461,119787,108861,114323,2273  | 
            ||
| 1200 | # 2014-03-18 13:35:00+00:00,116464,117221,112698,114960,2272  | 
            ||
| 1201 | |||
| 1202 | open_ref = [116.545, # 2014-03-17 19:56:00+00:00  | 
            ||
| 1203 | 116.548, # 2014-03-17 19:57:00+00:00  | 
            ||
| 1204 | 116.551, # 2014-03-17 19:58:00+00:00  | 
            ||
| 1205 | 116.553, # 2014-03-17 19:59:00+00:00  | 
            ||
| 1206 | 116.553, # 2014-03-17 20:00:00+00:00  | 
            ||
| 1207 | 116.457, # 2014-03-18 13:31:00+00:00  | 
            ||
| 1208 | 116.461, # 2014-03-18 13:32:00+00:00  | 
            ||
| 1209 | 116.461, # 2014-03-18 13:33:00+00:00  | 
            ||
| 1210 | 116.461, # 2014-03-18 13:34:00+00:00  | 
            ||
| 1211 | 116.464] # 2014-03-18 13:35:00+00:00  | 
            ||
| 1212 | |||
| 1213 | high_ref = [120.764, # 2014-03-17 19:56:00+00:00  | 
            ||
| 1214 | 120.537, # 2014-03-17 19:57:00+00:00  | 
            ||
| 1215 | 126.530, # 2014-03-17 19:58:00+00:00  | 
            ||
| 1216 | 123.624, # 2014-03-17 19:59:00+00:00  | 
            ||
| 1217 | 122.050, # 2014-03-17 20:00:00+00:00  | 
            ||
| 1218 | 120.731, # 2014-03-18 13:31:00+00:00  | 
            ||
| 1219 | 116.520, # 2014-03-18 13:32:00+00:00  | 
            ||
| 1220 | 117.115, # 2014-03-18 13:33:00+00:00  | 
            ||
| 1221 | 119.787, # 2014-03-18 13:34:00+00:00  | 
            ||
| 1222 | 117.221] # 2014-03-18 13:35:00+00:00  | 
            ||
| 1223 | |||
| 1224 | low_ref = [110.196, # 2014-03-17 19:56:00+00:00  | 
            ||
| 1225 | 115.553, # 2014-03-17 19:57:00+00:00  | 
            ||
| 1226 | 108.913, # 2014-03-17 19:58:00+00:00  | 
            ||
| 1227 | 109.870, # 2014-03-17 19:59:00+00:00  | 
            ||
| 1228 | 106.543, # 2014-03-17 20:00:00+00:00  | 
            ||
| 1229 | 114.148, # 2014-03-18 13:31:00+00:00  | 
            ||
| 1230 | 106.572, # 2014-03-18 13:32:00+00:00  | 
            ||
| 1231 | 108.506, # 2014-03-18 13:33:00+00:00  | 
            ||
| 1232 | 108.861, # 2014-03-18 13:34:00+00:00  | 
            ||
| 1233 | 112.698] # 2014-03-18 13:35:00+00:00  | 
            ||
| 1234 | |||
| 1235 | close_ref = [115.480, # 2014-03-17 19:56:00+00:00  | 
            ||
| 1236 | 118.045, # 2014-03-17 19:57:00+00:00  | 
            ||
| 1237 | 117.722, # 2014-03-17 19:58:00+00:00  | 
            ||
| 1238 | 116.746, # 2014-03-17 19:59:00+00:00  | 
            ||
| 1239 | 114.295, # 2014-03-17 20:00:00+00:00  | 
            ||
| 1240 | 117.439, # 2014-03-18 13:31:00+00:00  | 
            ||
| 1241 | 111.546, # 2014-03-18 13:32:00+00:00  | 
            ||
| 1242 | 112.810, # 2014-03-18 13:33:00+00:00  | 
            ||
| 1243 | 114.323, # 2014-03-18 13:34:00+00:00  | 
            ||
| 1244 | 114.960] # 2014-03-18 13:35:00+00:00  | 
            ||
| 1245 | |||
| 1246 | volume_ref = [2273, # 2014-03-17 19:56:00+00:00  | 
            ||
| 1247 | 2274, # 2014-03-17 19:57:00+00:00  | 
            ||
| 1248 | 2274, # 2014-03-17 19:58:00+00:00  | 
            ||
| 1249 | 2276, # 2014-03-17 19:59:00+00:00  | 
            ||
| 1250 | 2275, # 2014-03-17 20:00:00+00:00  | 
            ||
| 1251 | 2274, # 2014-03-18 13:31:00+00:00  | 
            ||
| 1252 | 2275, # 2014-03-18 13:32:00+00:00  | 
            ||
| 1253 | 2274, # 2014-03-18 13:33:00+00:00  | 
            ||
| 1254 | 2273, # 2014-03-18 13:34:00+00:00  | 
            ||
| 1255 | 2272] # 2014-03-18 13:35:00+00:00  | 
            ||
| 1256 | |||
| 1257 |         check("open_price", open_ref) | 
            ||
| 1258 |         check("high", high_ref) | 
            ||
| 1259 |         check("low", low_ref) | 
            ||
| 1260 |         check("close_price", close_ref) | 
            ||
| 1261 |         check("price", close_ref) | 
            ||
| 1262 |         check("volume", volume_ref) | 
            ||
| 1263 | |||
| 1264 | def test_daily_dividends(self):  | 
            ||
| 1265 | def check(field, ref):  | 
            ||
| 1266 | window = self.data_portal.get_history_window(  | 
            ||
| 1267 | [self.DIVIDEND_SID],  | 
            ||
| 1268 |                 pd.Timestamp("2014-03-21 13:35", tz='UTC'), | 
            ||
| 1269 | 6,  | 
            ||
| 1270 | "1d",  | 
            ||
| 1271 | field  | 
            ||
| 1272 | )  | 
            ||
| 1273 | |||
| 1274 | self.assertEqual(len(window), len(ref))  | 
            ||
| 1275 | |||
| 1276 | np.testing.assert_allclose(window.loc[:, self.DIVIDEND_SID], ref)  | 
            ||
| 1277 | |||
| 1278 | # 2014-03-14 00:00:00+00:00,106408,106527,103498,105012,950  | 
            ||
| 1279 | # 2014-03-17 00:00:00+00:00,106411,110252,99877,105064,950  | 
            ||
| 1280 | # 2014-03-18 00:00:00+00:00,104194,110891,95342,103116,972  | 
            ||
| 1281 | # 2014-03-19 00:00:00+00:00,104198,107086,102615,104851,973  | 
            ||
| 1282 | # 2014-03-20 00:00:00+00:00,100032,102989,92179,97584,1016  | 
            ||
| 1283 | # 2014-03-21 13:31:00+00:00,114098,120818,110333,115575,2866  | 
            ||
| 1284 | # 2014-03-21 13:32:00+00:00,114099,120157,105353,112755,2866  | 
            ||
| 1285 | # 2014-03-21 13:33:00+00:00,114099,122263,108838,115550,2867  | 
            ||
| 1286 | # 2014-03-21 13:34:00+00:00,114101,116620,106654,111637,2867  | 
            ||
| 1287 | # 2014-03-21 13:35:00+00:00,114104,123773,107769,115771,2867  | 
            ||
| 1288 | |||
| 1289 | open_ref = [100.108, # 2014-03-14 00:00:00+00:00  | 
            ||
| 1290 | 100.111, # 2014-03-17 00:00:00+00:00  | 
            ||
| 1291 | 100.026, # 2014-03-18 00:00:00+00:00  | 
            ||
| 1292 | 100.030, # 2014-03-19 00:00:00+00:00  | 
            ||
| 1293 | 100.032, # 2014-03-20 00:00:00+00:00  | 
            ||
| 1294 | 114.098] # 2014-03-21 00:00:00+00:00  | 
            ||
| 1295 | |||
| 1296 | high_ref = [100.221, # 2014-03-14 00:00:00+00:00  | 
            ||
| 1297 | 103.725, # 2014-03-17 00:00:00+00:00  | 
            ||
| 1298 | 106.455, # 2014-03-18 00:00:00+00:00  | 
            ||
| 1299 | 102.803, # 2014-03-19 00:00:00+00:00  | 
            ||
| 1300 | 102.988, # 2014-03-20 00:00:00+00:00  | 
            ||
| 1301 | 123.773] # 2014-03-21 00:00:00+00:00  | 
            ||
| 1302 | |||
| 1303 | low_ref = [97.370, # 2014-03-14 00:00:00+00:00  | 
            ||
| 1304 | 93.964, # 2014-03-17 00:00:00+00:00  | 
            ||
| 1305 | 91.528, # 2014-03-18 00:00:00+00:00  | 
            ||
| 1306 | 98.510, # 2014-03-19 00:00:00+00:00  | 
            ||
| 1307 | 92.179, # 2014-03-20 00:00:00+00:00  | 
            ||
| 1308 | 105.353] # 2014-03-21 00:00:00+00:00  | 
            ||
| 1309 | |||
| 1310 | close_ref = [98.795, # 2014-03-14 00:00:00+00:00  | 
            ||
| 1311 | 98.844, # 2014-03-17 00:00:00+00:00  | 
            ||
| 1312 | 98.991, # 2014-03-18 00:00:00+00:00  | 
            ||
| 1313 | 100.657, # 2014-03-19 00:00:00+00:00  | 
            ||
| 1314 | 97.584, # 2014-03-20 00:00:00+00:00  | 
            ||
| 1315 | 115.771] # 2014-03-21 00:00:00+00:00  | 
            ||
| 1316 | |||
| 1317 | volume_ref = [950, # 2014-03-14 00:00:00+00:00  | 
            ||
| 1318 | 950, # 2014-03-17 00:00:00+00:00  | 
            ||
| 1319 | 972, # 2014-03-18 00:00:00+00:00  | 
            ||
| 1320 | 973, # 2014-03-19 00:00:00+00:00  | 
            ||
| 1321 | 1016, # 2014-03-20 00:00:00+00:00  | 
            ||
| 1322 | 14333] # 2014-03-21 00:00:00+00:00  | 
            ||
| 1323 | |||
| 1324 |         check("open_price", open_ref) | 
            ||
| 1325 |         check("high", high_ref) | 
            ||
| 1326 |         check("low", low_ref) | 
            ||
| 1327 |         check("close_price", close_ref) | 
            ||
| 1328 |         check("price", close_ref) | 
            ||
| 1329 |         check("volume", volume_ref) | 
            ||
| 1330 | |||
| 1331 |     @parameterized.expand([('open', 0), | 
            ||
| 1332 |                            ('high', 10000), | 
            ||
| 1333 |                            ('low', 20000), | 
            ||
| 1334 |                            ('close', 30000), | 
            ||
| 1335 |                            ('price', 30000), | 
            ||
| 1336 |                            ('volume', 40000)]) | 
            ||
| 1337 | def test_futures_history_minutes(self, field, offset):  | 
            ||
| 1338 | # our history data, for self.FUTURE_ASSET, is 10,000 bars starting at  | 
            ||
| 1339 | # self.futures_start_dt. Those 10k bars are 24/7.  | 
            ||
| 1340 | |||
| 1341 | # = 2015-11-30 18:50 UTC, 13:50 Eastern = during market hours  | 
            ||
| 1342 | futures_end_dt = \  | 
            ||
| 1343 | self.futures_start_dates[self.FUTURE_ASSET] + \  | 
            ||
| 1344 | timedelta(minutes=9999)  | 
            ||
| 1345 | |||
| 1346 | window = self.data_portal.get_history_window(  | 
            ||
| 1347 | [self.FUTURE_ASSET],  | 
            ||
| 1348 | futures_end_dt,  | 
            ||
| 1349 | 1000,  | 
            ||
| 1350 | "1m",  | 
            ||
| 1351 | field  | 
            ||
| 1352 | )  | 
            ||
| 1353 | |||
| 1354 | # check the minutes are right  | 
            ||
| 1355 | reference_minutes = self.env.market_minute_window(  | 
            ||
| 1356 | futures_end_dt, 1000, step=-1  | 
            ||
| 1357 | )[::-1]  | 
            ||
| 1358 | |||
| 1359 | np.testing.assert_array_equal(window.index, reference_minutes)  | 
            ||
| 1360 | |||
| 1361 | # check the values  | 
            ||
| 1362 | |||
| 1363 | # 2015-11-24 18:41  | 
            ||
| 1364 | # ...  | 
            ||
| 1365 | # 2015-11-24 21:00  | 
            ||
| 1366 | # 2015-11-25 14:31  | 
            ||
| 1367 | # ...  | 
            ||
| 1368 | # 2015-11-25 21:00  | 
            ||
| 1369 | # 2015-11-27 14:31  | 
            ||
| 1370 | # ...  | 
            ||
| 1371 | # 2015-11-27 18:00 # early close  | 
            ||
| 1372 | # 2015-11-30 14:31  | 
            ||
| 1373 | # ...  | 
            ||
| 1374 | # 2015-11-30 18:50  | 
            ||
| 1375 | |||
| 1376 | reference_values = pd.date_range(  | 
            ||
| 1377 | start=self.futures_start_dates[self.FUTURE_ASSET],  | 
            ||
| 1378 | end=futures_end_dt,  | 
            ||
| 1379 | freq="T"  | 
            ||
| 1380 | )  | 
            ||
| 1381 | |||
| 1382 | for idx, dt in enumerate(window.index):  | 
            ||
| 1383 | date_val = reference_values.searchsorted(dt)  | 
            ||
| 1384 | self.assertEqual(offset + date_val,  | 
            ||
| 1385 | window.iloc[idx][self.FUTURE_ASSET])  | 
            ||
| 1386 | |||
| 1387 | def test_history_minute_blended(self):  | 
            ||
| 1388 | window = self.data_portal.get_history_window(  | 
            ||
| 1389 | [self.FUTURE_ASSET2, self.AAPL],  | 
            ||
| 1390 |             pd.Timestamp("2014-03-21 20:00", tz='UTC'), | 
            ||
| 1391 | 200,  | 
            ||
| 1392 | "1m",  | 
            ||
| 1393 | "price"  | 
            ||
| 1394 | )  | 
            ||
| 1395 | |||
| 1396 | # just a sanity check  | 
            ||
| 1397 | self.assertEqual(200, len(window[self.AAPL]))  | 
            ||
| 1398 | self.assertEqual(200, len(window[self.FUTURE_ASSET2]))  | 
            ||
| 1399 | |||
| 1400 | def test_futures_history_daily(self):  | 
            ||
| 1401 | # get 3 days ending 11/30 10:00 am Eastern  | 
            ||
| 1402 | # = 11/25, 11/27 (half day), 11/30 (partial)  | 
            ||
| 1403 | |||
| 1404 | window = self.data_portal.get_history_window(  | 
            ||
| 1405 | [self.env.asset_finder.retrieve_asset(self.FUTURE_ASSET)],  | 
            ||
| 1406 |             pd.Timestamp("2015-11-30 15:00", tz='UTC'), | 
            ||
| 1407 | 3,  | 
            ||
| 1408 | "1d",  | 
            ||
| 1409 | "high"  | 
            ||
| 1410 | )  | 
            ||
| 1411 | |||
| 1412 | self.assertEqual(3, len(window[self.FUTURE_ASSET]))  | 
            ||
| 1413 | |||
| 1414 | np.testing.assert_array_equal([12929.0, 15629.0, 19769.0],  | 
            ||
| 1415 | window.values.T[0])  | 
            ||
| 1416 | 
Duplicated code is one of the most pungent code smells. If you need to duplicate the same code in three or more different places, we strongly encourage you to look into extracting the code into a single class or operation.
You can also find more detailed suggestions in the “Code” section of your repository.