Completed
Pull Request — master (#858)
by Eddie
01:31
created

to_dict()   A

Complexity

Conditions 1

Size

Total Lines 14

Duplication

Lines 0
Ratio 0 %
Metric Value
cc 1
dl 0
loc 14
rs 9.4286
1
#
2
# Copyright 2015 Quantopian, Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
"""
17
18
Performance Tracking
19
====================
20
21
    +-----------------+----------------------------------------------------+
22
    | key             | value                                              |
23
    +=================+====================================================+
24
    | period_start    | The beginning of the period to be tracked. datetime|
25
    |                 | in pytz.utc timezone. Will always be 0:00 on the   |
26
    |                 | date in UTC. The fact that the time may be on the  |
27
    |                 | prior day in the exchange's local time is ignored  |
28
    +-----------------+----------------------------------------------------+
29
    | period_end      | The end of the period to be tracked. datetime      |
30
    |                 | in pytz.utc timezone. Will always be 23:59 on the  |
31
    |                 | date in UTC. The fact that the time may be on the  |
32
    |                 | next day in the exchange's local time is ignored   |
33
    +-----------------+----------------------------------------------------+
34
    | progress        | percentage of test completed                       |
35
    +-----------------+----------------------------------------------------+
36
    | capital_base    | The initial capital assumed for this tracker.      |
37
    +-----------------+----------------------------------------------------+
38
    | cumulative_perf | A dictionary representing the cumulative           |
39
    |                 | performance through all the events delivered to    |
40
    |                 | this tracker. For details see the comments on      |
41
    |                 | :py:meth:`PerformancePeriod.to_dict`               |
42
    +-----------------+----------------------------------------------------+
43
    | todays_perf     | A dictionary representing the cumulative           |
44
    |                 | performance through all the events delivered to    |
45
    |                 | this tracker with datetime stamps between last_open|
46
    |                 | and last_close. For details see the comments on    |
47
    |                 | :py:meth:`PerformancePeriod.to_dict`               |
48
    |                 | TODO: adding this because we calculate it. May be  |
49
    |                 | overkill.                                          |
50
    +-----------------+----------------------------------------------------+
51
    | cumulative_risk | A dictionary representing the risk metrics         |
52
    | _metrics        | calculated based on the positions aggregated       |
53
    |                 | through all the events delivered to this tracker.  |
54
    |                 | For details look at the comments for               |
55
    |                 | :py:meth:`zipline.finance.risk.RiskMetrics.to_dict`|
56
    +-----------------+----------------------------------------------------+
57
58
"""
59
60
from __future__ import division
61
import logbook
62
from six import iteritems
63
from datetime import datetime
64
65
import pandas as pd
66
from pandas.tseries.tools import normalize_date
67
from zipline.finance.performance.period import PerformancePeriod
68
69
import zipline.finance.risk as risk
70
71
from zipline.utils.serialization_utils import (
72
    VERSION_LABEL
73
)
74
from . position_tracker import PositionTracker
75
76
log = logbook.Logger('Performance')
77
78
79
class PerformanceTracker(object):
80
    """
81
    Tracks the performance of the algorithm.
82
    """
83
    def __init__(self, sim_params, env, data_portal):
84
        self.sim_params = sim_params
85
        self.env = env
86
87
        self.period_start = self.sim_params.period_start
88
        self.period_end = self.sim_params.period_end
89
        self.last_close = self.sim_params.last_close
90
        first_open = self.sim_params.first_open.tz_convert(
91
            self.env.exchange_tz
92
        )
93
        self.day = pd.Timestamp(datetime(first_open.year, first_open.month,
94
                                         first_open.day), tz='UTC')
95
        self.market_open, self.market_close = env.get_open_and_close(self.day)
96
        self.total_days = self.sim_params.days_in_period
97
        self.capital_base = self.sim_params.capital_base
98
        self.emission_rate = sim_params.emission_rate
99
100
        all_trading_days = env.trading_days
101
        mask = ((all_trading_days >= normalize_date(self.period_start)) &
102
                (all_trading_days <= normalize_date(self.period_end)))
103
104
        self.trading_days = all_trading_days[mask]
105
106
        self._data_portal = data_portal
107
        if data_portal is not None:
108
            self._adjustment_reader = data_portal._adjustment_reader
109
        else:
110
            self._adjustment_reader = None
111
112
        self.position_tracker = PositionTracker(
113
            asset_finder=env.asset_finder,
114
            data_portal=data_portal,
115
            data_frequency=self.sim_params.data_frequency)
116
117
        if self.emission_rate == 'daily':
118
            self.all_benchmark_returns = pd.Series(
119
                index=self.trading_days)
120
            self.cumulative_risk_metrics = \
121
                risk.RiskMetricsCumulative(self.sim_params, self.env)
122
        elif self.emission_rate == 'minute':
123
            self.all_benchmark_returns = pd.Series(index=pd.date_range(
124
                self.sim_params.first_open, self.sim_params.last_close,
125
                freq='Min'))
126
127
            self.cumulative_risk_metrics = \
128
                risk.RiskMetricsCumulative(self.sim_params, self.env,
129
                                           create_first_day_stats=True)
130
131
        # this performance period will span the entire simulation from
132
        # inception.
133
        self.cumulative_performance = PerformancePeriod(
134
            # initial cash is your capital base.
135
            starting_cash=self.capital_base,
136
            data_frequency=self.sim_params.data_frequency,
137
            # the cumulative period will be calculated over the entire test.
138
            period_open=self.period_start,
139
            period_close=self.period_end,
140
            # don't save the transactions for the cumulative
141
            # period
142
            keep_transactions=False,
143
            keep_orders=False,
144
            # don't serialize positions for cumulative period
145
            serialize_positions=False,
146
            asset_finder=self.env.asset_finder,
147
            name="Cumulative"
148
        )
149
150
        # this performance period will span just the current market day
151
        self.todays_performance = PerformancePeriod(
152
            # initial cash is your capital base.
153
            starting_cash=self.capital_base,
154
            data_frequency=self.sim_params.data_frequency,
155
            # the daily period will be calculated for the market day
156
            period_open=self.market_open,
157
            period_close=self.market_close,
158
            keep_transactions=True,
159
            keep_orders=True,
160
            serialize_positions=True,
161
            asset_finder=self.env.asset_finder,
162
            name="Daily"
163
        )
164
165
        self.saved_dt = self.period_start
166
        # one indexed so that we reach 100%
167
        self.day_count = 0.0
168
        self.txn_count = 0
169
170
        self.account_needs_update = True
171
        self._account = None
172
173
        self._perf_periods = [self.cumulative_performance,
174
                              self.todays_performance]
175
176
    @property
177
    def perf_periods(self):
178
        return self._perf_periods
179
180
    def __repr__(self):
181
        return "%s(%r)" % (
182
            self.__class__.__name__,
183
            {'simulation parameters': self.sim_params})
184
185
    @property
186
    def progress(self):
187
        if self.emission_rate == 'minute':
188
            # Fake a value
189
            return 1.0
190
        elif self.emission_rate == 'daily':
191
            return self.day_count / self.total_days
192
193
    def set_date(self, date):
194
        if self.emission_rate == 'minute':
195
            self.saved_dt = date
196
            self.todays_performance.period_close = self.saved_dt
197
198
    def get_portfolio(self, dt):
199
        position_tracker = self.position_tracker
200
        position_tracker.sync_last_sale_prices(dt)
201
        pos_stats = position_tracker.stats()
202
        period_stats = self.cumulative_performance.stats(
203
            position_tracker.positions, pos_stats, self._data_portal)
204
        return self.cumulative_performance.as_portfolio(
205
            pos_stats,
206
            period_stats,
207
            position_tracker,
208
            dt)
209
210
    def get_account(self, dt):
211
        self.position_tracker.sync_last_sale_prices(dt)
212
        pos_stats = self.position_tracker.stats()
213
        period_stats = self.cumulative_performance.stats(
214
            self.position_tracker.positions, pos_stats, self._data_portal)
215
        self._account = self.cumulative_performance.as_account(
216
            pos_stats, period_stats)
217
        return self._account
218
219
    def to_dict(self, emission_type=None):
220
        """
221
        Wrapper for serialization compatibility.
222
        """
223
        pos_stats = self.position_tracker.stats()
224
        cumulative_stats = self.cumulative_performance.stats(
225
            self.position_tracker.positions, pos_stats, self._data_portal)
226
        todays_stats = self.todays_performance.stats(
227
            self.position_tracker.positions, pos_stats, self._data_portal)
228
229
        return self._to_dict(pos_stats,
230
                             cumulative_stats,
231
                             todays_stats,
232
                             emission_type)
233
234
    def _to_dict(self, pos_stats, cumulative_stats, todays_stats,
235
                 emission_type=None):
236
        """
237
        Creates a dictionary representing the state of this tracker.
238
        Returns a dict object of the form described in header comments.
239
240
        Use this method internally, when stats are available.
241
        """
242
        # Default to the emission rate of this tracker if no type is provided
243
        if emission_type is None:
244
            emission_type = self.emission_rate
245
246
        position_tracker = self.position_tracker
247
248
        _dict = {
249
            'period_start': self.period_start,
250
            'period_end': self.period_end,
251
            'capital_base': self.capital_base,
252
            'cumulative_perf': self.cumulative_performance.to_dict(
253
                pos_stats, cumulative_stats, position_tracker,
254
            ),
255
            'progress': self.progress,
256
            'cumulative_risk_metrics': self.cumulative_risk_metrics.to_dict()
257
        }
258
        if emission_type == 'daily':
259
            _dict['daily_perf'] = self.todays_performance.to_dict(
260
                pos_stats,
261
                todays_stats,
262
                position_tracker)
263
        elif emission_type == 'minute':
264
            _dict['minute_perf'] = self.todays_performance.to_dict(
265
                pos_stats,
266
                todays_stats,
267
                position_tracker,
268
                self.saved_dt)
269
        else:
270
            raise ValueError("Invalid emission type: %s" % emission_type)
271
272
        return _dict
273
274
    def copy_state_from(self, other_perf_tracker):
275
        self.all_benchmark_returns = other_perf_tracker.all_benchmark_returns
276
277
        if other_perf_tracker.position_tracker:
278
            self.position_tracker._unpaid_dividends = \
279
                other_perf_tracker.position_tracker._unpaid_dividends
280
281
            self.position_tracker._unpaid_stock_dividends = \
282
                other_perf_tracker.position_tracker._unpaid_stock_dividends
283
284
    def process_transaction(self, transaction):
285
        self.txn_count += 1
286
        self.position_tracker.execute_transaction(transaction)
287
        self.cumulative_performance.handle_execution(transaction)
288
        self.todays_performance.handle_execution(transaction)
289
290
    def handle_splits(self, splits):
291
        leftover_cash = self.position_tracker.handle_splits(splits)
292
        if leftover_cash > 0:
293
            self.cumulative_performance.handle_cash_payment(leftover_cash)
294
            self.todays_performance.handle_cash_payment(leftover_cash)
295
296
    def process_order(self, event):
297
        self.cumulative_performance.record_order(event)
298
        self.todays_performance.record_order(event)
299
300
    def process_commission(self, commission):
301
        sid = commission["sid"]
302
        cost = commission["cost"]
303
304
        self.position_tracker.handle_commission(sid, cost)
305
        self.cumulative_performance.handle_commission(cost)
306
        self.todays_performance.handle_commission(cost)
307
308
    def process_close_position(self, event):
309
        txn = self.position_tracker.\
310
            maybe_create_close_position_transaction(event)
311
        if txn:
312
            self.process_transaction(txn)
313
314
    def check_upcoming_dividends(self, next_trading_day):
315
        """
316
        Check if we currently own any stocks with dividends whose ex_date is
317
        the next trading day.  Track how much we should be payed on those
318
        dividends' pay dates.
319
320
        Then check if we are owed cash/stock for any dividends whose pay date
321
        is the next trading day.  Apply all such benefits, then recalculate
322
        performance.
323
        """
324
        if self._adjustment_reader is None:
325
            return
326
        position_tracker = self.position_tracker
327
        held_sids = set(position_tracker.positions)
328
        # Dividends whose ex_date is the next trading day.  We need to check if
329
        # we own any of these stocks so we know to pay them out when the pay
330
        # date comes.
331
        if held_sids:
332
            dividends_earnable = self._adjustment_reader.\
333
                get_dividends_with_ex_date(held_sids, next_trading_day)
334
            stock_dividends = self._adjustment_reader.\
335
                get_stock_dividends_with_ex_date(held_sids, next_trading_day)
336
            position_tracker.earn_dividends(dividends_earnable,
337
                                            stock_dividends)
338
339
        net_cash_payment = position_tracker.pay_dividends(next_trading_day)
340
        if not net_cash_payment:
341
            return
342
343
        self.cumulative_performance.handle_dividends_paid(net_cash_payment)
344
        self.todays_performance.handle_dividends_paid(net_cash_payment)
345
346
    def check_asset_auto_closes(self, next_trading_day):
347
        """
348
        Check if the position tracker currently owns any Assets with an
349
        auto-close date that is the next trading day.  Close those positions.
350
351
        Parameters
352
        ----------
353
        next_trading_day : pandas.Timestamp
354
            The next trading day of the simulation
355
        """
356
        auto_close_events = self.position_tracker.auto_close_position_events(
357
            next_trading_day=next_trading_day
358
        )
359
        for event in auto_close_events:
360
            self.process_close_position(event)
361
362
    def handle_minute_close(self, dt):
363
        """
364
        Handles the close of the given minute. This includes handling
365
        market-close functions if the given minute is the end of the market
366
        day.
367
368
        Parameters
369
        __________
370
        dt : Timestamp
371
            The minute that is ending
372
373
        Returns
374
        _______
375
        (dict, dict/None)
376
            A tuple of the minute perf packet and daily perf packet.
377
            If the market day has not ended, the daily perf packet is None.
378
        """
379
        todays_date = normalize_date(dt)
380
        account = self.get_account(dt)
381
382
        bench_returns = self.all_benchmark_returns.loc[todays_date:dt]
383
        # cumulative returns
384
        bench_since_open = (1. + bench_returns).prod() - 1
385
386
        self.position_tracker.sync_last_sale_prices(dt)
387
        pos_stats = self.position_tracker.stats()
388
        cumulative_stats = self.cumulative_performance.stats(
389
            self.position_tracker.positions, pos_stats, self._data_portal
390
        )
391
        todays_stats = self.todays_performance.stats(
392
            self.position_tracker.positions, pos_stats, self._data_portal
393
        )
394
        self.cumulative_risk_metrics.update(todays_date,
395
                                            todays_stats.returns,
396
                                            bench_since_open,
397
                                            account)
398
399
        minute_packet = self._to_dict(pos_stats,
400
                                      cumulative_stats,
401
                                      todays_stats,
402
                                      emission_type='minute')
403
404
        if dt == self.market_close:
405
            # if this is the last minute of the day, we also want to
406
            # emit a daily packet.
407
            return minute_packet, self._handle_market_close(todays_date,
408
                                                            pos_stats,
409
                                                            todays_stats)
410
        else:
411
            return minute_packet, None
412
413
    def handle_market_close_daily(self, dt):
414
        """
415
        Function called after handle_data when running with daily emission
416
        rate.
417
        """
418
        completed_date = normalize_date(dt)
419
420
        self.position_tracker.sync_last_sale_prices(dt)
421
422
        pos_stats = self.position_tracker.stats()
423
        todays_stats = self.todays_performance.stats(
424
            self.position_tracker.positions, pos_stats, self._data_portal
425
        )
426
        account = self.get_account(completed_date)
427
428
        # update risk metrics for cumulative performance
429
        benchmark_value = self.all_benchmark_returns[completed_date]
430
431
        self.cumulative_risk_metrics.update(
432
            completed_date,
433
            todays_stats.returns,
434
            benchmark_value,
435
            account)
436
437
        daily_packet = self._handle_market_close(completed_date,
438
                                                 pos_stats,
439
                                                 todays_stats)
440
441
        return daily_packet
442
443
    def _handle_market_close(self, completed_date, pos_stats, todays_stats):
444
445
        # increment the day counter before we move markers forward.
446
        self.day_count += 1.0
447
448
        # Get the next trading day and, if it is past the bounds of this
449
        # simulation, return the daily perf packet
450
        next_trading_day = self.env.next_trading_day(completed_date)
451
452
        # Check if any assets need to be auto-closed before generating today's
453
        # perf period
454
        if next_trading_day:
455
            self.check_asset_auto_closes(next_trading_day=next_trading_day)
456
457
        # Take a snapshot of our current performance to return to the
458
        # browser.
459
        cumulative_stats = self.cumulative_performance.stats(
460
            self.position_tracker.positions,
461
            pos_stats, self._data_portal)
462
        daily_update = self._to_dict(pos_stats,
463
                                     cumulative_stats,
464
                                     todays_stats,
465
                                     emission_type='daily')
466
467
        # On the last day of the test, don't create tomorrow's performance
468
        # period.  We may not be able to find the next trading day if we're at
469
        # the end of our historical data
470
        if self.market_close >= self.last_close:
471
            return daily_update
472
473
        # move the market day markers forward
474
        self.market_open, self.market_close = \
475
            self.env.next_open_and_close(self.day)
476
        self.day = self.env.next_trading_day(self.day)
477
478
        # Roll over positions to current day.
479
        self.todays_performance.rollover(pos_stats, todays_stats)
480
        self.todays_performance.period_open = self.market_open
481
        self.todays_performance.period_close = self.market_close
482
483
        # If the next trading day is irrelevant, then return the daily packet
484
        if (next_trading_day is None) or (next_trading_day >= self.last_close):
485
            return daily_update
486
487
        # Check for any dividends and auto-closes, then return the daily perf
488
        # packet
489
        self.check_upcoming_dividends(next_trading_day=next_trading_day)
490
        return daily_update
491
492
    def handle_simulation_end(self):
493
        """
494
        When the simulation is complete, run the full period risk report
495
        and send it out on the results socket.
496
        """
497
498
        log_msg = "Simulated {n} trading days out of {m}."
499
        log.info(log_msg.format(n=int(self.day_count), m=self.total_days))
500
        log.info("first open: {d}".format(
501
            d=self.sim_params.first_open))
502
        log.info("last close: {d}".format(
503
            d=self.sim_params.last_close))
504
505
        bms = pd.Series(
506
            index=self.cumulative_risk_metrics.cont_index,
507
            data=self.cumulative_risk_metrics.benchmark_returns_cont)
508
        ars = pd.Series(
509
            index=self.cumulative_risk_metrics.cont_index,
510
            data=self.cumulative_risk_metrics.algorithm_returns_cont)
511
        acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages
512
        self.risk_report = risk.RiskReport(
513
            ars,
514
            self.sim_params,
515
            benchmark_returns=bms,
516
            algorithm_leverages=acl,
517
            env=self.env)
518
519
        risk_dict = self.risk_report.to_dict()
520
        return risk_dict
521
522
    def __getstate__(self):
523
        state_dict = \
524
            {k: v for k, v in iteritems(self.__dict__)
525
                if not k.startswith('_')}
526
527
        STATE_VERSION = 4
528
        state_dict[VERSION_LABEL] = STATE_VERSION
529
530
        return state_dict
531
532
    def __setstate__(self, state):
533
534
        OLDEST_SUPPORTED_STATE = 4
535
        version = state.pop(VERSION_LABEL)
536
537
        if version < OLDEST_SUPPORTED_STATE:
538
            raise BaseException("PerformanceTracker saved state is too old.")
539
540
        self.__dict__.update(state)
541