1
|
|
|
# |
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
from datetime import timedelta |
16
|
|
|
from functools import wraps |
17
|
|
|
from itertools import product |
18
|
|
|
from nose_parameterized import parameterized |
19
|
|
|
import operator |
20
|
|
|
import random |
21
|
|
|
from six import itervalues |
22
|
|
|
from six.moves import map |
23
|
|
|
from unittest import TestCase |
24
|
|
|
|
25
|
|
|
import numpy as np |
26
|
|
|
from numpy.testing import assert_allclose |
27
|
|
|
|
28
|
|
|
from zipline.finance.trading import TradingEnvironment |
29
|
|
|
from zipline.algorithm import TradingAlgorithm |
30
|
|
|
import zipline.utils.factory as factory |
31
|
|
|
from zipline.api import add_transform, get_datetime |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def handle_data_wrapper(f): |
35
|
|
|
@wraps(f) |
36
|
|
|
def wrapper(context, data): |
37
|
|
|
dt = get_datetime() |
38
|
|
|
if dt.date() != context.current_date: |
39
|
|
|
context.warmup -= 1 |
40
|
|
|
context.mins_for_days.append(1) |
41
|
|
|
context.current_date = dt.date() |
42
|
|
|
else: |
43
|
|
|
context.mins_for_days[-1] += 1 |
44
|
|
|
|
45
|
|
|
hist = context.history(2, '1d', 'close_price') |
46
|
|
|
for n in (1, 2, 3): |
47
|
|
|
if n in data: |
48
|
|
|
if data[n].dt == dt: |
49
|
|
|
context.vol_bars[n].append(data[n].volume) |
50
|
|
|
else: |
51
|
|
|
context.vol_bars[n].append(0) |
52
|
|
|
|
53
|
|
|
context.price_bars[n].append(data[n].price) |
54
|
|
|
else: |
55
|
|
|
context.price_bars[n].append(np.nan) |
56
|
|
|
context.vol_bars[n].append(0) |
57
|
|
|
|
58
|
|
|
context.last_close_prices[n] = hist[n][0] |
59
|
|
|
|
60
|
|
|
if context.warmup < 0: |
61
|
|
|
return f(context, data) |
62
|
|
|
|
63
|
|
|
return wrapper |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
def initialize_with(test_case, tfm_name, days): |
67
|
|
|
def initalize(context): |
68
|
|
|
context.test_case = test_case |
69
|
|
|
context.days = days |
70
|
|
|
context.mins_for_days = [] |
71
|
|
|
context.price_bars = (None, [np.nan], [np.nan], [np.nan]) |
72
|
|
|
context.vol_bars = (None, [np.nan], [np.nan], [np.nan]) |
73
|
|
|
if context.days: |
74
|
|
|
context.warmup = days + 1 |
75
|
|
|
else: |
76
|
|
|
context.warmup = 2 |
77
|
|
|
|
78
|
|
|
context.current_date = None |
79
|
|
|
|
80
|
|
|
context.last_close_prices = [np.nan, np.nan, np.nan, np.nan] |
81
|
|
|
add_transform(tfm_name, days) |
82
|
|
|
|
83
|
|
|
return initalize |
84
|
|
|
|
85
|
|
|
|
86
|
|
|
def windows_with_frequencies(*args): |
87
|
|
|
args = args or (None,) |
88
|
|
|
return product(('daily', 'minute'), args) |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
def with_algo(f): |
92
|
|
|
name = f.__name__ |
93
|
|
|
if not name.startswith('test_'): |
94
|
|
|
raise ValueError('This must decorate a test case') |
95
|
|
|
|
96
|
|
|
tfm_name = name[len('test_'):] |
97
|
|
|
|
98
|
|
|
@wraps(f) |
99
|
|
|
def wrapper(self, data_frequency, days=None): |
100
|
|
|
sim_params, source = self.sim_and_source[data_frequency] |
101
|
|
|
|
102
|
|
|
algo = TradingAlgorithm( |
103
|
|
|
initialize=initialize_with(self, tfm_name, days), |
104
|
|
|
handle_data=handle_data_wrapper(f), |
105
|
|
|
sim_params=sim_params, |
106
|
|
|
env=self.env, |
107
|
|
|
) |
108
|
|
|
algo.run(source) |
109
|
|
|
|
110
|
|
|
return wrapper |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
class TransformTestCase(TestCase): |
114
|
|
|
""" |
115
|
|
|
Tests the simple transforms by running them through a zipline. |
116
|
|
|
""" |
117
|
|
|
@classmethod |
118
|
|
|
def setUpClass(cls): |
119
|
|
|
random.seed(0) |
120
|
|
|
cls.sids = (1, 2, 3) |
121
|
|
|
minute_sim_ps = factory.create_simulation_parameters( |
122
|
|
|
num_days=3, |
123
|
|
|
data_frequency='minute', |
124
|
|
|
emission_rate='minute', |
125
|
|
|
) |
126
|
|
|
daily_sim_ps = factory.create_simulation_parameters( |
127
|
|
|
num_days=30, |
128
|
|
|
data_frequency='daily', |
129
|
|
|
emission_rate='daily', |
130
|
|
|
) |
131
|
|
|
cls.env = TradingEnvironment() |
132
|
|
|
cls.env.write_data(equities_identifiers=[1, 2, 3]) |
133
|
|
|
cls.sim_and_source = { |
134
|
|
|
'minute': (minute_sim_ps, factory.create_minutely_trade_source( |
135
|
|
|
cls.sids, |
136
|
|
|
sim_params=minute_sim_ps, |
137
|
|
|
env=cls.env, |
138
|
|
|
)), |
139
|
|
|
'daily': (daily_sim_ps, factory.create_trade_source( |
140
|
|
|
cls.sids, |
141
|
|
|
trade_time_increment=timedelta(days=1), |
142
|
|
|
sim_params=daily_sim_ps, |
143
|
|
|
env=cls.env, |
144
|
|
|
)), |
145
|
|
|
} |
146
|
|
|
|
147
|
|
|
@classmethod |
148
|
|
|
def tearDownClass(cls): |
149
|
|
|
del cls.env |
150
|
|
|
|
151
|
|
|
def tearDown(self): |
152
|
|
|
""" |
153
|
|
|
Each test consumes a source, we need to rewind it. |
154
|
|
|
""" |
155
|
|
|
for _, source in itervalues(self.sim_and_source): |
156
|
|
|
source.rewind() |
157
|
|
|
|
158
|
|
|
@parameterized.expand(windows_with_frequencies(1, 2, 3, 4)) |
159
|
|
|
@with_algo |
160
|
|
|
def test_mavg(context, data): |
161
|
|
|
""" |
162
|
|
|
Tests the mavg transform by manually keeping track of the prices |
163
|
|
|
in a naiive way and asserting that our mean is the same. |
164
|
|
|
""" |
165
|
|
|
mins = sum(context.mins_for_days[-context.days:]) |
166
|
|
|
|
167
|
|
|
for sid in data: |
168
|
|
|
assert_allclose( |
169
|
|
|
data[sid].mavg(context.days), |
170
|
|
|
np.mean(context.price_bars[sid][-mins:]), |
171
|
|
|
) |
172
|
|
|
|
173
|
|
|
@parameterized.expand(windows_with_frequencies(2, 3, 4)) |
174
|
|
|
@with_algo |
175
|
|
|
def test_stddev(context, data): |
176
|
|
|
""" |
177
|
|
|
Tests the stddev transform by manually keeping track of the prices |
178
|
|
|
in a naiive way and asserting that our stddev is the same. |
179
|
|
|
This accounts for the corrected ddof. |
180
|
|
|
""" |
181
|
|
|
mins = sum(context.mins_for_days[-context.days:]) |
182
|
|
|
|
183
|
|
|
for sid in data: |
184
|
|
|
assert_allclose( |
185
|
|
|
data[sid].stddev(context.days), |
186
|
|
|
np.std(context.price_bars[sid][-mins:], ddof=1), |
187
|
|
|
) |
188
|
|
|
|
189
|
|
|
@parameterized.expand(windows_with_frequencies(2, 3, 4)) |
190
|
|
|
@with_algo |
191
|
|
|
def test_vwap(context, data): |
192
|
|
|
""" |
193
|
|
|
Tests the vwap transform by manually keeping track of the prices |
194
|
|
|
and volumes in a naiive way and asserting that our hand-rolled vwap is |
195
|
|
|
the same |
196
|
|
|
""" |
197
|
|
|
mins = sum(context.mins_for_days[-context.days:]) |
198
|
|
|
for sid in data: |
199
|
|
|
prices = context.price_bars[sid][-mins:] |
200
|
|
|
vols = context.vol_bars[sid][-mins:] |
201
|
|
|
manual_vwap = sum( |
202
|
|
|
map(operator.mul, np.nan_to_num(np.array(prices)), vols), |
203
|
|
|
) / sum(vols) |
204
|
|
|
|
205
|
|
|
assert_allclose( |
206
|
|
|
data[sid].vwap(context.days), |
207
|
|
|
manual_vwap, |
208
|
|
|
) |
209
|
|
|
|
210
|
|
|
@parameterized.expand(windows_with_frequencies()) |
211
|
|
|
@with_algo |
212
|
|
|
def test_returns(context, data): |
213
|
|
|
for sid in data: |
214
|
|
|
last_close = context.last_close_prices[sid] |
215
|
|
|
returns = (data[sid].price - last_close) / last_close |
216
|
|
|
|
217
|
|
|
assert_allclose( |
218
|
|
|
data[sid].returns(), |
219
|
|
|
returns, |
220
|
|
|
) |
221
|
|
|
|